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Abstract. We will construct weakly infinite-dimensional (in the sense of Y. Smirnov)
spaces X and Y such that Y contains X topologically and dimY = ω0 and dim X = ω0+1.
Consequently, the subspace theorem does not hold for the transfinite dimension dim for
weakly infinite-dimensional spaces.

Preliminaries. All the spaces considered are separable and metrizable.
Let us first establish some notational conventions. As far as standard notions
from general topology and dimension theory are concerned we mostly follow
[E1] and [E2].

In particular, we note that the boundary of a subset A of a space X is
denoted by FrA. We denote by C the Cantor set, and by ω the collection
of natural numbers. The first infinite ordinal is denoted by ω0.

1. Definitions. Let us start with some fundamental definitions.

1.1. Definition. A sequence {(Ai, Bi)}
n
i=1 of pairs of disjoint closed

sets in a space X is called inessential (resp. inessential on a subspace F ) if
we can find open sets Oi (resp. Oi open in F ), i = 1, . . . , n, such that

Ai ⊂ Oi ⊂ Oi ⊂ X − Bi and

n
⋂

i=1

Fr Oi = ∅

(resp. (
⋂n

i=1 FrOi)∩F = ∅). Otherwise it is called essential (resp. essential

on F ).

1.2. Definition. A space X is called weakly infinite-dimensional in the

sense of Smirnov , abbreviated S-w.i.d., if for every sequence {(Ai, Bi)}
∞
i=1

of pairs of disjoint closed sets in X there exist open sets Oi, i = 1, 2, . . . ,

1991 Mathematics Subject Classification: Primary 54F45.
Key words and phrases: weakly infinite-dimensional, transfinite dimension.



226 P. Borst

such that

Ai ⊂ Oi ⊂ Oi ⊂ X − Bi and

n
⋂

i=1

Fr Oi = ∅ for some n .

In [B1] and [B2] we developed a transfinite extension of the covering
dimension, dim. This dimension function classifies all weakly infinite-di-
mensional spaces. We also saw that the classification resulting from R. Pol’s
index [P] is equivalent and that the essential mappings defined by D. W. Hen-
derson [He] give a classification which differs by at most 1 class from the one
resulting from dim. We will see that the subspace theorem does not hold for
the dimension dim. We prove this by constructing spaces X and Y such that
Y contains X topologically and moreover dimX = ω0 + 1 and dimY = ω0.
We also see that this result is relevant to the characterization theorem.

To define the transfinite dimension function dim, we need the following
notions:

Let L be an arbitrary set. Fin L denotes the collection of all finite,
non-empty subsets of L. Let M be a subset of Fin L.

For each σ ∈ {∅} ∪ FinL we put

Mσ = {τ ∈ Fin L : σ ∪ τ ∈ M and σ ∩ τ = ∅} .

M{a} is abbreviated as Ma.

1.3. Definition. Define the ordinal OrdM as follows:

OrdM = 0 iff M = ∅ ,

OrdM ≤ α iff for every a ∈ L,OrdM a < α ,

OrdM = α iff OrdM ≤ α and OrdM < α is not true, and

OrdM = ∞ iff OrdM > α for every ordinal α .

Let X be a normal space. Then we define

L(X) = {(A,B) : A ∩ B = ∅, A and B are closed in X} .

Moreover, let

ML(X) = {σ ∈ FinL(X) : σ is essential} .

We have the following equality:

1.4. Theorem. Let X be a space. Then

OrdML(X) ≤ n iff dimX ≤ n .

This inspired our definition of transfinite dimension dim.

1.5. Definition. Let X be a space. Then dimX = OrdML(X).

We have seen in [B1] that

1.6. Theorem. For a space X, dimX exists iff X is S-w.i.d .
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2. The subspace theorem. In [B1] we have proved the following
subspace theorem on dim.

2.1. Theorem [B1, 3.1.6]. Let F be a closed subset of a space X. Then

dimF ≤ dimX.

We also obtained the next result on open subspaces.

2.2. Proposition [B1, 3.5.5]. Let Y be a space and let X be an open

subspace of Y such that ω0 ≤ dimX < ∞. Moreover , assume dim(Y − X)
is finite. Then dimX = dimY .

2.3. Example. Let us define Smirnov’s spaces Sα for α < ω1:

— S0 = {0},
— Sα+1 = Sα × [−1, 1],
— if α is a limit then Sα = ω(

⊕

β<α Sβ) (one-point compactification).

It is well known that each Sα is S-w.i.d. Moreover, dimSα = α. The proof
is completely analogous to [B2; 4.1.11].

The discrete sum Z =
⊕

n<ω0
Sn is not S-w.i.d. but it is topologically

contained in Sω0
. Therefore we see that a subspace X of an S-w.i.d. space

Y need not be S-w.i.d. itself.
So we have Z ⊂ Sω0

, dimZ = ∞ and dimSω0
= ω0.

The natural question arises whether for every S-w.i.d. space Y and every
S-w.i.d. subspace X of Y we have dimX ≤ dimY .

2.4. R e ma r k. For the transfinite dimension function Ind, which has
very similar properties to dim and classifies a similar category of infinite-
dimensional spaces, L. A. Lyuksemburg proved

2.5. Theorem [L]. Let Y be a metric space and let X be a subspace of

Y such that both IndX and IndY exist. Then IndX ≤ IndY .

Thus for Ind the subspace theorem holds.
We will answer our question in the negative by constructing a counterex-

ample.

3. The counterexample. We will define S-w.i.d. spaces X and Y such
that X ⊂ Y ⊂ Sω0+1, dimX = ω0 + 1 and dimY = ω0.

Put Tn = Sn × I for n = 1, 2, . . . and let

Sω0+1 = Sω0
× I = {p} × I ∪

⊕

n<ω0

(Sn × I) = {p} × I ∪
⊕

n<ω0

Tn .

For the construction of Y , for each n = 1, 2, . . . express the interval
I = [−1, 1] as I =

⋃n

m=−n+1 Knm where Knm = [(m − 1)/n,m/n]. Fix

some n and some m ∈ {−n + 1, . . . , n}. We may define Oi
nm, i = 1, 2, . . . ,
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as open intervals in I within Knm such that Oi
nm ∩ Oj

nm = ∅ for i 6= j and
i, j = 1, 2, . . . Let us also define

F i
n =

n

×
j=1

[−1/(i + 1), 1/(i + 1)] ⊂ Sn

for each n = 1, 2, . . . and i = 1, 2, . . . For each n let

Yn = {(x, y) ∈ Sn × I : y 6∈ Oi
nm

for every m = −n + 1, . . . , n and every i = 1, 2, . . .}

∪{(x, y) ∈ Sn × I : y ∈ Oi
nm and x ∈ F i

n

for some m = −n + 1, . . . , n and some i = 1, 2, . . .} .

Clearly, Yn ⊂ Tn.
We define Y = {p}× I ∪

⊕

n<ω0
Yn. Then Y is closed subspace of Sω0+1

and hence a compact metric space.
Now let us construct the subspace X of Y . Set

I(n) =
( n

×
i=1

{0}
)

× I ⊂ Tn for n = 1, 2, . . .

Note that also I(n) ⊂ Yn for each n = 1, 2, . . . Define Xn = Yn − I(n) and
X = {p} × I ∪

⊕

n<ω0
Xn. Clearly we have X ⊂ Y ⊂ Sω0+1.

We will prove that dimY = ω0 but its subspace X is S-w.i.d. and has
dimension dimX > ω0.

3.1. Claim. dimY = ω0.

Clearly, dimY ≥ ω0 since Y contains closed subspaces of arbitrary large
finite dimension. To show dimY ≤ ω0, let (A0, B0) be a pair of disjoint
closed subsets in Y (in other words, (A0, B0) ∈ L(Y )). We prove that there
exists some finite n1 such that

(3.1.1) OrdM
(A0,B0)
L(Y ) < n1 .

Consider {p} × I in Y as the unit interval [−1, 1]. There exists some k
such that for all the subintervals Kkm = [(m−1)/k,m/k], m = −k+1, . . . , k,
we have

if Kkm ∩ A0 6= ∅ then (Kk,m−1 ∪ Kkm ∪ Kk,m+1) ∩ B0 = ∅ .

For each m we can find some n(m) such that for each n ≥ n(m) we have

if Kkm ∩ A0 = ∅ then (Sn × Kkm) ∩ A0 = ∅ and(3.1.2)

if Kkm ∩ B0 = ∅ then (Sn × Kkm) ∩ B0 = ∅ .

Put n1 = max{2k, n(m) : m = −k + 1, . . . , k}. We prove that n1 is as
required. Take {(Ai, Bi)}

n1

i=0 ∈ FinL(Y ). If we prove

(3.1.3) {(Ai, Bi)}
n1

i=0 is inessential ,
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we are done. Let G=
⊕n1−1

n=0 Yn. Then dimG≤n1; hence by the theorem on
partitions [E2; 3.2.6] we can find open sets Ui in G, i = 0, . . . , n1, such that

(3.1.4) Ai ∩ G ⊂ Ui ⊂ U i ⊂ G − Bi and

n1
⋂

i=0

FrUi = ∅ .

Now consider F = Y − G = {p} × I ∪
⊕

n1≤n<ω0
Yn. Since dim{p} × I = 1

we can find open sets V ′
i in F , i = 0, . . . , n1, such that

Ai ∩ F ⊂ V ′
i ⊂ V ′

i ⊂ F − Bi and

n1
⋂

i=0

Fr V ′
i ∩ {p} × I = ∅ .

There is some n2 ≥ n1 such that
n1
⋂

i=0

Fr V ′
i ∩

(

{p} × I ∪
⊕

n2<n<ω0

Yn

)

= ∅ .
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For i = 0, . . . , n, let Vi = V ′
i ∩ ({p} × I ∪

⊕

n2<n<ω0
Yn). Then

(3.1.5)

n1
⋂

i=0

Fr Vi = ∅ .

For each n = n1, . . . , n2 consider the set Yn and {(Ai, Bi)}
n1

i=0 restricted to
the subspace Yn. The space Yn is compact, (A1, B1) is a pair of disjoint
closed sets and for every m = −n + 1, . . . , n we have

lim
i→∞

diam(F i
n × Oi

nm) = 0 .

Since n ≥ n1 ≥ 2k, for every l = −k + 1, . . . , k there exists an m(l) ∈
{−n + 1, . . . , n} such that Knm(l) ⊂ Kkl.

We can find some i0 such that for each m(l), where l = −k + 1, . . . , k,
we have

(3.1.6) (F i0
n × Oi0

nm(l)) ∩ A1 = ∅ or (F i0
n × Oi0

nm(l)) ∩ B1 = ∅ .

Let l1, . . . , lp be all l, −k + 1 ≤ l ≤ k, such that Kkl ∩A0 = ∅ and Kkl ∩B0

= ∅. Then by our choice of n1 we have for n = n1, . . . , n2, j = 1, . . . , p

(Sn × Kklj ) ∩ A0 = ∅ and (Sn × Kklj ) ∩ B0 = ∅ .

Since Oi0
nm(lj)

⊂ Knm(lj) ⊂ Kkl, (3.1.2) and the construction of Yn show

that the set

Pn =

p
⋃

j=1

(F i0
n × O

i0
nm(lj)

)

forms a partition of Yn between A0 ∩Yn and B0 ∩Yn. Consequently, we can
find some open set V n

0 in Yn such that

(3.1.7) A0 ∩ Yn ⊂ V n
0 ⊂ V n

0 ⊂ Yn − B0 and FrV n
0 ⊂ Pn .

By virtue of (3.1.6) and the normality of Y we can find an open set V n
1 such

that

(3.1.8) A1 ∩ Yn ⊂ V n
1 ⊂ V n

1 ⊂ Yn − B1 and FrV n
1 ∩ Pn = ∅ .

Then, by (3.1.7), also Fr V n
0 ∩ FrV n

1 = ∅.
Now for i = 2, . . . , n1 let V n

i be an open subset of Yn such that

(3.1.9) Ai ∩ Yn ⊂ V n
i ⊂ V n

i ⊂ Yn − Bi .

Then also
⋂n1

i=0 FrV n
i = ∅. For i = 0, . . . , n1 let

Oi = Ui ∪ Vi ∪

( n2
⋃

n=n1

V n
i

)

.

Then each Oi, i = 0, . . . , n1, is an open set in Y such that according to
(3.1.4), (3.1.5) and (3.1.9) we have

(3.1.10) Ai ⊂ Oi ⊂ Oi ⊂ Y − Bi .



Weakly infinite-dimensional subspaces 231

Then also
⋂n1

i=0 FrOi = ∅. Consequently, we have proven (3.1.3) and we are
done.

3.2. Claim. dimX ≥ ω0 + 1.

For this, consider A = Sω0
× [−1,−1/2] and B = Sω0

× [1/2, 1]. Clearly,
(A,B) forms a pair of disjoint closed sets in Sω0+1 = Sω0

×I. Let A0 = A∩X
and B0 = B ∩ X. We will prove our claim by showing that

OrdM
(A0,B0)
L(X) ≥ n for each n < ω0 .

For this, fix some finite n and consider the subspace Tn+1 = Sn+1 × I
within Sω0+1. Observe that C = Sn+1×{−1} ⊂ A and D = Sn+1×{1} ⊂ B
can be considered as opposite faces of the cube Tn+1. We have

Sn+1 = {x = (x1, . . . , xn+1) : xi ∈ [−1, 1], i = 1, . . . , n + 1} .

For i = 1, . . . , n + 1 put Ci = {x ∈ Sn+1 : xi = −1} and Di = {x ∈ Sn+1 :
xi = 1}. The pairs (Ci × I,Di × I) also form pairs of opposite faces of the
cube Tn+1.

In addition, define

Fi = {x ∈ Sn+1 : xi ≤ 0 and xj ≥ xi for j 6= i} ,

Gi = {x ∈ Sn+1 : xi ≥ 0 and xj ≤ xi for j 6= i} .

Clearly, Ci ⊂ Fi and Di ⊂ Gi for i = 1, . . . , n + 1. Observe that Fi ∩ Gi =
{(0, . . . , 0)}. Consequently, Fi × I ∩Gi × I = {(0, . . . , 0)} × I = I(n + 1), so
that by the construction of X we have Fi × I ∩ Gi × I ∩ X = ∅.

Put Ai = Fi × I ∩ X and Bi = Gi × I ∩ X for i = 1, . . . , n + 1. It is
sufficient to prove that

(3.2.1) {(Ai, Bi)}
n
i=0 is essential on the subspace Xn+1 .

Assume the contrary. Then there are open sets Ui, i = 0, . . . , n, in Xn+1

such that

(3.2.2) Ai ∩ Xn+1 ⊂ Ui ⊂ U i ⊂ Xn+1 − Bi for i = 0, . . . , n

and
⋂n

i=0 Fr Ui = ∅. According to [E2; 1.2.9], we can extend the Ui to open
sets Vi in Tn+1, for i = 0, . . . , n, such that

(3.2.3) [(Fi − {(0, . . . , 0)}) × I] ∩ Tn+1 ⊂ Vi ⊂ V i

⊂ Tn+1 − [(Gi − {(0, . . . , 0)}) × I] for i = 1, . . . , n

and

C ⊂ V0 ⊂ V 0 ⊂ Tn+1 − D , FrVi ∩ Xn+1 = FrUi for i = 0, . . . , n

so that
⋂n

i=0 FrVi ∩ Xn+1 = ∅. For brevity we put E =
⋂n

i=0 Fr Vi so that

(3.2.4) E ∩ Xn+1 = ∅ .
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Let O = {x ∈ Sn+1 : xn+1 < −3/4}. Then

Cn+1 ⊂ O ⊂ O ⊂ Sn+1 − Dn+1 .

Thus O × I is an open set in Sn+1 × I = Tn+1 such that

Cn+1 × I ⊂ O × I ⊂ O × I ⊂ Tn+1 − Dn+1 × I .

According to the construction of Y and X and the definition of O we have

(O × I) − X = (O × I) − Y = O ×
⋃

i=1,2,...
m=−n+1,...,n

Oi
nm .

Statement (3.2.4) then yields

(O × I) ∩ E ⊂ O ×
⋃

i=1,2,...
m=−n+1,...,n

Oi
nm .

By the compactness of E we may assume

(3.2.5) (O × I) ∩ E ⊂ O ×
k
⋃

j=1

Oij

nmj
.

Moreover, by (3.2.3) we have

(3.2.6) E ⊂
[(

Sn+1 −
n
⋃

i=1

(Fi ∪ Gi)
)

∪ {(0, . . . , 0)}
]

× I .

For j = 1, . . . , k define

(3.2.7) Wj = Sn+1 −

(( n
⋃

i=1

Fi ∪ Gi

)

∪ Gn+1 ∪ F ij

n

)

.

Then (3.2.6), O ∩ Gn+1 = ∅, O ∩ F
ij

n = ∅ and (0, . . . , 0) 6∈ O yield

E ∩ (O × I) ⊂ Wj × I for each j = 1, . . . , k .

Combining this and (3.2.5) we obtain

(3.2.8) E ∩ (O × I) ⊂
k
⋃

j=1

(Wj × Oij

nmj
) .

From the definition (3.2.7) it is clear that for j = 1, . . . , k

Fr Wj ⊂
n
⋃

i=1

(Fi ∪ Gi) ∪ F ij

n .

Together with (3.2.4) and (3.2.6) this gives us

(3.2.9) E ∩ (Fr Wj × Oij

nmj
) = ∅ .
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Now put

Vn+1 =

k
⋃

j=1

(Wj × Oij

nmj
) ∪ (O × I) .

Then according to (3.2.8) and (3.2.9)

∅ = FrVn+1 ∩ E = Fr Vn+1 ∩
n
⋂

i=0

Fr Vi =

n+1
⋂

i=0

FrVi .

By the definition of O and since Wj ∩ Dn+1 = ∅ (since Dn+1 ⊂ Gn+1) we
have

Cn+1 × I ⊂ Vn+1 ⊂ V n+1 ⊂ Tn+1 − Dn+1 × I .

We have already seen that C ⊂ V0 ⊂ V 0 ⊂ Tn+1−D. However, the sequence
{(C,D), (C1 × I,D1 × I), . . . , (Cn+1 × I,Dn+1 × I)} contains the pairs of
opposite faces of the (n + 2)-dimensional cube Tn+1 and hence is essential
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[E2; 1.8.1]. We reach a contradiction. Therefore assertion (3.2.1) is proven
and we are done.

For the proof of our next claim we need the following proposition [B1;
5.3.2].

3.3. Proposition. Suppose that for a space X there exists a closed

subspace G such that dimG is finite and for each F closed in X such that

G ∩ F = ∅, dimF is finite. Then dimX ≤ ω0 + dimG.

3.4. Claim. dimX ≤ ω0 + 1 and consequently , X is S-w.i.d.

Indeed, we apply Proposition 3.3. Let G = {p} × I. Then dimG = 1.
Moreover, for each F closed in X and disjoint from G we have F ⊂
⊕n

m=0 Xm for some n so that dimF ≤ n + 1 < ω0. Hence dimX ≤
ω0 + dimG = ω0 + 1. By Theorem 1.6 we see that X is S-w.i.d.

We conclude that X ⊂ Y and dimY = ω0, but for X we have dimX =
ω0 + 1.

4. Relation with the characterization theorem. In [B2] we proved
the following theorem:

4.1. Theorem [B2; 4.2.1]. Let X be a locally compact space and α < ω1.

Then dimX ≥ α iff X × C admits an essential map onto Jα.

The transfinite cubes Jα and the concept of essential mappings to Jα

are defined by D. W. Henderson [He]. The local compactness restriction
follows from the use of the following product theorem in the proof.

4.2. Theorem [B1; 3.5.7]. Let X be a locally compact space. Then

dimX = dimX × C.

In [Ch] V. A. Chatyrko proved the following compactification theorem.

4.3. Theorem [Ch]. Let X be an S-w.i.d. space. Then:

(1) dimX = dimβX.

(2) We can find a compact metric space Y such that Y contains X topo-

logically and dimY ≤ dimX.

Combining results 2.1, 4.2 and 4.3 he observes that using the compact-
ification Y of X we can almost prove dimX = dimX × C without the
requirement of local compactness:

dimX × C
(2.1)

≥ dimX
(4.3)

≥ dimY
(4.2)
= dimY × C

?
≥ dimX × C .

We only need the subspace theorem and we are done.
In this regard, but also considering the general requirements for a di-

mension function, it is a pity the subspace theorem does not generally hold.
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The following question remains unanswered.

4.4. Question. Can Theorems 4.1 and 4.2 be extended beyond the
class of locally compact spaces?

The author is indebted to V. A. Chatyrko and J. van Mill for their
encouragement and advice.
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