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Classification of self-dual torsion-free LCA groups
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Abstract. In this paper we seek to describe the structure of self-dual torsion-free
LCA groups. We first present a proof of the structure theorem of self-dual torsion-free
metric LCA groups. Then we generalize the structure theorem to a larger class of self-
dual torsion-free LCA groups. We also give a characterization of torsion-free divisible
LCA groups. Consequently, a complete classification of self-dual divisible LCA groups is
obtained; and any self-dual torsion-free LCA group can be regarded as an open subgroup
of a well-understood torsion-free divisible LCA group.

Introduction. After M. Rajagopalan and T. Soundararajan proved
the structure theorem of self-dual torsion-free metric LCA groups in 1969,
Corwin (1970) initiated a new and interesting approach to the problem of
classifying the self-dual LCA groups in [2]. Though some sufficient and
necessary conditions for an extension group G of a compact abelian group
N by N̂ to be self-dual were given, the detailed structure of the group
remains a mystery. In the last twenty years since the appearance of these
two papers, no new progress appears to have been made. The problem of
classifying self-dual LCA groups is still sitting in the dark, waiting for some
light to be shed on it. We prove a structure theorem for self-dual torsion-free
weak p-local LCA groups and present a complete classification of self-dual
divisible LCA groups.

The paper consists of six sections. Section 1 contains notations and ba-
sic definitions used in the paper. In Section 2, we give a brief discussion of
direct product and prove a sufficient and necessary condition for a totally
disconnected compact abelian group to be decomposed into a direct product
of a family of its closed subgroups; this will be needed in Section 5 to char-
acterize the local direct product

∑
i∈S(Ωi

p : ∆i
p) of copies of the group Ωp of

p-adic numbers. Section 3 gives a characterization of the group Ωp of p-adic
numbers and shows that the direct product

∏
i∈S ∆

i
p (or ∆µ

p in short, where
µ = |S|) of copies of the group ∆p of p-adic integers is uniquely determined
by the underlying index set and the prime number p. Section 4 presents a
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different proof of the structure theorem of self-dual torsion-free metric LCA
groups that was first proved by M. Rajagopalan and T. Soundararajan in [5].
Since one can show generally that any self-dual torsion-free LCA group is
of the form Rn ×D × D̂ ×

∑
i∈S(Hp : Kp) with each Hp self-dual contain-

ing Kp as an open and compact subgroup and D being a divisible discrete
abelian group, the study of self-dual torsion-free LCA groups boils down to
the study of self-dual torsion-free topological p-groups Hp. It is tempting to
conjecture that Hp is of the form

∑
i∈S(Ωi

p : ∆i
p) since Hp contains an open

and compact subgroup of the form ∆µ
p (see [1, 2.8]). In 1968, Neil Rickert

gave an example in [6] (see also Example 2) showing that self-duality and
torsion-freeness are not enough for a torsion-free topological p-group to be
decomposed into a local direct product

∑
i∈S(Ωi

p : ∆i
p) of copies of the group

Ωp of p-adic numbers. Hence two questions are raised:

(1) When can a self-dual torsion-free topological p-group be decomposed
into a local direct product of copies of the group of p-adic numbers ?

(2) What other conditions does one need to impose on G in order for G
to have a nice structure ?

The first question leads us to the discussion of p-local and weak p-local
LCA groups in Section 5. With the success in proving a necessary and
sufficient condition for an LCA group to be topologically isomorphic to
a local direct product of copies of the group Ωp of p-adic numbers, we
generalize M. Rajagopalan and T. Soundararajan’s result to a larger class
(see Theorem 5.14); whereas, the second question motivates the research in
Section 6 of the structure of self-dual divisible LCA groups which turn out
to behave as desired (see Corollary 6.14).

Acknowledgements. I am extremely indebted to my advisor, Prof.
Kenneth A. Ross, for his invaluable suggestions, help and encouragement. I
would like to thank Prof. M. Rajagopalan for providing helpful information
with regard to my research.

1. Notations and definitions. All groups used in the paper are
assumed to be locally compact abelian (abbreviated as LCA) groups unless
otherwise indicated. Most of the notations and concepts in the paper can be
found in [1] or [3]. We shall repeat some for the sake of clarity. T denotes the
unit circle group with Euclidean topology. Rn is the usual Euclidean group
(n ≥ 1). Let p be a prime number; then Z(pn) represents the cyclic group
of order pn, Z(p∞) is the quasicyclic group of the rationals expressible in
the form m/pn under addition mod 1. We shall adopt [3]’s notation Ωp and
∆p (or Λ0) for the group of p-adic numbers and the group of p-adic integers,
respectively. When there is a need to use Λk, which is the subgroup of
Ωp that consists of all x = (xn) ∈ Ωp such that xn = 0 for all integers
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n < k (see [3] for details), we shall use Λ0 instead of ∆p together with Λk.
The character group of an LCA group G with the compact-open topology is
denoted by Ĝ. If H is a subgroup of G, H⊥ (or A(Ĝ,H), to avoid confusion)
denotes the annihilator of H in Ĝ. Let A be a subset of an LCA group G;
then 〈A〉 denotes the subgroup of G generated by A, while 〈A〉− represents
the closed subgroup of G generated by A. The identity component of an
LCA group G is denoted by C(G).

Let {Gi}i∈S be a family of LCA groups; then
∏

i∈S Gi indicates the direct
product of all Gi’s with the product topology. For simplicity, especially
when there is no need to use the underlying indices i, we shall write Gµ for∏

i∈S Gi if Gi = G for all i ∈ S, where µ = |S| is the cardinality of the index
set S. If {Gi}i∈S is a family of discrete abelian groups, then the weak direct
sum of all Gi’s is denoted by

∑
i∈S Gi. But when Gi = G for all i ∈ S and

there is no need for using underlying indices, we shall write Gµ∗ instead of∑
i∈S Gi for simplicity.

Definition 1.1. Let G be an LCA group. By the p-component Gp of
G we mean the set of all x ∈ G such that limn→∞ pnx = 0. G is said to be
a topological p-group if and only if Gp = G for some fixed prime number p.

Definition 1.2. Let G be an LCA group and G! = {x ∈ G : limn→∞ n!x
= 0}. Then G is said to be a topological torsion group if and only if G! = G.

Definition 1.3. A topological isomorphism, denoted by ', is both a
group isomorphism and a homeomorphism of topological spaces. Two LCA
groups are said to be topologically isomorphic if there exists a topological
isomorphism between them.

Definition 1.4. Let G be an LCA group and let Ĝ be its character
group. If G and Ĝ are topologically isomorphic, then G is said to be self-
dual.

Definition 1.5. Let {Gi}i∈S and {Hi}i∈S be two families of LCA
groups with each Hi open in Gi and let G = {(xi) ∈

∏
i∈S Gi : xi ∈ Hi for

all but a finite number of indices i}. Topologize G so that
∏

i∈S Hi is an
open subgroup of G. Then G is called the local direct product of the Gi’s
with respect to the open subgroups Hi’s, denoted by

∑
i∈S(Gi : Hi).

2. Direct product. One important way of understanding topological
groups is to decompose them into the Cartesian product of simpler ones
whenever possible. Our main concern in this section is to try to find some
necessary and sufficient conditions for a compact topological group to be
decomposed into a direct product of a family of its closed normal subgroups.

The topological groups mentioned in this section need not be abelian
unless it is indicated explicitly.
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Definition 2.1. Let G be a topological group and let {Gi : i ∈ S} be
a family of normal closed subgroups of G such that G = 〈{Gi : i ∈ S}〉−.
If |S| ≥ ℵ0, then we also assume G is compact. If there exists a topological
isomorphism τ : G →

∏
i∈S Gi such that for all j ∈ S and x ∈ Gj , τ(x) =

(yi), where yi = x when i = j and yi = 0 when i 6= j, then we will say that G
can be decomposed into the direct product of its closed subgroups {Gi : i ∈ S}
and write G =

⊕
i∈S Gi.

Suppose that G is the Cartesian product of a family of compact groups
{Ki : i ∈ S}, i.e., G =

∏
i∈S Ki. Let Gi = Ki×

∏
j 6=i{0}; then by definition

G =
⊕

i∈S Gi.

Definition 2.2. Let G be a locally compact topological group, let {Mi :
i ∈ S} be a family of closed normal subgroups of G and Qi = 〈{Mj : j ∈ S,
j 6= i}〉−. {Mi : i ∈ S} are said to be topologically independent (TI) if
Mi∩Qi = {0} for each i ∈ S; and they are strongly topologically independent
(STI) if

⋂
i∈S Qi = {0}.

Example 1. Let G = G1 × . . . × Gn and Mi = {0} × . . . × {0} × Gi ×
{0} × . . .× {0}; then {Mi : i = 1, . . . , n} are both TI and STI.

By definition we can see easily that {Mi : i ∈ S} being STI implies
{Mi : i ∈ S} being TI, but not the other way around. Since the example we
have in hand to explain this is not trivial, we will wait until after proving
Theorem 5.13. But it is not suprising that, in the case when the index set S
is finite and the underlying group G is compact, TI and STI are equivalent.
We will demonstrate this in the following proposition. Proposition 2.3 and
Theorem 2.4 are known, but somewhat obscure in the literature and so we
include brief proofs.

Proposition 2.3. Let {Mi : i ∈ S} be a finite set of closed normal
subgroups of a compact group G (not necessarily abelian); then {Mi : i ∈ S}
are TI if and only if {Mi : i ∈ S} are STI.

P r o o f. Without loss of generality we may assume that G = 〈{Mi :
i ∈ S}〉; otherwise we can consider the closed subgroup G1 = 〈{Mi :
i ∈ S}〉. We need only show that TI implies STI. Actually, by [3, 6.12]
we know that there exists a topological ispmorphism τ : G →

∏n
i=1Mi

such that τ(x) = (0, . . . , 0, x, 0, . . . , 0), where x ∈ Mi. But this implies
that τ(Qi) = M1 × . . . ×Mi−1 × {0} ×Mi+1 × . . . ×Mn. So τ(

⋂n
i=1Qi) =⋂n

i=1 τ(Qi) = {0}. Hence
⋂n

i=1Qi = {0} since τ is an isomorphism. So
{Mi : i ∈ S} are STI.

It turns out that strong topological independence is a reasonable condi-
tion imposed on a family of compact subgroups in order for the group to be
decomposed into a direct product of this family of compact subgroups. Here
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is a theorem concerning direct decomposition proved by Pontryagin (see
[4, §21.E]

Theorem 2.4. Let G be a compact topological group and let {Mi : i ∈ S}
be a family of closed normal subgroups of G; then G =

⊕
i∈S Mi ⇔ G =

〈{Mi : i ∈ S}〉− and {Mi : i ∈ S} are STI.

P r o o f. The sufficiency is the result of [4, §21.E]. Now let us prove the
necessity. Assume G =

⊕
i∈S Mi. Then by our Definition 2.1 we know that

G = 〈{Mi : i ∈ S}〉− and there exists a natural topological isomorphism
τ from G onto

∏
i∈S Mi. Let Qi = 〈{Mj : j 6= i}〉−; then it is clear that

τ(Qi) = {0} ×
∏

j 6=iMj . Therefore τ(
⋂

i∈S Qi) =
⋂

i∈S τ(Qi) = {0}. Hence⋂
i∈S Qi = {0}, and the necessity is proved.

For a totally disconnected LCA group G, the following theorem gives a
satisfactory answer to the question “Under what conditions does TI imply
STI?”. It also gives necessary and sufficient conditions for a compact totally
disconnected LCA group to be decomposed into a direct product of a family
of its closed subgroups. It will play an important role in our characterization
of self-dual torsion-free LCA groups.

Theorem 2.5. Let G be a compact totally disconnected LCA group and
let {Mi : i ∈ S} be a family of closed subgroups of G such that G = 〈{Mi :
i ∈ S}〉−. Then the following are equivalent :

(a) (1) for any open neighborhood U of 0 in G all Mi’s are contained in
U except for finitely many indices;

(2) {Mi : i ∈ S} are TI ;
(b) {Mi : i ∈ S} are STI (hence G =

⊕
i∈S Mi).

P r o o f. (b)⇒(a) is clear. For (a)⇒(b), we need to show that
⋂

i∈S Qi =
{0} by Definition 2.2, where Qi = 〈{Mj : j 6= i}〉−. Let g ∈

⋂
i∈S Qi;

then for any open neighborhood V of 0, there exists an open and compact
subgroup U contained in V by [3, 7.7] since G is totally disconnected. For
this compact open subgroup U almost all Mi’s are contained in it by as-
sumption (1). Assume that Mik

6⊆ U for k = 1, . . . ,m and Mi ⊆ U for all
i 6∈ {i1, . . . , im}. We claim that g ∈ Qi1...im

= 〈{Mi : i 6∈ {i1, . . . , im}}〉−.
Indeed, starting from Qi1 we know that g ∈ Qi1 since g ∈

⋂
i∈S Qi. Also

it is clear that Qi1 = Mi2 + Qi1i2 . So there exist x2 ∈ Mi2 and y2 ∈ Qi1i2

such that g = x2 + y2. Note that y2 ∈ Qi1i2 ⊆ Qi2 and g ∈ Qi2 , so we
must have x2 = g − y2 ∈ Mi2 ∩ Qi2 = {0} by assumption (2). So x2 = 0
and g = y2 ∈ Qi1i2 . Proceeding in this way m − 1 times we will have
g ∈ Qi1...im

. Since U contains all Mi’s with i 6∈ {i1, . . . , im} and U is an
open and compact (hence closed) subgroup of G we must have Qi1...im ⊆ U ,
which implies that g ∈ U ⊆ V . Since V is arbitrary, we must have g = 0.
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So
⋂

i∈S Qi = {0}, i.e., {Mi : i ∈ S} are STI. Now by Theorem 2.4 we know
that G =

⊕
i∈S Mi.

3. Some characterizations of Ωp and topological p-groups

Lemma 3.1. Let G be a torsion-free topological p-group. Suppose that
there exists a sequence {un}∞n=0 so that u0 6= 0, pun = un−1 for n ≥ 1 and
pnu0 → 0 (n → ∞); then H = 〈{un : n ≥ 0}〉− is topologically isomorphic
to Ωp.

P r o o f. Since pnu0 → 0 (n → ∞) and G is totally disconnected (see
[1, 2.7]) there exists an open compact subgroup K 3 u0 6∈ K and pmu0 ∈ K
for some m ≥ 1.

Let N be the smallest positive integer such that pNu0 ∈ K and
pN−1u0 6∈ K.

Claim 1. K ∩H = 〈pNu0〉−.

P r o o f. First of all 〈pNu0〉− ⊆ K ∩H. Now if there exists x 6∈ 〈pNu0〉−
such that x ∈ K ∩H, then ∃y ∈ 〈{un : n ≥ 0}〉 = H1 such that y ∈ K ∩H
and y 6∈ 〈pNu0〉− (because K ∩H is an open neighborhood of x, 〈pNu0〉−
is closed in K ∩H and H1 is dense in H).

For convenience let v0 = pNu0, v1 = pN−1u0, . . . , vN = u0, vN+1 =
u1, . . . , and write

y = l1v1 + l2v2 + . . .+ lnvn + t

where t ∈ 〈pNu0〉−, 0 < |ln| < p and 1 ≤ n ≤ N (this is possible since
y 6∈ 〈pNu0〉−). Without loss of generality we may assume ln > 0 (otherwise
we can consider −y). Note that

pn−1y = pn−1(l1v1 + . . .+ ln−1vn−1 + t) + lnp
n−1vn

= lnv1 + z ∈ K ∩H ,

where z = pn−1(l1v1 + . . .+ ln−1vn−1 + t) ∈ 〈pNu0〉− ⊆ K ∩H. Therefore
lnv1 = pn−1y−z ∈ K∩H, which implies that v1 ∈ K∩H, i.e., pN−1u0 ∈ K,
a contradiction. Hence Claim 1 is proved.

Claim 2. 〈{v1, v2, . . .} ∪ 〈v0〉−〉 ' Ωp.

P r o o f. First of all, Claim 1 shows that the closed subgroup 〈v0〉− is a
compact open subgroup of H. By [1, Lemma 2.11], 〈v0〉− ' ∆p. Let ϕ be
the topological isomorphism. Now define

ψ : 〈{v1, v2, . . .} ∪ 〈v0〉−〉 → Ωp

by

lnvn + ln−1vn−1 + . . .+ l1v1 + h 7→ y + ϕ(h) ,
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where 0 < ln < p, 0 ≤ li < p (i = 1, . . . , n− 1) and

y = (. . . , 0, ln, ln−1, . . . , l1, 0, . . .) .
−1th

It is straightforward to show that ϕ is well defined and is an algebraic
isomorphism. Note that 〈{v1, v2, . . .} ∪ 〈v0〉−〉 is open, hence closed in H,
so we must have H = 〈{v1, v2, . . .} ∪ 〈v0〉−〉. So H ' Ωp.

The following lemma will be used a lot in our study of self-dual torsion-
free topological p-groups. For simplification, we shall write ∆i

p (or ∆j
p) for

∆p, where i (or j) is an index, while ∆µ
p (or ∆m

p ) is the direct product of µ
(or m) copies of ∆p as defined in Section 1.

Lemma 3.2. Two compact topological p-groups
∏

i∈S ∆
i
p and

∏
i∈A∆

i
p

are topologically isomorphic if and only if |S| = |A|.

P r o o f. We need only show that the condition is necessary. Assume
that

∏
i∈S ∆

i
p '

∏
i∈A∆

i
p; then by taking duals we have

∑
i∈S Z(p∞) '∑

i∈A Z(p∞). Now by infinite abelian group theory we have |S| = |A|.

Lemma 3.3. Let H be any open compact subgroup of G =
∑

i∈S(Ωi
p : ∆i

p).
Then H '

∏
i∈S ∆

i
p.

P r o o f. Let H be any open and compact subgroup of G. Note that
G is the local direct product of copies of the group of p-adic numbers. By
the way the topology of G is defined G contains

∏
i∈S ∆

i
p as a compact and

open subgroup. So by [1, 2.23], H '
∏

i∈S ∆
i
p.

Proposition 3.4. Let G be a torsion-free topological p-group and let K be
an open and compact subgroup that is topologically isomorphic to

∏
i∈S ∆

i
p,

where ∆i
p = ∆p ∀i ∈ S, with |S| ≤ ℵ0 and G/K '

∑
i∈S Z(p∞). Then G

satisfies the second axiom of countability.

P r o o f. First of all we know that K is second countable since by [3,
Theorem 24.14], w(K) = w(K̂) ≤ ℵ0. It is clear that G =

⋃
i∈S(xi + K),

where xi’s are fixed representatives of all those countably many cosets. Now
by [3, 8.19] the proposition is proved.

4. Self-dual torsion-free metric LCA groups. The following lemma
is actually a special case of a lemma proved by Neil W. Rickert in [6]. For
convenience we will state it here for later use.

Lemma 4.1. Let G be a torsion-free LCA topological p-group and let K
be a compact subgroup. Assume that a subgroup H of G/K is isomorphic to
Z(p∞). Then there is a closed subgroup H ′, isomorphic to Ωp, which maps
onto the group H under the natural map of G onto G/K.



262 S. L. Wu

P r o o f. Note that any torsion-free topological p-group is a ∆p-module;
the lemma follows from [6, Lemma 4].

Lemma 4.2. Let G be a metric torsion-free topological p-group that is self-
dual ; then G is topologically isomorphic to a local direct product of countably
many copies of the group of p-adic numbers.

P r o o f. Let K be a fixed open and compact subgroup of G. Then by
[1, Proposition 2.8], K '

∏
i∈S ∆

i
p. Since G is metrizable we must have

|S| ≤ ℵ0. Since G is self-dual it follows, by [1, 2.23], that (G/K)∧ ' K⊥ '
K '

∏
i∈S ∆

i
p and so G/K '

∑
i∈S Z

i(p∞), where each Zi(p∞) = Z(p∞).
So G satisfies the second axiom of countability by Proposition 3.4. Now
by Lemma 4.1 for each i ∈ S there is a closed subgroup Li of G such that
Li ' Ωp and (Li +K)/K ' Zi(p∞). Clearly G = 〈{Li : i ∈ S} ∪K〉. Next
we need to show that

G =
{ ∞⋂

n=1

pnG
}−

=
∞⋂

n=1

pnG

so that we can draw our conclusion by [8, Part I, Theorem 3]. For this
purpose let L = 〈Li : i ∈ S〉.

Claim. L = G.

P r o o f. If G 6= L, then G/L = (L + K)/L 6= {0} and so G/L is the
image of the compact group K. Hence G/L is compact. The fact that G is
a topological p-group implies that G is totally disconnected by [1, 2.7]. So
by [3, 3.5] we know that G is 0-dimensional, which implies that G/L is 0-
dimensional by [3, 7.11]. Therefore it is totally disconnected by [1, P.27(d)].
So by [3, 24.26], (G/L)∧ = A(Ĝ, L) is a torsion group, which implies that
Ĝ contains elements of finite order, a contradiction. Therefore G = L.

Now by the fact that the Li’s are divisible we know that for any n,
pnG ⊇ pnL = L. Hence

∞⋂
n=1

pnG ⊇ L, pnG ⊇ L = G

Thus

G ⊇
{ ∞⋂

n=1

pnG
}−

⊇ L = G ,

G ⊇
∞⋂

n=1

pnG ⊇ L = G ,
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which implies that

G =
{ ∞⋂

n=1

pnG
}−

=
∞⋂

n=1

pnG .

Now by [8, Part I, Theorem 3]

(G : K) '
∑
i∈S

(Ωi
p : ∆i

p) ,

where |S| ≤ ℵ0.

Theorem 4.3. Let G be a torsion-free metric LCA group. Then G is
self-dual if and only if

G ' Rn ×D × D̂ ×
∑
p∈℘

( ∑
i∈Kp

(Ωi
p : ∆i

p) : ∆µp
p

)
,

where ℘ is a subset of primes and for each p ∈ ℘, Kp is an index set with
cardinal µp ≤ ℵ0; Ωi

p = Ωp and ∆i
p = ∆p ∀i ∈ Kp and p ∈ ℘; D is a

torsion-free divisible countable discrete group.

P r o o f. ⇐ is obvious. For ⇒, by [4, Lemmas 10 and 11],

G ' Rn ×D × D̂ ×
∑
p∈℘

(Gp : Hp) ,

where D is a torsion-free countable divisible discrete group (since G is
metrizable) and ℘ is a subset of prime numbers; Gp is a self-dual topological
p-group with open and compact subgroup Hp ∀p ∈ ℘. Now by Lemma 4.2
there exists an index set Kp with |Kp| ≤ ℵ0 such that

(Gp : Hp) '
∑

i∈Kp

(Ωi
p : ∆i

p) .

N o t e. The above theorem was first proved by M. Rajagopalan and
T. Soundararajan in [5] where a different approach was used.

5. Self-dual torsion-free p-local and weak p-local LCA groups.
In this section, we study p-local and weak p-local groups. It turns out that
any self-dual torsion-free countable p-local group is a local direct product
of countably many groups of p-adic numbers. Hence the class of torsion-
free self-dual countable p-local LCA groups and the class of self-dual metric
torsion-free topological p-groups coincide. We shall give a characterization
of the local direct product of copies of the group Ωp of p-adic numbers (see
Theorem 5.13), then generalize M. Rajagopalan and T. Soundararajan’s
result to a somewhat larger class without much effort (see Theorem 5.14).

It is well known that any torsion-free topological p-group G contains
an open compact subgroup K that is topologically isomorphic to

∏
i∈S ∆

i
p
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for some index set S. So algebraically G can be regarded as a subgroup
of

∏
i∈S Ω

i
p (see Proposition 5.6 below) with

∏
i∈S ∆

i
p as an open compact

subgroup. Since for any index set S the local direct product
∑

i∈S(Ωi
p : ∆i

p)
is self-dual, it is natural to ask whether G must be a local direct product of
groups of p-adic numbers if G is a self-dual torsion-free topological p-group.
Unfortunately, the answer is negative. Here is an example given by Neil
Rickert in [6] that shows that being a torsion-free self-dual topological p-
group is not enough for an LCA group to be decomposed into a local direct
product of groups of p-adic numbers.

Example 2. Let G = {x ∈
∏∞

i=1Ω
i
p : ∃m ∈ N such that pmx ∈∏∞

i=1∆
i
p}, where Ωi

p = Ωp and ∆i
p = ∆p ∀i ≥ 1. Topologize G so that∏∞

i=1∆
i
p is an open compact subgroup of G. Then G × Ĝ is a torsion-free

self-dual topological p-group, but it is not topologically isomorphic to a local
direct product of groups of p-adic numbers (for details see [6]).

The group defined in Example 2 is exactly a special case of the groups
Bp(µ) with µ = ℵ0 that will be studied in Section 6, which play an important
role in the characterization of divisible torsion-free LCA groups and self-dual
divisible LCA groups.

Definition 5.1. Let G be an LCA group; G is called a p-local group
if G contains an open subgroup that is topologically isomorphic to a local
direct product

∑
i∈S(Ωi

p : ∆i
p). If |S| ≤ ℵ0, then G is said to be countably

p-local.

The following proposition is an immediate result of the definition.

Proposition 5.2. If G is a local direct product of groups of p-adic num-
bers, i.e., G =

∑
i∈S(Ωi

p : ∆i
p), where S is an index set with Ωi

p = Ωp and
∆i

p = ∆p for all i ∈ S, then G is p-local.

Definition 5.3. Let G be an LCA group. G is said to be weak p-local
if any p-component of G/C(G) is zero or countably p-local.

Before proving the main theorem for weak p-local groups, we shall give
some sufficient conditions for an LCA group to be p-local and show that
if a countably p-local group is self-dual then it is actually topologically
isomorphic to a local direct product of countably many copies of the group
of p-adic numbers.

Proposition 5.4. If G is a divisible torsion-free topological p-group,
then G is p-local.

P r o o f. Let H be any open compact subgroup of G. Then by [1, Propo-
sition 2.8] H is topologically isomorphic to

∏
i∈S ∆

i
p for some index set S.
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Let τ be the topological isomorphism. Since G is divisible, τ can be ex-
tended to an algebraic homomorphism ϕ of

∑
i∈S(Ωi

p : ∆i
p) into G by [3,

A.7]. Indeed, one can show easily that ϕ is a topological monomorphism of∑
i∈S(Ωi

p : ∆i
p) into G. So G is p-local.

Proposition 5.4 will be obvious when we are able to describe the structure
of divisible torsion-free topological p-groups in Theorem 6.2.

Proposition 5.5. Let G be an LCA group, and let {Mi}i∈S and {Li}i∈S

be two families of closed subgroups of G such that each Mi is a proper open
and compact subgroup of Li ∀i ∈ S. If {Li}i∈S are topologically inde-
pendent and 〈{Mi}i∈S〉− is a compact and open subgroup of G such that
〈{Mi}i∈S〉− =

⊕
i∈S Mi, then the local direct product

∑
i∈S(Li : Mi) is

topologically isomorphic to an open subgroup of G.

P r o o f. For convenience we still denote Li×
∏

j 6=i{0} by Li (an obvious
abuse of notation) and we also write xj = (yi) with yi = xj when i = j
and yi = 0 when i 6= j. First of all, by the definition of local direct product
we know that for any x ∈

∑
i∈S(Li : Mi), x can be written uniquely as

x = xi1 + . . . + xin + y, where xik
∈ Lik

\ Mik
(k = 1, . . . , n) and y ∈

{0} × . . .× {0} ×
∏

j 6∈{i1,...,in}Mj . Define

ϕ :
∑
i∈S

(Li : Mi) → G

by

ϕ(x) = xi1 + . . .+ xin
+ τ(y) .

Then ϕ is clearly well defined by the above discussion. It is straightforward
to show that ϕ is a homomorphism and one-to-one. Since the restriction of ϕ
to

∏
i∈S Mi is a topological monomorphism and

∏
i∈S Mi is an open compact

subgroup of
∑

i∈S(Li : Mi), ϕ is actually a topological monomorphism.
Hence the proposition is proved.

Proposition 5.6. Any torsion-free topological p-group G can be regarded
as an algebraic subgroup of

∏
i∈S Ω

i
p for some index set S with

∏
i∈S ∆

i
p

topologically isomorphic to an open and compact subgroup of G.

P r o o f. Let K be an open and compact subgroup of G. Then by [1,
Proposition 2.8], K is topologically isomorphic to

∏
i∈S ∆

i
p for some index

set S. Let τ be the topological isomorphism of K onto
∏

i∈S ∆
i
p. Since∏

i∈S ∆
i
p is an algebraic subgroup of the divisible group

∏
i∈S Ω

i
p, τ can be

extended to a group homomorphism ϕ of G into
∏

i∈S Ω
i
p by [3, A.7]. It is

easy to show that ϕ is one-to-one. Hence ϕ is a monomorphism of G into∏
i∈S Ω

i
p.
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Proposition 5.7. Let G be a torsion-free LCA group and let p be a fixed
prime. Let G contain an open subgroup H which is a local direct product∑

i∈S(J i
p : Ki

p) of a family {J i
p}i∈S of LCA groups with each Ki

p open and
compact in J i

p. For each i ∈ S let J i
p ' Ωp. Suppose further that G contains

a family {Dα}α∈A such that the following hold :

(1) |A| ≤ |S| ≤ ℵ0;
(2) Dα ' Ωp for every α ∈ A;
(3) the algebraic subgroup generated by the set H ∪ (

⋃
α∈ADα) is G.

Then G is topologically isomorphic to the local direct product
∑

i∈S(Ωi
p : ∆i

p)
of the group of p-adic numbers.

P r o o f. Let K =
∏

i∈S K
i
p. Then K is compact and open in H and

hence is open in G. We claim that G/K '
∑

i∈S Z
i(p∞).

Indeed, G/K = H/K + (D + K)/K, where D = 〈{Dα : α ∈ A}〉.
It is clear that H/K is divisible. Also one can show that (D + K)/K
is divisible. Therefore G/K is a divisible discrete topological p-group.
Since H/K '

∑
i∈S Z

i(p∞) and (D + K)/K =
∑

α∈A(Dα + K)/K =∑
α∈A Z

α(p∞) by [3, 5.32], where |A| ≤ |S| by our assumption (1), we
must have G/K '

∑
i∈S Z

i(p∞) by [3, A.14]. But this implies that G
satisfies the second axiom of countability by Proposition 3.4. Now let
L = 〈{J i

p}i∈S ∪ {Dα}α∈A〉; here we still use J i
p to denote its corresponding

isomorphic image in
∑

i∈S(J i
p : Ki

p). Then L is a dense divisible subgroup of
G since it is easy to see that 〈{J i

p}i∈S〉 is dense in
∑

i∈S(J i
p : Ki

p). So pnG ⊇
pnL = L for any non-negative integer n. Therefore G ⊇ pnL = L = G and
G ⊇ {

⋂
pnG}− = L = G. Consequently, G = {

⋂∞
n=1 p

nG}− =
⋂∞

n=1 p
nG.

By [8, Part I, Theorem 3] we know that G is topologically isomorphic to a
local direct product of countably many copies of the group of p-adic num-
bers.

R e m a r k. Proposition 5.7 is [5, Lemma 8] which should have been
stated with the underlying index set countable.

Proposition 5.8. Let G be a torsion-free LCA group that is countably
p-local. Then G is self-dual if and only if G is topologically isomorphic
to a local direct product of countably many copies of the group of p-adic
numbers.

P r o o f. It is obvious that we need only prove the sufficiency. Let H be
the open subgroup that is isomorphic to a local direct product

∑
i∈S(Ωi

p :
∆i

p) of countably many copies of the group of p-adic numbers (|S| ≤ ℵ0) and
let K be the compact open subgroup of H that is topologically isomorphic
to

∏
i∈S ∆

i
p under the same topological isomorphism. Then K is an open

compact subgroup of G sinceH is open in G. Consequently, G/K is discrete.
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Since (G/K)∧ ' K⊥ and G is self-dual, K⊥ is topologically isomorphic to
an open and compact subgroup of G, hence is topologically isomorphic to
K by [1, 2.23]. Therefore (G/K)∧ '

∏
i∈S ∆

i
p. By taking duals we have

G/K '
∑

i∈S Z(p∞). Since |S| ≤ ℵ0,
∑

i∈S Z(p∞) is countable and K is
second countable, G must be second countable. Now by the same process
as in the proof of Lemma 4.2 we know that G is topologically isomorphic
to a local direct product of countably many copies of the group of p-adic
numbers.

Note that in the proof of the sufficiency we do not assume that G is
metric at all. But it turns out that G is automatically a metric group,
assuming that G is countably p-local torsion-free self-dual.

The condition that G be self-dual cannot be omitted. The group G in
Example 2 is not a local direct product of the group of p-adic numbers. But
it is clearly a countably p-local group.

It is very reasonable to conjecture that if a torsion-free topological p-
group is p-local (not necessarily countably p-local) and self-dual, then the
group must be topologically isomorphic to a local direct product of copies
of the group of p-adic numbers. So far no proof of the conjecture has been
found, nor has any counterexample been given. We strongly believe that
the answer to this conjecture would be affirmative if one can confirm that
the following conditions (1) and (2) imply (a), assuming that G is a com-
pact torsion-free topological p-group and {Mi}i∈S is a family of compact
subgroups of G such that G = 〈{Mi : i ∈ S}〉−. Let Qi = 〈{Mj : j 6= i}〉−.
The above-mentioned conditions are:

(1) G '
∏

i∈S Mi ;
(2) Mi ∩Qi = {0} ∀i ∈ S ;
(a)

⋂
i∈S Qi = {0} .

If it is necessary one can also assume that all Mi are topologically iso-
morphic to ∆p. We do not know whether the answer to the last question
is positive or negative. What we have found out is that (2) itself does not
imply (a). The counterexample is quite complicated; we will wait until after
proving Theorem 5.13.

Here is the structure theorem for torsion-free weak p-local self-dual LCA
groups.

Theorem 5.9. Let G be a torsion-free LCA group that is weak p-local.
Then G is self-dual if and only if

G ' Rn ×D × D̂ ×
∑
p∈℘

( ∑
i∈Sp

(Ωi
p : ∆i

p) : ∆µp
p

)
,

where n is a non-negative integer ; D is divisible, torsion-free and discrete;
℘ is a set of prime numbers; Ωi

p = Ωp and ∆i
p = ∆p ∀i ∈ Sp, where Sp is a
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countable index set with cardinality µp depending on p ∈ ℘.

P r o o f. ⇐ is clear. For ⇒, by [5, Lemmas 10 and 11] we have

G ' Rn ×D × D̂ ×
∑
p∈℘

(Hp : Kp)

where n is a non-negative integer; D is divisible, torsion-free and discrete; ℘
is a set of prime numbers for which Hp 6= {0} and Hp is a closed subgroup
of G that is torsion-free self-dual with open and compact subgroup Kp and
is a topological p-group in its own right. Since C(G) ' Rn × D̂ we have
G/C(G) ' D ×

∑
p∈℘(Hp : Kp). But D = Qm∗ by [3, A.14], so the

topological p-subgroup of G/C(G) must be topologically isomorphic to Hp.
Therefore by our assumption that G is weak p-local and Proposition 5.8
we have (Hp : Kp) '

∑
i∈Sp

(Ωi
p : ∆i

p) with Kp ' ∆
µp
p under the same

isomorphism, where |Sp| ≤ ℵ0. Hence

G ' Rn ×D × D̂ ×
∑
p∈℘

( ∑
i∈Sp

(Ωi
p : ∆i

p) : ∆µp
p

)
.

In the rest of this section by using Theorem 2.5 we are able to obtain
a sufficient and necessary condition for an LCA topological p-group to be
decomposed into a local direct product of copies of the group of p-adic
numbers. To avoid confusion in the following, A(Ĝi,Hi) is used for the
annihilator of Hi (as a subgroup of Gi) in Ĝi while H⊥

i shall be regarded
as the annihilator of Hi (as a subgroup of G) in Ĝ.

Definition 5.10. Let G be a torsion-free topological p-group. If G
contains an open and compact subgroup K and another open subgroup H
containing K such that (H : K) '

∑
i∈S(Ωi

p : ∆i
p), and when G is regarded

as an algebraic subgroup of
∏

i∈S Ω
i
p, for any open and compact subgroup

U ⊆ K⊥,

A(G,U) ⊆
(
∆i

p ×
∏
j 6=i

Ωj
p

)
∩G

for all i ∈ S except finitely many indices, then G is said to have the finite
property.

If G is any torsion-free LCA group and each p-component of G/C(G) is
either 0 or has the finite property, then G is said to have the finite property.

Lemma 5.11. Let H be an open and compact subgroup of an LCA group
G such that (G : H) =

∑
i∈S(Gi : Hi) is a local direct product of LCA

groups Gi’s. Then

(1) (Ĝ : H⊥) =
∑

i∈S(Ĝi : A(Ĝi,Hi));
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(2) for any open and compact subgroup of Ĝ of the form

Kn = Ki1 × . . .×Kin ×
∏

i 6∈{i1,...,in}

A(Ĝi,Hi) ,

where each Kij
is an open and compact subgroup of A(Ĝij

,Hij
),

A(G,Kn) = A(Gi1 ,Ki1)× . . .×A(Gin ,Kin)×
∏

i 6∈{i1,...,in}

Hi .

P r o o f. (1) is a result proved in [3, 23.33]. To show (2), let

E = A(Gi1 ,Ki1)× . . .×A(Gin ,Kin)×
∏

i 6∈{i1,...,in}

Hi .

It is clear that E ⊆ A(G,Kn). Now for any x ∈ G \ E, it suffices to show
that x 6∈ A(G,Kn). For this x = (xi) there exists xl such that xl 6∈ Hl when
l 6∈ {i1, . . . , in}, or xl 6∈ A(Gij

,Kij
), when l = ij for some ij ∈ {i1, . . . , in}.

In the first case, since xl 6∈ Hl, there exists a yl ∈ A(Ĝl,Hl) such that
yl(xl) 6= 1. Now let y = (zi), where zi = yl when i = l and zi = 0 when
i 6= l; then y ∈ Kn and y(x) = yl(xl) 6= 1. So x 6∈ A(G,Kn). In the
second case, without loss of generality we may assume that l = i1. Since
xl 6∈ A(Gi1 ,Ki1), there exists some yl ∈ Ki1 such that yl(xl) 6= 1, and we
conclude the proof just as in the first case.

Let ym = (. . . , 0, 1, 0, . . .) (m = 0, 1, 2, . . .), where the (1 − m)th coor-
dinate is 1. Define a character of Ωp by χm(x) = χym

(x) for any x ∈ Ωp,
as in [3, 25.1(9)]. Then each χm is a continuous character of Ωp and for
un = (. . . , 0, 1, 0, . . .) (n = 0, 1, 2, . . .), where the (−n)th coordinate is 1,
χm(un) = e2πi/pn+m

.

Lemma 5.12. (i) For any y ∈ pmΛ0, we have χm(y) = 1;
(ii) E = {χm : m = 0, 1, 2, . . .} separates points of Ωp.

P r o o f. (i) Since Λ0 is a monothetic group with u0 as a generator,
the subgroup 〈u0〉 generated by u0 is dense in Λ0. Note that pmΛ0 is a
continuous image of the compact LCA group Λ0, the image pm〈u0〉 of 〈u0〉
under the same map must be also dense in pmΛ0. Now for any z ∈ pm〈u0〉,
z = pmku0 for some integer k. So

χm(z) = χm(pmku0) = [χm(u0)]kpm

= (exp(2πi/pm))kpm

= 1 .

Therefore χm(y) = 1 ∀y ∈ pmΛ0 since χm is continuous on pmΛ0.
(ii) For any x ∈ Ωp with x 6= 0, let x = (. . . , 0, xm, xm+1, . . .), where

xm 6= 0. If m < 0 , then χ0(x) 6= 1. If m ≥ 0, then χm(x) 6= 1. Therefore
(ii) is proved.
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Here is the theorem characterizing the local direct product of copies of
the group of p-adic numbers.

Theorem 5.13. Let G be a torsion-free topological p-group. Then G has
the finite property if and only if G '

∑
i∈S(Ωi

p : ∆i
p) and hence is self-dual.

P r o o f. ⇐ Assume that G '
∑

i∈S(Ωi
p : ∆i

p) with respect to K =∏
i∈S Λ

i
0; then

K⊥ =
∏
i∈S

A(Ωi
p, Λ

i
0) =

∏
i∈S

Λi
1 .

Let U be any open and compact subgroup of K⊥; then U contains an open
and compact subgroup of the form Λi1

k1
×. . .×Λin

kn
×

∏
i 6∈{i1,...,in} Λ

i
1, denoted

by Kn. Then it is clear that A(G,U) ⊆ A(G,Kn). Note that by Lemma 5.11

A(G,Kn) = Λi1
−k1+1 × . . .× Λin

−kn+1 ×
∏

i 6∈{i1,...,in}

Λi
0 .

So for each i 6∈ {i1, . . . , in},

A(G,Kn) ⊆
(
Λi

0 ×
∏
j 6=i

Ωj
p

)
∩G .

Therefore

A(G,U) ⊆
(
Λi

0 ×
∏
j 6=i

Ωj
p

)
∩G ∀i 6∈ {i1, . . . , in}.

Hence the sufficiency is proved.
⇒ Let G be a torsion-free topological p-group that has the finite prop-

erty; then G can be regarded as an algebraic subgroup of
∏

i∈S Ω
i
p for some

index set S with an open and compact subgroup K =
∏

i∈S Λ
i
0 contained

in an open subgroup H =
∑

i∈S(Ωi
p : Λi

0). And for any open and compact
subgroup U ⊆ K⊥, A(G,U) ⊆ (Λi

0 ×
∏

j 6=iΩ
j
p) ∩G for all i ∈ S except for

finitely many indices.
In the rest of the proof we would like to show that Ĝ '

∑
i∈S(Ωi

p : ∆i
p),

hence conclude that G '
∑

i∈S(Ωi
p : ∆i

p) by taking duals.
First of all by Lemma 3.1, Ωp = 〈{ui : i = 0, 1, 2, . . .}〉−. For any fixed

j ∈ S and n = 0, 1, 2, . . . let vn = {xi} ∈ H, where xj = un (definition of
un was given right before Lemma 5.12) and xi = 0 for i 6= j (an obvious
abuse of notation).

Now for any j ∈ S, identify Ωp with its topological isomorphic image
Ωj

p×
∏

i 6=j{0} and for any y = (yi) ∈
∏

i∈S Ω
i
p define χj

m(y) = χm(yj). Using
Lemma 5.12, it is easy to show that each χj

m is a continuous character of H
for any fixed j ∈ S and m ≥ 0, and {χi

m : m = 0, 1, 2, . . . ; i ∈ S} separates
points of H.
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Let Li be the closed subgroup of Ĥ generated by all χi
m(m = 0, 1, 2, . . .).

Then by Lemma 3.1, Li ' Ωp. LetMi be the closed subgroup of Ĥ generated
by χi

0. Then by the proof of Lemma 3.1 we know that Mi is compact open
in Li and Mi ' ∆p under the same topological isomorphism.

Claim 1. {Li : i ∈ S} are topologically independent , hence {Mi : i ∈ S}
are topologically independent.

P r o o f. It suffices to show that {Li : i ∈ S} are topologically indepen-
dent. For this purpose we need to show that Li ∩ 〈{Lj : j 6= i}〉− = {0}
for any i ∈ S. Let Ki = 〈{χj

m : j 6= i, m ≥ 0}〉. It is easy to see that
Ki = 〈{Lj : j 6= i}〉−. Now for any χ ∈ Li with χ 6= 0, since Li ' Ωp ' Ω̂p

and by the way H is defined, there exists g = (. . . , 0, ti, 0, . . .) ∈ H such
that χ(g) 6= 1. Let δ = |χ(g) − 1| and consider the open neighborhood
U of χ given by U = {ϕ ∈ Ĥ : |ϕ(g) − χ(g)| < δ/2}. Since for any
j 6= i, χj

m(g) = 1 ∀m ≥ 0, we must have ϕ(g) = 1 ∀ϕ ∈ Ki. Hence
ϕ(g) = 1 ∀ϕ ∈ Ki. Therefore Ki ∩ U = ∅. So Li ∩Ki = {0} and the claim
is proved.

Claim 2. 〈{Mi : i ∈ S}〉− = K⊥.

P r o o f. If 〈{Mi : i ∈ S}〉− 6= K⊥, then since 〈{Mi : i ∈ S}〉− ⊆ K⊥

there exists some ϕ ∈ K⊥ \ 〈{Mi : i ∈ S}〉− and η ∈ (K⊥)∧ such that
η ∈ (〈{Mi : i ∈ S}〉−)⊥ and η(ϕ) 6= 1. Now extend η to a continuous
character on Ĥ (which is possible by [3, 24.12]), still denoted by η. Then
η 6= 1 and so we may assume that η = (. . . , zi, . . .) ∈ H by Pontryagin
duality. For any i ∈ S, write η = zi + wi, where zi = (. . . , 0, zi, 0, . . .)
and wi = (yi) with yj = zj when j 6= i and yi = 0. Since η annihilates
Mi, we must have η(χi

0) = 1, i.e., χi
0(η) = 1, or χi

0(zi)χi
0(wi) = 1. But

χi
0(wi) = 1, so we have χi

0(zi) = 1. This implies that zi ∈ Λi
0 for each i ∈ S.

So η = (zi) ∈
∏

i∈S Λ
i
0 = K. Consequently, η(ϕ) = ϕ(η) = 1, a contradic-

tion.

Claim 3. K⊥ =
⊕

i∈S Mi.

P r o o f. For any open and compact subgroup U of K⊥ we have A(G,U)
⊆ (Λi

0 ×
∏

j 6=iΩ
j
p) ∩ G for almost all i ∈ S. So U = A(Ĝ, A(G,U)) ⊇

A(Ĝ, (Λi
0×

∏
j 6=iΩ

j
p)∩G) for almost all i ∈ S. But by the way Mi is defined

we know that Mi ⊆ A(Ĝ, (Λi
0 ×

∏
j 6=iΩ

j
p) ∩ G) for all i ∈ S. Therefore

Mi ⊆ U for almost all i ∈ S. So by Claims 1, 2 and Theorem 2.5 we know
that K⊥ =

⊕
i∈S Mi.

Now by applying Proposition 5.5 to {Li : i ∈ S} and {Mi : i ∈ S}
we conclude that the local direct product

∑
i∈S(Li : Mi) is topologically

isomorphic to an open (hence closed) subgroup L of Ĝ generated by all Li’s
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and K⊥. Since L separates points of G, we must have L = Ĝ. Therefore
Ĝ '

∑
i∈S(Li : Mi) '

∑
i∈S(Ωi

p : ∆i
p). So by taking duals we know that

G '
∑

i∈S(Ωi
p : ∆i

p).

Now we can display our example that shows topological independence
(TI) does not imply strong topological independence (STI).

Example 3. As in Example 1 let H = {x ∈
∏∞

i=1Ω
i
p : ∃m ∈ N such

that pmx ∈
∏∞

i=1∆
i
p}, where Ωi

p = Ωp and ∆i
p = ∆p ∀i ≥ 1; then topologize

H so that K =
∏∞

i=1∆
i
p is an open compact subgroup of H.

Now we can construct a family {Mi}i∈S of subgroups of Ĥ as in the
proof of the necessity part of the previous theorem and let our group G be
the closure of the subgroup generated by all Mi’s, where |S| = ℵ0. Then
for this G and all these Mi’s TI does not imply STI. Indeed, by Claim 2 we
know that G is compact. On the other hand, it is not difficult to show that
H/K is uncountable, hence G = K⊥ = (H/K)∧ '

∏
α∈A∆

α
p with A being

uncountable. Therefore TI does not imply STI (otherwise by Theorem 2.4
G '

∏
i∈S Mi '

∏
i∈S ∆

i
p, which is impossible since |A| > |S|).

Now we can state a generalization of Theorem 5.9; its proof is similar to
that of Theorem 5.9.

Theorem 5.14. Let G be a torsion-free LCA group. Then G is self-dual
and has the finite property if and only if

G ' Rn ×D × D̂ ×
∑
p∈℘

( ∑
i∈Sp

(Ωi
p : ∆i

p

)
: ∆µp

p ) ,

where n is a non-negative integer ; D is a divisible torsion-free discrete
abelian group; ℘ is a set of prime numbers and Sp is an arbitrary index
set with cardinality µp for each p ∈ ℘; Ωi

p = Ωp and ∆i
p = ∆p ∀i ∈ Sp.

6. Self-dual divisible LCA groups. Although we can prove directly
that any self-dual divisible topological p-group is a finite product Ωµ

p of
the group Ωp of p-adic numbers and then derive the structure of self-dual
divisible LCA groups by employing Lemmas 10 and 11 of [5], we shall accom-
plish our goal by an indirect approach. By considering torsion-free divisible
LCA groups instead of self-dual divisible ones (self-duality and divisibility
of an LCA group force it to be torsion-free) we discovered that any divisible
torsion-free topological p-group is actually the subgroup Bp(µ) of Ωµ

p , for
some cardinal number µ, that consists of all bounded elements endowed with
an appropriate topology. This not only gives us an easier way of proving
some properties of the minimal divisible extension of a torsion-free topo-
logical p-group, but also exhibits the structure of divisible torsion-free LCA
groups (see Theorem 6.9) and bi-divisible LCA groups (see Theorem 6.13)
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so that the structure theorem of self-dual divisible LCA groups follows im-
mediately as a corollary.

Lemma 6.1. Let G =
∑

i∈S(Gpi : Hpi), where pi’s are distinct primes
and each Gpi

is a divisible topological pi-group. Then G is divisible.

P r o o f. Straightforward.

Let Bp(µ) = {(xi) ∈
∏

i∈S Ω
i
p : ∃k ≥ 0 such that pkxi ∈ ∆p ∀i ∈ S},

where µ = |S|; then topologize Bp(µ) so that
∏

i∈S ∆
i
p is an open and

compact subgroup of Bp(µ).

R e m a r k. (1) Bp(µ) actually consists of all bounded elements of∏
i∈S Ω

i
p, i.e., Bp(µ) =

⋃∞
k=0

∏
i∈S Λ

i
−k as a set.

(2) Bp(µ) itself is obviously a divisible torsion-free topological p-group.
In the following we are going to show that any divisible torsion-free topolog-
ical p-group is of this form. Therefore we can be pleased that we understand
divisible torsion-free topological p-groups completely.

(3) Bp(µ) is a generalization of a finite direct product of copies of Ωp,
i.e., when |S| < ℵ0, Bp(µ) =

∏|S|
i=1Ω

i
p. When |S| ≥ ℵ0, Bp(µ) contains the

local direct product
∑

i∈S(Ωi
p : ∆i

p) as an open subgroup.

Theorem 6.2. Let G be an LCA group. Then G is a divisible torsion-free
topological p-group if and only if G ' Bp(µ) for some cardinal number µ.

P r o o f. The sufficiency is clear. To show the necessity, note that, by
Proposition 5.6, G can be regarded as an algebraic subgroup of

∏
i∈S Ω

i
p

for some index set S, and G has an open and compact subgroup K that is
topologically isomorphic to

∏
i∈S ∆

i
p. Let τ be the algebraic isomorphism

of G into
∏

i∈S Ω
i
p with τ |K : K '

∏
i∈S ∆

i
p. It suffices to show that

τ(G) = Bp(µ), which is pretty straightforward.

By applying Theorem 6.2 we obtain a concrete description of the mini-
mal divisible extension of a torsion-free topological p-group, especially that
of ∆µ

p .

Corollary 6.3. Let E be the minimal divisible extension of a torsion-
free topological p-group G. Then E is topologically isomorphic to Bp(µ) for
some cardinal number µ.

P r o o f. Since E is the minimal divisible extension of a torsion-free
topological p-group, it is also a torsion-free topological p-group by [1, 2.15].
So by Theorem 6.2 we know that E is topologically isomorphic to a Bp(µ)
for some cardinal number µ.

R e m a r k. When G in Theorem 6.3 is compact it is well known that
G ' ∆µ

p . Therefore Bp(µ) is exactly the minimal divisible extension of ∆µ
p

studied by Robertson in [7].
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Corollary 6.4. Any torsion-free topological p-group can be regarded as
an open subgroup of Bp(µ) for some cardinal µ.

P r o o f. Let E be the minimal divisible extension of G. Then E is
topologically isomorphic to Bp(µ) for some cardinal µ by Corollary 6.3. But
G is an open subgroup of E (see [1, p. 31]); therefore G can be regarded as
an open subgroup of Bp(µ).

Since any torsion-free topological p-group G contains an open and com-
pact subgroup K ' ∆µ

p and G can be regarded as an open subgroup of
Bp(µ), which is the minimal divisible extension of ∆µ

p , one can see eas-
ily that Bp(µ) is also the minimal divisible extension of G. Actually, we
shall prove that Bp(µ) is the minimal divisible extension of any of its open
subgroups (this was also proved by Robertson in [7] in a slightly different
way).

Corollary 6.5. Bp(µ) is the minimal divisible extension of any of its
open subgroups.

P r o o f. Let H be any open subgroup of Bp(µ); then Bp(µ)/H is a
discrete divisible torsion group since Bp(µ) is a divisible topological p-group.
Therefore by [3, A.17], Bp(µ) is the minimal divisible extension of H.

Also, in [7] Robertson showed that the character group of the minimal
divisible extension of ∆µ

p is divisible if and only if µ < ℵ0. Since we now
know the structure of the minimal divisible extension of ∆µ

p , we can give a
simpler proof of the result.

Lemma 6.6. If µ ≥ ℵ0, then Bp(µ)/∆µ
p '

∑
i∈A Z

i(p∞) with |A| = 2µ.

P r o o f. Since Bp(µ)/∆µ
p is a divisible discrete topological p-group,

Bp(µ)/∆µ
p '

∑
i∈A Z

i(p∞). But Λµ
−1 ⊆ Bp(µ) (here Λµ

−1 =
∏

i∈S Λ
i
−1

and |S| = µ) and |Λµ
−1/∆

µ
p | = 2µ. Hence |A| = 2µ.

Here is Robertson’s result.

Proposition 6.7. B̂p(µ) is divisible if and only if µ < ℵ0.

P r o o f. The sufficiency is obvious. For necessity, suppose that B̂p(µ)
is divisible, and µ ≥ ℵ0. Let K = ∆µ

p . Then by Lemma 6.6, Bp(µ)/K '∑
i∈A Z

i(p∞) with |A| = 2µ. Now K⊥ = (Bp(µ)/K)∧ '
∏

i∈A∆
i
p. Since

B̂p(µ) is also a topological p-group by [3, 2.15], we have B̂p(µ) = Bp(λ)
by Corollary 6.3 and Corollary 6.5 with λ = |A|. But again by Lemma 6.6
Bp(λ)/K⊥ =

∑
i∈B Z

i(p∞) with |B| = 2λ > µ. On the other hand, by
taking duals we have K ' (Bp(λ)/K⊥)∧ '

∏
i∈B ∆

i
p. So ∆µ

p ' ∆
|B|
p ; hence

µ = |B| by Lemma 3.2, which is impossible since we already know that
|B| > µ from the above discussion. Therefore µ < ℵ0.
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Lemma 6.8. Let G be an LCA group. Then G is a divisible torsion-free
topological torsion group if and only if G '

∑
p∈℘(Bp(µp) : ∆µp

p ), where ℘
is a set of prime numbers and µp is a cardinal number for each p ∈ ℘.

P r o o f. The sufficiency follows from Lemma 6.1 immediately. To show
the necessity, let H be an open and compact subgroup of G (which is
possible by [1, 3.5] since G is totally disconnected). Then by [1, 3.13],
G '

∑
p∈℘(Gp : Hp), where Gp is the p-component of G and Hp = H ∩Gp.

Since G is divisible and each Gp is a direct summand in the decomposi-
tion, Gp must be divisible. Therefore by Theorem 6.2, Gp ' Bp(µp) with
Hp ' ∆

µp
p under the same isomorphism.

Now we are ready to prove the structure theorem of divisible torsion-free
LCA groups.

Theorem 6.9. Let G be an LCA group. Then G is divisible torsion-free
if and only if

G ' Rn ×Qa∗ × Q̂b ×
∑
p∈℘

(Bp(µp) : ∆µp
p ) ,

where n is a non-negative integer ; a and b are cardinal numbers; ℘ is a set
of prime numbers and µp is a cardinal number for each p ∈ ℘.

P r o o f. The sufficiency is clear since each direct summand is divisible
and torsion-free. Towards the necessity, note that by [1, Proposition 9.5],
G ' Rn × Qa∗ × Q̂b × E, where E is a topological torsion group. Being
a direct summand, E must be divisible since G is divisible. Therefore by
Lemma 6.8 we have E '

∑
p∈℘(Bp(µp) : ∆µp

p ).

Now by using Theorem 6.2 we can show that the divisibility of a topo-
logical p-group G and its character group Ĝ together imply the self-duality
of G automatically (see Lemma 6.11). As a consequence, for any torsion-
free topological torsion group the self-duality and divisibility of G turn out
to be equivalent to the divisibility of G and its character group Ĝ (see
Lemma 6.12). Because of this, the structure of a bi-divisible LCA group
can be described explicitly.

Definition 6.10. Let G be an LCA group. Then G is said to be bi-
divisible if G and its character group Ĝ are both divisible.

Lemma 6.11. Let G be a topological p-group. Then the following are
equivalent :

(1) G ' Ωm
p , where m is a non-negative integer ;

(2) G is self-dual divisible;
(3) G is bi-divisible;
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(4) G is self-dual and is (topologically isomorphic to) an open subgroup
of Ωm

p for some non-negative integer m.

P r o o f. (1)⇒(2)⇒(3) is clear. (3)⇒(1) follows from Theorem 6.2 and
Proposition 6.7. Since (1)⇒(4) is immediate, it remains to show that
(4)⇒(1). Note that being an open subgroup of Ωm

p , G must be metriz-
able. Therefore by Lemma 4.2, G '

∑
i∈S(Ωi

p : ∆i
p), where S is countable.

So the open compact subgroup ∆µ
p (where µ = |S|) of

∑
i∈S(Ωi

p : ∆i
p) is

topologically isomorphic to an open and compact subgroup K of Ωm
p that

is topologically isomorphic to ∆m
p by [1, 2.23]. Therefore ∆µ

p ' ∆m
p . So by

Lemma 3.2 we must have µ = m and the proof is finished.

Lemma 6.12. Let G be a topological torsion group. Then the following
are equivalent :

(1) G '
∑

p∈℘(Ωmp
p : ∆mp

p ), where ℘ is a set of prime numbers and each
mp is a non-negative integer for p ∈ ℘;

(2) G is self-dual and divisible;
(3) G is bi-divisible.

P r o o f. (1)⇒(2)⇒(3) is clear. For (3)⇒(1), note that by Lemma 6.8 we
have G '

∑
p∈℘(Bp(µp) : ∆µp

p ). Then by taking duals we have

Ĝ '
∑
p∈℘

(B̂p(µp) : A(B̂p(µp),∆µp
p )) .

Since Ĝ is assumed to be divisible, each B̂p(µp) must also be divisible.
So both Bp(µp) and B̂p(µp) are divisible. Hence by Lemma 6.11 we have
Bp(µp) ' Ω

mp
p for some non-negative integer mp. So (3) implies (1) and the

lemma is proved.

Theorem 6.13. Let G be an LCA group. Then G is bi-divisible if and
only if

G ' Rn ×Qa∗ × Q̂b ×
∑
p∈℘

(Ωmp
p : ∆mp

p ) ,

where n is a non-negative integer ; a and b are cardinals; ℘ is a set of prime
numbers and for each p ∈ ℘, mp is a non-negative integer.

P r o o f. ⇐ is clear. For ⇒, note that the divisibility of Ĝ implies that G
is torsion-free by [2, 24.23]. Therefore by [1, Proposition 9.5] we know that

G ' Rn ×Qa∗ × Q̂b × E ,

where n is a non-negative integer; a and b are cardinals; and E is a densely
divisible torsion-free topological torsion group. Since G is divisible, the
direct summand E must be divisible. Also by taking duals we have

Ĝ ' Rn ×Qb∗ × Q̂a × Ê .
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Since Ĝ is assumed to be divisible, the direct summand Ê must be divisible.
Therefore E and Ê are both divisible. Since E is a topological torsion group,
by Lemma 6.12 we know that E '

∑
p∈℘(Ωmp

p : ∆mp
p ), where ℘ is a set of

prime numbers and each mp is a non-negative integer for p ∈ ℘. Hence

G ' Rn ×Qa∗ × Q̂b ×
∑
p∈℘

(Ωmp
p : ∆mp

p ) .

Corollary 6.14. Let G be an LCA group. Then G is self-dual divisible
if and only if G ' Rn ×Qa∗ × Q̂a ×

∑
p∈℘(Ωmp

p : ∆mp
p ), where n is a non-

negative integer ; a is a cardinal ; ℘ is a set of prime numbers and for each
p ∈ ℘, mp is a non-negative integer.

P r o o f. It suffices to show that ⇒ holds. Suppose that G is self-dual
divisible. Then G is of course bi-divisible. Hence by Theorem 6.13

G ' Rn ×Qa∗ × Q̂b ×
∑
p∈℘

(Ωmp
p : ∆mp

p ) .

Now by taking duals we have

Ĝ ' Rn × Q̂a ×Qb∗ ×
∑
p∈℘

(Ωmp
p : Λmp

−1 ) .

Since isomorphic topological groups have isomorphic identity components,
we must have Rn × Q̂b ' Rn × Q̂a. Again by taking duals we obtain that
Rn×Qb∗ ' Rn×Qa∗. This implies that a = b and the corollary is proved.

N o t e. I would like to thank Dr. M. A. Khan who kindly referred me
to his paper A theorem on power-open LCA groups and its consequences,
Bull. Austral. Math. Soc. 26 (1982), 239–247, in which this corollary was
obtained by another method.

Because of Corollary 6.14 we can derive some interesting results about
group extensions.

Corollary 6.15. Let G be an LCA group that is a divisible self-dual
extension of

∏n
i=1∆

i
p by

∑n
i=1 Z(p∞). Then G '

∏n
i=1Ω

i
p.

Corollary 6.16. Let G be an LCA group that is a self-dual extension
of

∏
i∈S ∆

i
p by

∑
i∈S Z(p∞). Then G is not divisible if |S| ≥ ℵ0.

From Corollary 6.14 we can get the structure of self-dual divisible con-
nected groups without any difficulty.

Corollary 6.17. Let G be a self-dual divisible LCA group. Then G is
connected if and only if G ' Rn, where n is a non-negative integer.

Even though we have not been able to classify all self-dual torsion-free
LCA groups, we shall be content temporarily with the following findings.



278 S. L. Wu

Proposition 6.18. Any torsion-free densely divisible, especially any self-
dual torsion-free, LCA group G can be regarded as an open subgroup of an
LCA group of the form Rn × Qa∗ × Q̂b ×

∑
p∈℘(Bp(µp) : ∆µp

p ), where n is
a non-negative integer ; a and b are cardinal numbers; ℘ is a set of prime
numbers and µp is a cardinal number for p ∈ ℘.

P r o o f. Let G be torsion-free and densely divisible; then by [1, 3.13]
and [1, 9.5]

G ' Rn ×Qa∗ × Q̂b ×
∑
p∈℘

(Hp : Kp),

where n is a non-negative integer; a and b are cardinals; ℘ is a set of prime
numbers and each Hp is a torsion-free topological p-group with the compact
open subgroup Kp ' ∆

µp
p for some cardinal µp. It is straightforward to

show that Rn × Qa∗ × Q̂b ×
∑

p∈℘(Bp(µp) : ∆µp
p ) is the minimal divisible

extension of G. So the first statement of the proposition is proved. The
second statement follows from the first statement and the fact that self-
duality and torsion-freeness imply the dense divisibility.
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