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Classification of self-dual torsion-free LCA groups
by

Sheng L. Wu (Eugene, Oreg.)

Abstract. In this paper we seek to describe the structure of self-dual torsion-free
LCA groups. We first present a proof of the structure theorem of self-dual torsion-free
metric LCA groups. Then we generalize the structure theorem to a larger class of self-
dual torsion-free LCA groups. We also give a characterization of torsion-free divisible
LCA groups. Consequently, a complete classification of self-dual divisible LCA groups is
obtained; and any self-dual torsion-free LCA group can be regarded as an open subgroup
of a well-understood torsion-free divisible LCA group.

Introduction. After M. Rajagopalan and T. Soundararajan proved
the structure theorem of self-dual torsion-free metric LCA groups in 1969,
Corwin (1970) initiated a new and interesting approach to the problem of
classifying the self-dual LCA groups in [2]. Though some sufficient and
necessary conditions for an extension group G of a compact abelian group
N by N to be self-dual were given, the detailed structure of the group
remains a mystery. In the last twenty years since the appearance of these
two papers, no new progress appears to have been made. The problem of
classifying self-dual LCA groups is still sitting in the dark, waiting for some
light to be shed on it. We prove a structure theorem for self-dual torsion-free
weak p-local LCA groups and present a complete classification of self-dual
divisible LCA groups.

The paper consists of six sections. Section 1 contains notations and ba-
sic definitions used in the paper. In Section 2, we give a brief discussion of
direct product and prove a sufficient and necessary condition for a totally
disconnected compact abelian group to be decomposed into a direct product
of a family of its closed subgroups; this will be needed in Section 5 to char-
acterize the local direct product Y, «(£2; : A}) of copies of the group §2, of
p-adic numbers. Section 3 gives a characterization of the group (2, of p-adic
numbers and shows that the direct product [, A; (or AL in short, where
p = |S]) of copies of the group A, of p-adic integers is uniquely determined
by the underlying index set and the prime number p. Section 4 presents a
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different proof of the structure theorem of self-dual torsion-free metric LCA
groups that was first proved by M. Rajagopalan and T. Soundararajan in [5].
Since one can show generally that any self-dual torsion-free LCA group is
of the form R™ x D x D x )7, o(H, : K,) with each H), self-dual contain-
ing K, as an open and compact subgroup and D being a divisible discrete
abelian group, the study of self-dual torsion-free LCA groups boils down to
the study of self-dual torsion-free topological p-groups H,,. It is tempting to
conjecture that Hy, is of the form ), (£2/ : Al) since H,, contains an open
and compact subgroup of the form AL (see [1, 2.8]). In 1968, Neil Rickert
gave an example in [6] (see also Example 2) showing that self-duality and
torsion-freeness are not enough for a torsion-free topological p-group to be
decomposed into a local direct product ), S(Q}; : A;) of copies of the group
12, of p-adic numbers. Hence two questions are raised:

(1) When can a self-dual torsion-free topological p-group be decomposed
into a local direct product of copies of the group of p-adic numbers ?

(2) What other conditions does one need to impose on G in order for G
to have a nice structure ?

The first question leads us to the discussion of p-local and weak p-local
LCA groups in Section 5. With the success in proving a necessary and
sufficient condition for an LCA group to be topologically isomorphic to
a local direct product of copies of the group {2, of p-adic numbers, we
generalize M. Rajagopalan and T. Soundararajan’s result to a larger class
(see Theorem 5.14); whereas, the second question motivates the research in
Section 6 of the structure of self-dual divisible LCA groups which turn out
to behave as desired (see Corollary 6.14).

Acknowledgements. I am extremely indebted to my advisor, Prof.
Kenneth A. Ross, for his invaluable suggestions, help and encouragement. I
would like to thank Prof. M. Rajagopalan for providing helpful information
with regard to my research.

1. Notations and definitions. All groups used in the paper are
assumed to be locally compact abelian (abbreviated as LCA) groups unless
otherwise indicated. Most of the notations and concepts in the paper can be
found in [1] or [3]. We shall repeat some for the sake of clarity. T" denotes the
unit circle group with Euclidean topology. R™ is the usual Euclidean group
(n > 1). Let p be a prime number; then Z(p™) represents the cyclic group
of order p™, Z(p>) is the quasicyclic group of the rationals expressible in
the form m/p™ under addition mod 1. We shall adopt [3]’s notation {2, and
A, (or Ap) for the group of p-adic numbers and the group of p-adic integers,
respectively. When there is a need to use Ay, which is the subgroup of
2, that consists of all z = (x,) € §2, such that z,, = 0 for all integers
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n < k (see [3] for details), we shall use Ay instead of A, together with A.
The character group of an LCA group G with the compact-open topology is
denoted by G. If H is a subgroup of G, H+ (or A(G, H), to avoid confusion)
denotes the annihilator of H in G. Let A be a subset of an LCA group G;
then (A) denotes the subgroup of G generated by A, while (A)~ represents
the closed subgroup of G generated by A. The identity component of an
LCA group G is denoted by C(G).

Let {G'}ies be a family of LCA groups; then [ ], g G indicates the direct
product of all G;’s with the product topology. For simplicity, especially
when there is no need to use the underlying indices ¢, we shall write G* for
[licg Giif G; = G for all i € S, where p = |S| is the cardinality of the index
set S. If {G,;}ics is a family of discrete abelian groups, then the weak direct
sum of all G;’s is denoted by ZieS G;. But when G; = G for all 7 € S and
there is no need for using underlying indices, we shall write G** instead of
> icg Gi for simplicity.

DEFINITION 1.1. Let G’ be an LCA group. By the p-component G, of
G we mean the set of all z € G such that lim,,_,,, p"z = 0. G is said to be
a topological p-group if and only if G, = G for some fixed prime number p.

DEFINITION 1.2. Let G be an LCA group and G! = {z € G : lim,, o nlz
= 0}. Then G is said to be a topological torsion group if and only if G! = G.

DEFINITION 1.3. A topological isomorphism, denoted by ~, is both a
group isomorphism and a homeomorphism of topological spaces. Two LCA
groups are said to be topologically isomorphic if there exists a topological

isomorphism between them.

DEFINITION 1.4. Let G be an LCA group and let G be its character

group. If G and G are topologically isomorphic, then G is said to be self-
dual.

DEFINITION 1.5. Let {G;}ics and {H;}ics be two families of LCA
groups with each H; open in G; and let G = {(x;) € [[;cg Gi : x; € H; for
all but a finite number of indices i}. Topologize G so that [, g H; is an
open subgroup of G. Then G is called the local direct product of the G;’s
with respect to the open subgroups H;’s, denoted by >, (G : H;).

2. Direct product. One important way of understanding topological
groups is to decompose them into the Cartesian product of simpler ones
whenever possible. Our main concern in this section is to try to find some
necessary and sufficient conditions for a compact topological group to be
decomposed into a direct product of a family of its closed normal subgroups.

The topological groups mentioned in this section need not be abelian
unless it is indicated explicitly.
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DEFINITION 2.1. Let G be a topological group and let {G; : i € S} be
a family of normal closed subgroups of G such that G = ({G; : i € S})~.
If |S| > Ng, then we also assume G is compact. If there exists a topological
isomorphism 7 : G — [];c 4 Gs such that for all j € S and z € G, 7(z) =
(yi), where y; = x when ¢ = j and y; = 0 when ¢ # j, then we will say that G
can be decomposed into the direct product of its closed subgroups {G; : i € S}
and write G = @, .5 G-

Suppose that G is the Cartesian product of a family of compact groups
{K;:i€ S} ie, G=]];cq Ki. Let G; = K; x [[,,,{0}; then by definition
G =@,;cqGi

DEFINITION 2.2. Let G be a locally compact topological group, let {M; :
i € S} be a family of closed normal subgroups of G and Q; = ({M; : j € S,
Jj #i})~. {M; : i € S} are said to be topologically independent (TI) if
M;NQ; = {0} for each i € S; and they are strongly topologically independent
(STL) if ;e Qi = {0}

EXAMPLE 1. Let G = G; x ... x Gy, and M; = {0} x ... x {0} x G; x
{0} x ... x {0}; then {M; :i=1,...,n} are both TT and STI.

By definition we can see easily that {M; : i € S} being STI implies
{M; : i € S} being TI, but not the other way around. Since the example we
have in hand to explain this is not trivial, we will wait until after proving
Theorem 5.13. But it is not suprising that, in the case when the index set S
is finite and the underlying group G is compact, TI and STI are equivalent.
We will demonstrate this in the following proposition. Proposition 2.3 and
Theorem 2.4 are known, but somewhat obscure in the literature and so we
include brief proofs.

PROPOSITION 2.3. Let {M; : i € S} be a finite set of closed normal
subgroups of a compact group G (not necessarily abelian); then {M; : i € S}
are TI if and only if {M; :i € S} are STI.

Proof. Without loss of generality we may assume that G = ({M; :
i € S}); otherwise we can consider the closed subgroup G; = ({M; :
i € S}). We need only show that TT implies STI. Actually, by [3, 6.12]
we know that there exists a topological ispmorphism 7 : G — [[i, M;
such that 7(z) = (0,...,0,2,0,...,0), where x € M;. But this implies
that T(Qz) :M1 X ... XMz'—l X {0} X Mi+1 X ... XMn. So T(m?lei) =
Ni_, 7(Qi) = {0}. Hence N;_; Q; = {0} since 7 is an isomorphism. So
{M; :ie S} are STL =

It turns out that strong topological independence is a reasonable condi-

tion imposed on a family of compact subgroups in order for the group to be
decomposed into a direct product of this family of compact subgroups. Here
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is a theorem concerning direct decomposition proved by Pontryagin (see

[4, §21.E]

THEOREM 2.4. Let G be a compact topological group and let {M; : i € S}
be a family of closed normal subgroups of G; then G = @,cg M; < G =
{M;:ie€S})” and {M; :ie€ S} are STI.

Proof. The sufficiency is the result of [4, §21.E]. Now let us prove the
necessity. Assume G' = @, M;. Then by our Definition 2.1 we know that
G = ({M; : i € S})” and there exists a natural topological isomorphism
7 from G onto [[;cg M;. Let Q; = ({Mj : j # i})™; then it is clear that
7(Qs) = {0} x [[,4; M;. Therefore 7((;c5 Qi) = ies T(Q:) = {0}. Hence
Nics @i = {0}, and the necessity is proved. m

For a totally disconnected LCA group G, the following theorem gives a
satisfactory answer to the question “Under what conditions does TI imply
STI?”. It also gives necessary and sufficient conditions for a compact totally
disconnected LCA group to be decomposed into a direct product of a family
of its closed subgroups. It will play an important role in our characterization
of self-dual torsion-free LCA groups.

THEOREM 2.5. Let G be a compact totally disconnected LCA group and
let {M; : i € S} be a family of closed subgroups of G such that G = ({M; :
i € S})~. Then the following are equivalent:

(a) (1) for any open neighborhood U of 0 in G all M;’s are contained in
U except for finitely many indices;
(2) {M; :i € S} are TI;
(b) {M; : i€ S} are STI (hence G = P, g M;).

Proof. (b)=(a) is clear. For (a)=(b), we need to show that ();c 4 Qi =
{0} by Definition 2.2, where Q; = ({M; : j # i})”. Let g € ;e Qs
then for any open neighborhood V' of 0, there exists an open and compact
subgroup U contained in V' by [3, 7.7] since G is totally disconnected. For
this compact open subgroup U almost all M;’s are contained in it by as-
sumption (1). Assume that M;, Z U for k =1,...,m and M; C U for all
) € {il,...,im}. We claim that g € Qil...im = <{MZ 11 Q {il,. . ,Zm}}>7
Indeed, starting from Q;, we know that g € @y, since g € [);cg Qs Also
it is clear that Q;, = M;, + Q;,i,. So there exist x5 € M;, and y2 € Qi,i,
such that ¢ = z2 + y2. Note that y» € Q4,4, C @4, and g € Q;,, so we
must have o = g — y2 € M;, N Q;, = {0} by assumption (2). So z2 =0
and ¢ = y2 € Qi,i,- Proceeding in this way m — 1 times we will have
g € Qi,..i,,. Since U contains all M;’s with i & {i1,...,i,} and U is an
open and compact (hence closed) subgroup of G we must have Q;, ;. C U,

=

which implies that g € U C V. Since V is arbitrary, we must have g = 0.
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So ey Qi = {0}, ie., {M; : i € S} are STL. Now by Theorem 2.4 we know

3. Some characterizations of (2, and topological p-groups

LEMMA 3.1. Let G be a torsion-free topological p-group. Suppose that
there exists a sequence {u,}52 so that ug # 0, pu, = up—1 forn > 1 and
p"ug — 0 (n — 00); then H = ({u, : n > 0})~ is topologically isomorphic
to §2,.

Proof. Since p"ug — 0 (n — oo) and G is totally disconnected (see
[1, 2.7]) there exists an open compact subgroup K 3 ug ¢ K and p™ug € K
for some m > 1.
Let N be the smallest positive integer such that pNug € K and
N-1
pY uo € K.

Cram 1. KN H = (pNug)~.

Proof. First of all (pNup)~™ C KN H. Now if there exists z ¢ (p™Nug)~
such that z € KN H, then 3y € ({u, : n > 0}) = Hy such that y e KN H
and y & (pNug)~ (because K N H is an open neighborhood of z, (p™Nug)~
is closed in K N H and H; is dense in H).

For convenience let vg = pNug, vi = p¥ lug,...,on = up, VNy1 =
U1, ..., and write

y=lv +lve+...+1lv, +1

where t € (pNug)™, 0 < |I,] < pand 1 < n < N (this is possible since
y & (pNug) ). Without loss of generality we may assume [,, > 0 (otherwise
we can consider —y). Note that

pt Ty = p"_l(llvl + ot v )+ Lop™ Lo,

=l,n+ze KNH,
where z = p" " Y(lyvy + ... + 1101 +t) € (PNug)~ € K N H. Therefore
l,vi = p"ly—2z € KNH, which implies that v; € KNH,i.e., pN luy € K,
a contradiction. Hence Claim 1 is proved. =m

Cram 2. ({v1,v2,...} U (vg)~) = £2,.

Proof. First of all, Claim 1 shows that the closed subgroup (vg)~ is a
compact open subgroup of H. By [1, Lemma 2.11], (vg)~ =~ A,. Let ¢ be
the topological isomorphism. Now define

b ({on, vz, FU(v0) ) — 2
by
lnvn + ln—lvn—l +.o+ l11)1 +h— y+ Sp(h>7
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where 0 <, <p, 0<l;<p(i=1,...,n—1) and

Yy = (...,O,ln,ln_l,...,11,0,...).
—1th

It is straightforward to show that ¢ is well defined and is an algebraic
isomorphism. Note that ({v1,ve,...} U (v9)~) is open, hence closed in H,
so we must have H = ({v1,v2,...} U(vp)7). So H >~ (2,. m

The following lemma will be used a lot in our study of self-dual torsion-
free topological p-groups. For simplification, we shall write A;, (or A%) for
A,, where i (or j) is an index, while A#' (or A7) is the direct product of p
(or m) copies of A, as defined in Section 1.

LEMMA 3.2. Two compact topological p-groups [],cq Aé and [];c4 A;,
are topologically isomorphic if and only if |S|=|A|.

Proof. We need only show that the condition is necessary. Assume
that [T;cg AL ~ [I;c4 Ab; then by taking duals we have Y, o Z(p™) ~
> ica Z(p>). Now by infinite abelian group theory we have [S| = |A]. =

LEMMA 3.3. Let H be any open compact subgroup of G =3 (Q; : A;).

Then H ~ [;cq A}

1€S

Proof. Let H be any open and compact subgroup of G. Note that
G is the local direct product of copies of the group of p-adic numbers. By
the way the topology of G is defined G' contains [, g A; as a compact and
open subgroup. So by [1, 2.23], H ~ [],.¢ A;. "

PROPOSITION 3.4. Let G be a torsion-free topological p-group and let K be
an open and compact subgroup that is topologically isomorphic to [],c A;,
where Al = A, Vi € S, with |S| < Rg and G/K ~ Y, s Z(p>°). Then G

satisfies the second axiom of countability.

Proof. First of all we know that K is second countable since by [3,

~

Theorem 24.14], w(K) = w(K) < Ro. It is clear that G = |J;cg(z: + K),
where x;’s are fixed representatives of all those countably many cosets. Now
by [3, 8.19] the proposition is proved. m

4. Self-dual torsion-free metric LCA groups. The following lemma
is actually a special case of a lemma proved by Neil W. Rickert in [6]. For
convenience we will state it here for later use.

LEMMA 4.1. Let G be a torsion-free LCA topological p-group and let K
be a compact subgroup. Assume that a subgroup H of G /K is isomorphic to
Z(p>). Then there is a closed subgroup H', isomorphic to {2, which maps
onto the group H under the natural map of G onto G/K.
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Proof. Note that any torsion-free topological p-group is a Ap-module;
the lemma follows from [6, Lemma 4]. m

LEMMA 4.2. Let G be a metric torsion-free topological p-group that is self-
dual; then G is topologically isomorphic to a local direct product of countably
many copies of the group of p-adic numbers.

Proof. Let K be a fixed open and compact subgroup of G. Then by
[1, Proposition 2.8], K ~ [],cq A;. Since G is metrizable we must have
|S| < Wg. Since G is self-dual it follows, by [1, 2.23], that (G/K)" ~ K+ ~
K ~[];cs4;, and so G/K ~ Y7, g Z'(p™), where each Z'(p>°) = Z(p*).
So G satisfies the second axiom of countability by Proposition 3.4. Now
by Lemma 4.1 for each ¢ € S there is a closed subgroup L; of G such that
L; ~ 2, and (L; + K)/K ~ Z'(p>). Clearly G = ({L; : i € S} UK). Next
we need to show that

so that we can draw our conclusion by [8, Part I, Theorem 3]. For this
purpose let L = (L; : i € 5).

CramM. L =G.

Proof. If G # L, then G/L = (L + K)/L # {0} and so G/L is the
image of the compact group K. Hence G/L is compact. The fact that G is
a topological p-group implies that G is totally disconnected by [1, 2.7]. So
by [3, 3.5] we know that G is O-dimensional, which implies that G/L is 0-
dimensional by [3, 7.11]. Therefore it is totally disconnected by [1, P.27(d)].
So by [3, 24.26], (G/L)" = A(@,f) is a torsion group, which implies that
G contains elements of finite order, a contradiction. Therefore G = L. m

Now by the fact that the L;’s are divisible we know that for any n,
p"G DO p"L = L. Hence

(r"G2L, p"G2L=G
n=1

Thus
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which implies that

Now by [8, Part I, Theorem 3]
(G:K)=> (25: A7),

i€S
where |S| < Nj. m

THEOREM 4.3. Let G be a torsion-free metric LCA group. Then G is
self-dual if and only if

GaR'xDxDx 3 (3 (254, Ape),
pEp €K,
where @ is a subset of primes and for each p € p, K, is an index set with
cardinal p, < Ro; 2/, = 2, and A, = A, Vi € K, and p € @; D is a
torsion-free divisible countable discrete group.

Proof. < is obvious. For =, by [4, Lemmas 10 and 11],

G:R”xDxlA)xZ(Gp:Hp),
pEp
where D is a torsion-free countable divisible discrete group (since G is
metrizable) and g is a subset of prime numbers; G, is a self-dual topological
p-group with open and compact subgroup H, Vp € p. Now by Lemma 4.2
there exists an index set K, with |K,| <X, such that

(Gp : Hp) ~ Z(Q;:A;). n

i€k,

Note. The above theorem was first proved by M. Rajagopalan and
T. Soundararajan in [5] where a different approach was used.

5. Self-dual torsion-free p-local and weak p-local LCA groups.
In this section, we study p-local and weak p-local groups. It turns out that
any self-dual torsion-free countable p-local group is a local direct product
of countably many groups of p-adic numbers. Hence the class of torsion-
free self-dual countable p-local LCA groups and the class of self-dual metric
torsion-free topological p-groups coincide. We shall give a characterization
of the local direct product of copies of the group {2, of p-adic numbers (see
Theorem 5.13), then generalize M. Rajagopalan and T. Soundararajan’s
result to a somewhat larger class without much effort (see Theorem 5.14).

It is well known that any torsion-free topological p-group G contains

an open compact subgroup K that is topologically isomorphic to Hie g A;
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for some index set S. So algebraically G can be regarded as a subgroup
of [T;cs 12 (see Proposition 5.6 below) with [],.g A7 as an open compact
subgroup. Since for any index set S the local direct product ), S(Qf, : A;)
is self-dual, it is natural to ask whether G must be a local direct product of
groups of p-adic numbers if G is a self-dual torsion-free topological p-group.
Unfortunately, the answer is negative. Here is an example given by Neil
Rickert in [6] that shows that being a torsion-free self-dual topological p-
group is not enough for an LCA group to be decomposed into a local direct
product of groups of p-adic numbers.

EXAMPLE 2. Let G = {z € [[;2, 2, : Im € N such that p"z €
[1:2, AL}, where 2! = (2, and A} = A, Vi > 1. Topologize G so that
12, A; is an open compact subgroup of G. Then G x G is a torsion-free
self-dual topological p-group, but it is not topologically isomorphic to a local
direct product of groups of p-adic numbers (for details see [6]).

The group defined in Example 2 is exactly a special case of the groups
By (p) with g = Rg that will be studied in Section 6, which play an important
role in the characterization of divisible torsion-free LCA groups and self-dual
divisible LCA groups.

DEFINITION 5.1. Let G be an LCA group; G is called a p-local group
if G contains an open subgroup that is topologically isomorphic to a local
direct product >, o(£2 : AL). If |S| < R, then G is said to be countably
p-local.

The following proposition is an immediate result of the definition.

PROPOSITION 5.2. If G is a local direct product of groups of p-adic num-
bers, i.e., G =3 ,c4(2} : AL), where S is an index set with 2, = (2, and
A; = A, for alli € S, then G is p-local.

DEFINITION 5.3. Let G be an LCA group. G is said to be weak p-local
if any p-component of G/C(G) is zero or countably p-local.

Before proving the main theorem for weak p-local groups, we shall give
some sufficient conditions for an LCA group to be p-local and show that
if a countably p-local group is self-dual then it is actually topologically
isomorphic to a local direct product of countably many copies of the group
of p-adic numbers.

PRrROPOSITION 5.4. If G is a divisible torsion-free topological p-group,
then G is p-local.

Proof. Let H be any open compact subgroup of G. Then by [1, Propo-
sition 2.8] H is topologically isomorphic to [],.g A; for some index set S.
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Let 7 be the topological isomorphism. Since G is divisible, 7 can be ex-
tended to an algebraic homomorphism ¢ of >, ¢(£2, : A’) into G by [3,
A.7]. Indeed, one can show easily that ¢ is a topological monomorphism of
> ies (82, - ALy into G. So G is p-local. m

Proposition 5.4 will be obvious when we are able to describe the structure
of divisible torsion-free topological p-groups in Theorem 6.2.

PROPOSITION 5.5. Let G be an LCA group, and let {M;};cs and {L;}iecs
be two families of closed subgroups of G such that each M; is a proper open
and compact subgroup of L; Vi € S. If {L;},es are topologically inde-
pendent and ({M;}ics)™ is a compact and open subgroup of G such that
({Mi}ies)”™ = @,cg M, then the local direct product ), o(L; : M;) is
topologically isomorphic to an open subgroup of G.

i€S

Proof. For convenience we still denote L; x [[;_,{0} by L; (an obvious
abuse of notation) and we also write ; = (y;) with y; = z; when i = j
and y; = 0 when ¢ #£ j. First of all, by the definition of local direct product
we know that for any x € » . o(L; : M;),  can be written uniquely as
r =TTy + ...+ T, +y, where T;, € L;, \ M;, (k=1,...,n) and y €
{0} x ... x {0} x [Ligqi, ...y M;- Define

by

Then ¢ is clearly well defined by the above discussion. It is straightforward
to show that ¢ is a homomorphism and one-to-one. Since the restriction of ¢
to [ [, cs M is a topological monomorphism and IL cg M is an open compact
subgroup of >, o(L; : M;), ¢ is actually a topological monomorphism.
Hence the proposition is proved. =

PROPOSITION 5.6. Any torsion-free topological p-group G can be regarded
as an algebraic subgroup of [[;cq §2, for some index set S with [[;cq 4,
topologically isomorphic to an open and compact subgroup of G.

Proof. Let K be an open and compact subgroup of G. Then by [1,
Proposition 2.8], K is topologically isomorphic to [[;cg 4, for some index
set S. Let 7 be the topological isomorphism of K onto [],.g A;. Since
[I;cs 4; is an algebraic subgroup of the divisible group [[;c¢ §2,, 7 can be
extended to a group homomorphism ¢ of G into [],.¢ 2 by [3, A.7]. Tt is
easy to show that ¢ is one-to-one. Hence ¢ is a monomorphism of G into

[Lies Q,i;- .
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PROPOSITION 5.7. Let G be a torsion-free LCA group and let p be a fized
prime. Let G contain an open subgroup H which is a local direct product
Eies(*]; : K;,) of a family {J;;}ies of LCA groups with each K;, open and
compact in J;. For each 1 € S let JI’; ~ (2,. Suppose further that G contains
a family {Dy}aca such that the following hold:

(1) 1A} = |5] < Ro;
(2) Dy =~ 82, for every o € A;
(3) the algebraic subgroup generated by the set H U (|J,c 4 Da) is G.

Then G is topologically isomorphic to the local direct product Eies(ﬂé : A;)
of the group of p-adic numbers.

Proof. Let K = [[,cg K;. Then K is compact and open in H and
hence is open in G. We claim that G/K ~ %, ¢ Z'(p™).

Indeed, G/K = H/K + (D + K)/K, where D = ({D, : a € A}).
It is clear that H/K is divisible. Also one can show that (D + K)/K
is divisible. Therefore G/K is a divisible discrete topological p-group.
Since H/K ~ Y,.¢Z'(p™) and (D + K)/K = Y (Do + K)/K =
Yoaeca Z%(p™) by [3, 5.32], where |A| < |S| by our assumption (1), we
must have G/K ~ >, ¢ Z'(p>) by [3, A.14]. But this implies that G
satisfies the second axiom of countability by Proposition 3.4. Now let
L = ({J.}ies U{Da}aca); here we still use J; to denote its corresponding
isomorphic image in ), ¢(J} : K}). Then L is a dense divisible subgroup of
G since it is easy to see that ({J}}ics) is dense in ZieS(JLKf,);SO p"G 2
p"L = L for any non-negative integer n. Therefore G D p"L = L = G and
G 2 {Np"G}~ =L = G. Consequently, G = {(,—, p"G}~ =(,—, p"G.
By [8, Part I, Theorem 3| we know that G is topologically isomorphic to a
local direct product of countably many copies of the group of p-adic num-
bers. m

Remark. Proposition 5.7 is [5, Lemma 8] which should have been
stated with the underlying index set countable.

PROPOSITION 5.8. Let G be a torsion-free LCA group that is countably
p-local. Then G is self-dual if and only if G is topologically isomorphic
to a local direct product of countably many copies of the group of p-adic
numbers.

Proof. It is obvious that we need only prove the sufficiency. Let H be
the open subgroup that is isomorphic to a local direct product ), S(Q; :
A;) of countably many copies of the group of p-adic numbers (|S| < Xy) and
let K be the compact open subgroup of H that is topologically isomorphic
to [l,es A; under the same topological isomorphism. Then K is an open
compact subgroup of G since H is open in G. Consequently, G/K is discrete.
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Since (G/K)" ~ K+ and G is self-dual, K+ is topologically isomorphic to
an open and compact subgroup of G, hence is topologically isomorphic to
K by [1, 2.23]. Therefore (G/K)" ~ [];cq A}. By taking duals we have
G/K ~ 3 s Z(p>). Since |S| < Vg, Y ;. g Z(p™) is countable and K is
second countable, G must be second countable. Now by the same process
as in the proof of Lemma 4.2 we know that G is topologically isomorphic
to a local direct product of countably many copies of the group of p-adic
numbers. m

Note that in the proof of the sufficiency we do not assume that G is
metric at all. But it turns out that G is automatically a metric group,
assuming that G is countably p-local torsion-free self-dual.

The condition that G be self-dual cannot be omitted. The group G in
Example 2 is not a local direct product of the group of p-adic numbers. But
it is clearly a countably p-local group.

It is very reasonable to conjecture that if a torsion-free topological p-
group is p-local (not necessarily countably p-local) and self-dual, then the
group must be topologically isomorphic to a local direct product of copies
of the group of p-adic numbers. So far no proof of the conjecture has been
found, nor has any counterexample been given. We strongly believe that
the answer to this conjecture would be affirmative if one can confirm that
the following conditions (1) and (2) imply (a), assuming that G is a com-
pact torsion-free topological p-group and {M;};cs is a family of compact
subgroups of G such that G = ({M; : i € S})~. Let Q; = ({M; : j #i})".

The above-mentioned conditions are:

(1) G = HiES M’L’

(2) M;NQ; ={0} Vies,

(a) MN;es @i = {0}

If it is necessary one can also assume that all M; are topologically iso-
morphic to A,. We do not know whether the answer to the last question
is positive or negative. What we have found out is that (2) itself does not
imply (a). The counterexample is quite complicated; we will wait until after
proving Theorem 5.13.

Here is the structure theorem for torsion-free weak p-local self-dual LCA
groups.

THEOREM 5.9. Let G be a torsion-free LCA group that is weak p-local.
Then G s self-dual if and only if

GzR"xDxﬁxZ(Z(Q;:A;)iAZP)7
PEP 1ES,

where n is a non-negative integer; D is divisible, torsion-free and discrete;
© is a set of prime numbers; 2, = §2, and A}, = A, Vi € Sy, where S}, is a
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countable index set with cardinality pi, depending on p € .
Proof. < is clear. For =, by [5, Lemmas 10 and 11] we have

G~R'xDxDxY (Hy: Kp)
pPEP

where n is a non-negative integer; D is divisible, torsion-free and discrete; p
is a set of prime numbers for which H, # {0} and H, is a closed subgroup
of G that is torsion-free self-dual with open and compact subgroup K, and
is a topological p-group in its own right. Since C(G) ~ R™ X D we have
G/C(G) ~ D x> (Hy : Kp). But D = Q™" by [3, A.14], so the
topological p-subgroup of G/C(G) must be topologically isomorphic to H,.
Therefore by our assumption that G is weak p-local and Proposition 5.8
we have (Hp, : Kp) ~ 3,05 (12, © A}) with K, ~ Ap? under the same
isomorphism, where |S,| < Rg. Hence

G=R'xDxDx Y (D (2:40): ). w

pEP  iE€S,

In the rest of this section by using Theorem 2.5 we are able to obtain
a sufficient and necessary condition for an LCA topological p-group to be
decomposed into a local direct product of copies of the group of p-adic
numbers. To avoid confusion in the following, A(G;, H;) is used for the
annihilator of H; (as a subgroup of G;) in G; while H;* shall be regarded
as the annihilator of H; (as a subgroup of G) in G.

DEFINITION 5.10. Let G be a torsion-free topological p-group. If G
contains an open and compact subgroup K and another open subgroup H
containing K such that (H : K) ~ Y, (2} : A}), and when G is regarded
as an algebraic subgroup of [];.q §2,, for any open and compact subgroup
UCKH,

Aoy c (A<l ne
J#i
for all ¢ € S except finitely many indices, then G is said to have the finite
property.

If G is any torsion-free LCA group and each p-component of G/C(G) is

either 0 or has the finite property, then G is said to have the finite property.

LEMMA 5.11. Let H be an open and compact subgroup of an LCA group
G such that (G : H) = ), 4(Gi : H;) is a local direct product of LCA
groups G;’s. Then

(1) (G: HY) = Y,05(Gi + A(Gy, Hy));
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(2) for any open and compact subgroup of G of the form

Kn = Ki1 X ... X Kin X H A(@Z,Hz),

i@{i1,yin}
where each K;; is an open and compact subgroup of A(CA}Z-J.,HZ-].),

AGK,) = AGi, Kiy) x ... x A(G, Ki ) < [ Hi.
1€{i1,...,in}

Proof. (1) is a result proved in [3, 23.33]. To show (2), let
E:A(Gil,Kil)X...XA(Gin,Kin)X H Hz

It is clear that E C A(G, K,,). Now for any = € G \ E, it suffices to show
that = ¢ A(G, K,,). For this x = (z;) there exists z; such that x; ¢ H; when
U {ir, ... in}, or &y & A(Gy,, Ky, ), when | = i; for some i; € {i1,...,in}.
In the first case, since z; ¢ Hj, there exists a y; € A(Gy, H;) such that
yi(x;) # 1. Now let y = (z;), where z; = y; when ¢ = [ and z; = 0 when
i # l; then y € K,, and y(z) = yi(x;) # 1. So z ¢ A(G,K,). In the
second case, without loss of generality we may assume that [ = ¢;. Since
x; & A(Gy,, K;,), there exists some y; € K;, such that y;(z;) # 1, and we
conclude the proof just as in the first case. m

Let ypm = (...,0,1,0,...) (m = 0,1,2,...), where the (1 — m)th coor-
dinate is 1. Define a character of {2, by xm(x) = Xy, (z) for any z € (2,
as in [3, 25.1(9)]. Then each x, is a continuous character of {2, and for
up, = (-..,0,1,0,...) (n = 0,1,2,...), where the (—n)th coordinate is 1,

_ 2mi/pnt™
Xm(un) =e :
LEMMA 5.12. (i) For any y € p™ Aoy, we have xm(y) = 1;
(ii) £ ={xm :m=0,1,2,...} separates points of (2,.

Proof. (i) Since Ay is a monothetic group with uy as a generator,
the subgroup (ug) generated by wug is dense in Ay. Note that p™Ay is a
continuous image of the compact LCA group Ay, the image p™ (ug) of (ug)
under the same map must be also dense in p™Ay. Now for any z € p" (ug),
z = p"kug for some integer k. So

Xm(2) = X (p" ko) = [Xm (u0)]™" = (exp(2i/p™))™" =1,
Therefore x,,(y) =1 Yy € p™ Ay since x,,, is continuous on p™ Ay.
(ii) For any = € 2, with  # 0, let x = (...,0,Zp,, Tpmt1,...), Where
T # 0. If m < 0, then xy(x) # 1. If m > 0, then x,,(x) # 1. Therefore
(ii) is proved. m
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Here is the theorem characterizing the local direct product of copies of
the group of p-adic numbers.

THEOREM 5.13. Let G be a torsion-free topological p-group. Then G has
the finite property if and only if G ~ Y, o(£2) : A%) and hence is self-dual.

Proof. < Assume that G ~ Y, (2, : Al) with respect to K =
[1;cs Ab; then

i€S

=[] A2, 4) =T[4
€S €S
Let U be any open and compact subgroup of K*; then U contains an open

and compact subgroup of the form /1?611 XX /1};; X Hi%{il,...,in} A} denoted
by K,,. Then it is clear that A(G,U) C A(G, K,,). Note that by Lemma 5.11

AGK,) =A" oxox A ox [T 4.
i@ {i1smenyin}
So for each i & {i1,...,in},

A(G,K,) C (Ag <] Qg;) nG
ji
Therefore

AG,U) C (Ag X HQ;) NG Vid{ir,....in).
J#i
Hence the sufficiency is proved.

= Let G be a torsion-free topological p-group that has the finite prop-
erty; then G can be regarded as an algebraic subgroup of [ [, Q; for some
index set S with an open and compact subgroup K = [],. ¢ Aj contained
in an open subgroup H = ), (2, : A4). And for any open and compact
subgroup U C K+, A(G,U) C (A} >< [T Q7Y NG for all i € S except for
finitely many indices.

In the rest of the proof we would like to show that G ~ >ies (120 AL),
hence conclude that G ~ 37, o(£2), : A?) by taking duals.

First of all by Lemma 3.1, 2, = ({uZ :1=0,1,2,...})”. For any fixed
jeSandn=0,1,2,... let v, = {z;} € H, where z; = u,, (definition of
u, was given right before Lemma 5.12) and z; = 0 for i # j (an obvious
abuse of notation).

Now for any j € S, identify (2, with its topological isomorphic image
) 2 x[1;2;{0} and for any y = (y;) € [, 2, define x7, (y) = xm(y;). Using
Lemma 5.12, it is easy to show that each x7, is a continuous character of H
for any ﬁxed je€Sandm >0, and {x! :m=0,1,2,...; i € S} separates
points of H.
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Let L; be the closed subgroup of H generated by all i (m =0,1,2,...).
Then by Lemma 3.1, L; ~ §2,,. Let M; be the closed subgroup of H generated
by x4. Then by the proof of Lemma 3.1 we know that M; is compact open
in L; and M; ~ A, under the same topological isomorphism.

Cram 1. {L; : i € S} are topologically independent, hence {M; : i € S}
are topologically independent.

Proof. It suffices to show that {L; : i € S} are topologically indepen-
dent. For this purpose we need to show that L; N ({L; : j # i})~ = {0}
for any i € S. Let K; = ({xJ, : j # i, m > 0}). It is easy to see that
K;={{Lj:j#i})". Now for any y € L; with x # 0, since L; ~ (2, ~ ﬁp
and by the way H is defined, there exists ¢ = (...,0,¢;,0,...) € H such
that x(g) # 1. Let 6 = |x(g9) — 1| and consider the open neighborhood
U of x given by U = {p € H : lo(g) — x(g)| < 6/2}. Since for any
i # i, x).(9) = 1 ¥m > 0, we must have ¢(g) = 1 Vo € K;. Hence
¢(g9) =1V € K;. Therefore K; NU = (. So L; N K; = {0} and the claim
is proved. =m

CLAamM 2. ({M; :ie S})~ =K+,

Proof. If ({M; :i € S})~ # K=, then since ({M; : i € S})~ C K+
there exists some ¢ € K-\ ({M; : i € S})~ and n € (K+)" such that
ne (({M; :iec SH )t and n(p) # 1. Now extend 1 to a continuous
character on H (which is possible by [3, 24.12]), still denoted by . Then
n # 1 and so we may assume that n = (...,2;,...) € H by Pontryagin
duality. For any ¢ € S, write n = Z; + w;, where zZ; = (...,0,2;,0,...)
and w; = (y;) with y; = z; when j # i and y; = 0. Since 7 annihilates
M;, we must have n(xy) = 1, i.e., x4(n) = 1, or x}(Zi)x§(w;) = 1. But
x4 (w;) = 1, so we have x}(z;) = 1. This implies that z; € A for each i € S.
So n = (2;) € [L;eg Ay = K. Consequently, n(p) = ¢(n) = 1, a contradic-
tion. m

CLAaM 3. K+ =@, ¢ M.

Proof. For any open and compact subgroup U of K+ we have A(G,U)
C (Af x ;%) N G for almost all i € S. So U = A(G,A(G,U)) 2
A(G, (A x [1,.: £2))NG) for almost all i € S. But by the way M; is defined
we know that M; C A(G, (A} x [l /)N G) for all i € S. Therefore
M; C U for almost all ¢ € S. So by Claims 1, 2 and Theorem 2.5 we know
that K+ =@, g M,;. =

Now by applying Proposition 5.5 to {L; : i € S} and {M; : i € S}
we conclude that the local direct product ), o(L; : M;) is topologically
isomorphic to an open (hence closed) subgroup L of G generated by all L;’s



272 S. L. Wu

and K L. Since L separates points of G, we must have L = G. Therefore
G~ ies(Li s My) ~ 3. (2] Al). So by taking duals we know that
G) g2, A7) =

Now we can display our example that shows topological independence
(TI) does not imply strong topological independence (STT).

EXAMPLE 3. As in Example 1 let H = {z € [[;2, £, : 3m € N such
that p™x € ]2, AL}, where 20 = (2, and Al = A, Vi > 1; then topologize
H so that K =[[;2, A;, is an open compact subgroup of H.

Now we can construct a family {M,},cs of subgroups of H as in the
proof of the necessity part of the previous theorem and let our group G be
the closure of the subgroup generated by all M;’s, where |S| = 8y. Then
for this G and all these M;’s T1 does not imply STI. Indeed, by Claim 2 we
know that G is compact. On the other hand, it is not difficult to show that
H/K is uncountable, hence G = K+ = (H/K)" ~ [],c 4 AY with A being
uncountable. Therefore TI does not imply STI (otherwise by Theorem 2.4
G >~ [I;cg Mi ~ [1;cq A, which is impossible since |A] > [S]).

Now we can state a generalization of Theorem 5.9; its proof is similar to
that of Theorem 5.9.

THEOREM 5.14. Let G be a torsion-free LCA group. Then G is self-dual
and has the finite property if and only if

G R xDxDx Y (D (02:45): A,
PEP 1ES,
where n is a non-negative integer; D is a divisible torsion-free discrete
abelian group; o is a set of prime numbers and S, is an arbitrary index
set with cardinality p, for each p € p; 2, = (2, and A, = A, Vi € 5.

6. Self-dual divisible LCA groups. Although we can prove directly
that any self-dual divisible topological p-group is a finite product {2/ of
the group 2, of p-adic numbers and then derive the structure of self-dual
divisible LCA groups by employing Lemmas 10 and 11 of [5], we shall accom-
plish our goal by an indirect approach. By considering torsion-free divisible
LCA groups instead of self-dual divisible ones (self-duality and divisibility
of an LCA group force it to be torsion-free) we discovered that any divisible
torsion-free topological p-group is actually the subgroup By (i) of 2, for
some cardinal number p, that consists of all bounded elements endowed with
an appropriate topology. This not only gives us an easier way of proving
some properties of the minimal divisible extension of a torsion-free topo-
logical p-group, but also exhibits the structure of divisible torsion-free LCA
groups (see Theorem 6.9) and bi-divisible LCA groups (see Theorem 6.13)
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so that the structure theorem of self-dual divisible LCA groups follows im-
mediately as a corollary.

LEMMA 6.1. Let G = Y ,.5(Gp, : Hp,), where p;’s are distinct primes
and each Gy, is a divisible topologzcal pi-group. Then G is divisible.

Proof. Straightforward. m
Let By(p) = {(2i) € [1ics 2, : Ik > 0 such that pFz; € A, Vi € S},

where 1 = |S|; then topologize B,(p) so that []
compact subgroup of By, (u).

i
ies 4, 1s an open and

Remark. (1) Bp(p) actually consists of all bounded elements of
[Tics 25, ie., By(p) = Upeo [Tics A ), as a set.

(2) Bp(u) itself is obviously a divisible torsion-free topological p-group.
In the following we are going to show that any divisible torsion-free topolog-
ical p-group is of this form. Therefore we can be pleased that we understand
divisible torsion-free topological p-groups completely.

(3) Bp(p) is a generalization of a finite direct product of copies of £2,,

Le., when |S| < Ng, By(n) = Hls‘l 2l When [S| > RNo, B,(u) contains the
local direct product Y, (2 : Al) as an open subgroup.

THEOREM 6.2. Let G be an LCA group. Then G is a divisible torsion-free
topological p-group if and only if G ~ By(u) for some cardinal number p.

Proof. The sufficiency is clear. To show the necessity, note that, by
Proposition 5.6, G can be regarded as an algebraic subgroup of []; ¢ 2 p
for some index set S, and G has an open and compact subgroup K that is
topologically isomorphic to ], ¢ A;. Let 7 be the algebraic isomorphism
of G into [[;cq 92, with 7|g : K ~ [[,cg A} It suffices to show that
7(G) = Bp(p), which is pretty straightforward. m

By applying Theorem 6.2 we obtain a concrete description of the mini-
mal divisible extension of a torsion-free topological p-group, especially that
of Ar.

COROLLARY 6.3. Let E be the minimal divisible extension of a torsion-
free topological p-group G. Then E is topologically isomorphic to By(p) for
some cardinal number p.

Proof. Since E is the minimal divisible extension of a torsion-free
topological p-group, it is also a torsion-free topological p-group by [1, 2.15].
So by Theorem 6.2 we know that E is topologically isomorphic to a B, (1)
for some cardinal number u. =

Remark. When G in Theorem 6.3 is compact it is well known that
G ~ Ap. Therefore By (1) is exactly the minimal divisible extension of A¥
studied by Robertson in [7].
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COROLLARY 6.4. Any torsion-free topological p-group can be regarded as
an open subgroup of By(u) for some cardinal pu.

Proof. Let E be the minimal divisible extension of G. Then E is
topologically isomorphic to B, (1) for some cardinal 1 by Corollary 6.3. But
G is an open subgroup of E (see [1, p. 31]); therefore G can be regarded as
an open subgroup of By(u). m

Since any torsion-free topological p-group G contains an open and com-
pact subgroup K ~ Ar and G can be regarded as an open subgroup of
By (1), which is the minimal divisible extension of Af, one can see eas-
ily that B,(u) is also the minimal divisible extension of G. Actually, we
shall prove that B, (u) is the minimal divisible extension of any of its open
subgroups (this was also proved by Robertson in [7] in a slightly different
way).

COROLLARY 6.5. B)y(p) is the minimal divisible extension of any of its
open subgroups.

Proof. Let H be any open subgroup of B,(u); then B,(p)/H is a
discrete divisible torsion group since By, () is a divisible topological p-group.
Therefore by [3, A.17], B, (1) is the minimal divisible extension of H. m

Also, in [7] Robertson showed that the character group of the minimal
divisible extension of Af is divisible if and only if u < Ro. Since we now
know the structure of the minimal divisible extension of A}, we can give a
simpler proof of the result.

LEMMA 6.6. If ju > Ry, then By(u)/Al ~ ., Z'(p™) with |A] = 2+,

Proof. Since By(u)/Af is a divisible discrete topological p-group,

By(n) /Ay = 3,ca Z(p™). But A%y C By(u) (here A"} = [];cq AL,
and |S| = p) and [A" | /Ak| = 2#. Hence |[A] = 2. =

Here is Robertson’s result.

PROPOSITION 6.7. Ep(u) is divisible if and only if p < Ng.

Proof. The sufficiency is obvious. For necessity, suppose that Ep(,u)
is divisible, and 1 > Ro. Let K = Al. Then by Lemma 6.6, B,(u)/K ~
>iea ZH(p™) with [A| = 2¢. Now K+ = (Bp(p)/K)" ~ [];c4 A Since
Ep(u) is also a topological p-group by [3, 2.15], we have §p(u) = B,(\)
by Corollary 6.3 and Corollary 6.5 with A = |A|. But again by Lemma 6.6
B,(A\)/K+ = Y ,c5 Z'(p™) with |B] = 2* > pu. On the other hand, by
taking duals we have K ~ (B,(A)/K+)" ~],c5 AL. So Al ~ ALB‘; hence
i = |B| by Lemma 3.2, which is impossible since we already know that
|B| > p from the above discussion. Therefore p < Xg. m
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LEMMA 6.8. Let G be an LCA group. Then G is a divisible torsion-free
topological torsion group if and only if G ~ ZpEp(Bp(Np) . ALY, where @
is a set of prime numbers and i, is a cardinal number for each p € p.

Proof. The sufficiency follows from Lemma 6.1 immediately. To show
the necessity, let H be an open and compact subgroup of G (which is
possible by [1, 3.5] since G is totally disconnected). Then by [1, 3.13],
G =3  (Gp: Hp), where Gy, is the p-component of G and H, = H NG,
Since G is divisible and each G, is a direct summand in the decomposi-
tion, G, must be divisible. Therefore by Theorem 6.2, G, ~ B,(j,) with
H, ~ A,” under the same isomorphism. =

Now we are ready to prove the structure theorem of divisible torsion-free
LCA groups.

THEOREM 6.9. Let G be an LCA group. Then G is divisible torsion-free
if and only if

* b
G~R"x Q" x Qx> (Bylp,) : Abr),
pER
where n is a non-negative integer; a and b are cardinal numbers; p is a set
of prime numbers and p, is a cardinal number for each p € p.

Proof. The sufficiency is clear since each direct summand is divisible
and torsion-free. Towards the necessity, note that by [1, Proposition 9.5],
G ~ R" x Q" x @b x F, where E is a topological torsion group. Being
a direct summand, F must be divisible since G is divisible. Therefore by
Lemma 6.8 we have £~ 3" (By(up) : ApP). =

Now by using Theorem 6.2 we can show that the divisibility of a topo-
logical p-group G and its character group G together imply the self-duality
of G automatically (see Lemma 6.11). As a consequence, for any torsion-
free topological torsion group the self-duality and divisibility of G turn out
to be equivalent to the divisibility of G and its character group G (see
Lemma 6.12). Because of this, the structure of a bi-divisible LCA group
can be described explicitly.

DEFINITION 6.10. Let G be an LCA group. Then G is said to be bi-
divisible if G and its character group G are both divisible.

LEMMA 6.11. Let G be a topological p-group. Then the following are
equivalent:

(1) G = 2, where m is a non-negative integer;

(2) G is self-dual divisible;

(3) G is bi-divisible;
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(4) G is self-dual and is (topologically isomorphic to) an open subgroup
of $27" for some non-negative integer m.

Proof. (1)=(2)=(3) is clear. (3)=-(1) follows from Theorem 6.2 and
Proposition 6.7. Since (1)=(4) is immediate, it remains to show that
(4)=>(1). Note that being an open subgroup of (2%, G must be metriz-
able. Therefore by Lemma 4.2, G ~ . (2 : A}), where S is countable.
So the open compact subgroup A¥ (where p = |S|) of 3, (20 : Al) is
topologically isomorphic to an open and compact subgroup K of (2" that
is topologically isomorphic to A7* by [1, 2.23]. Therefore Ay ~ A%, So by
Lemma 3.2 we must have p = m and the proof is finished. =

LEMMA 6.12. Let G be a topological torsion group. Then the following
are equivalent:

(1) G~ Zpep(ﬁfonp : Ap'P), where @ is a set of prime numbers and each
my, s a non-negative integer for p € @;

(2) G is self-dual and divisible;

(3) G is bi-divisible.

Proof. (1)=(2)=(3) is clear. For (3)=-(1), note that by Lemma 6.8 we
have G = (By(pp) : Ap?). Then by taking duals we have

G~ Z(Bp(:up)  A(Bp(pp), Ap7)) -
pep

Since G is assumed to be divisible, each Ep(pp) must also be divisible.
So both By(u,) and B, (up) are divisible. Hence by Lemma 6.11 we have
By (pp) == 2,7 for some non-negative integer m,. So (3) implies (1) and the
lemma is proved. m

THEOREM 6.13. Let G be an LCA group. Then G is bi-divisible if and
only if

G~ R" x Q" x Q" x Z(Q;an DAY,
pEp

where n is a non-negative integer; a and b are cardinals; o is a set of prime
numbers and for each p € p, my is a non-negative integer.

Proof. < isclear. For =, note that the divisibility of G implies that G
is torsion-free by [2, 24.23]. Therefore by [1, Proposition 9.5] we know that
GZR“XQG*X@\bXE,
where n is a non-negative integer; a and b are cardinals; and F is a densely

divisible torsion-free topological torsion group. Since G is divisible, the
direct summand E must be divisible. Also by taking duals we have

é:R”be*x@“xE.
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Since G is assumed to be divisible, the direct summand E must be divisible.
Therefore E and E are both divisible. Since F is a topological torsion group,
by Lemma 6.12 we know that E ~ ZPGP(Q;L’J : Ap'®), where g is a set of
prime numbers and each m,, is a non-negative integer for p € p. Hence

GR"x Q™ x Q" x Y (7 : A7), u
PEP

COROLLARY 6.14. Let G be an LCA group. Then G is self-dual divisible
if and only if G ~ R™ X Q% X @a X ZPEP(QITP : Ap'®), where n is a non-
negative integer; a is a cardinal; @ is a set of prime numbers and for each
P € p, my 15 a non-negative integer.

Proof. It suffices to show that = holds. Suppose that G is self-dual
divisible. Then G is of course bi-divisible. Hence by Theorem 6.13

G~ R"x Q™ x Q% x Z(Q;np AT,
pPEP
Now by taking duals we have
G R x Q" x Q" x Y (2 A™Y).
pEYp
Since isomorphic topological groups have isomorphic identity components,
we must have R™ X @b ~ R™ x @“. Again by taking duals we obtain that
R™x Q% ~ R™x Q. This implies that @ = b and the corollary is proved. m

Note. I would like to thank Dr. M. A. Khan who kindly referred me
to his paper A theorem on power-open LCA groups and its consequences,
Bull. Austral. Math. Soc. 26 (1982), 239-247, in which this corollary was
obtained by another method.

Because of Corollary 6.14 we can derive some interesting results about
group extensions.

COROLLARY 6.15. Let G be an LCA group that is a divisible self-dual
extension of [T;_y AL by >°r, Z(p™). Then G ~ ]}, 2.

COROLLARY 6.16. Let G be an LCA group that is a self-dual extension
of [Lies A% by >oics Z(p™°). Then G is not divisible if |S| > R.

From Corollary 6.14 we can get the structure of self-dual divisible con-
nected groups without any difficulty.

COROLLARY 6.17. Let G be a self-dual divisible LCA group. Then G is
connected if and only if G ~ R"™, where n is a non-negative integer.

Even though we have not been able to classify all self-dual torsion-free
LCA groups, we shall be content temporarily with the following findings.
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PROPOSITION 6.18. Any torsion-free densely divisible, especially any self-
dual torsion-free, LCA group G can be regarded as an open subgroup of an
LCA group of the form R™ x Q% x Qb x Zpep(Bp(,up) : Ap?), where n is
a non-negative integer; a and b are cardinal numbers; g is a set of prime
numbers and v, is a cardinal number for p € p.

Proof. Let G be torsion-free and densely divisible; then by [1, 3.13]
and [1, 9.5]

G~R"xQ"x @b X Z(Hp c Kp),
PEP
where n is a non-negative integer; a and b are cardinals; @ is a set of prime
numbers and each H,, is a torsion-free topological p-group with the compact
open subgroup K, ~ A}? for some cardinal j,. It is straightforward to
show that R™ x Q%" x QP x > peo(Bolpp) Ap?) is the minimal divisible
extension of GG. So the first statement of the proposition is proved. The
second statement follows from the first statement and the fact that self-
duality and torsion-freeness imply the dense divisibility. m
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