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Abstract. If X is a compact metric space of dimension n, then K(X), the n-
dimensional kernel of X, is the union of all n-dimensional Cantor manifolds in X. Alek-
sandrov raised the problem of what the descriptive complexity of K(X) could be. A
straightforward analysis shows that if X is an n-dimensional complete separable metric
space, then K(X) is a Σ12 or PCA set. We show (a) there is an n-dimensional continuum
X in R

n+1 for which K(X) is a complete Π11 set. In particular, K(X) ∈Π
1
1−Σ

1
1; K(X)

is coanalytic but is not an analytic set and (b) there is an n-dimensional continuum X in
R
n+2 for which K(X) is a complete Σ12 set. In particular, K(X) ∈ Σ

1
2 −Π

1
2; K(X) is

PCA, but not CPCA. It is also shown the Lebesgue measure as a function on the closed
subsets of [0, 1] is an explicit example of an upper semicontinuous function which is not
countably continuous.

I. Complexity of K(X). Let us recall that an n-dimensional Cantor

manifold is a compact n-dimensional space which cannot be separated by
a closed subset of dimension ≤ n − 2. Since there are complete separable
metric spaces of dimension n which contain no compact sets of dimension
n, there are n-dimensional spaces which contain no Cantor manifolds of
dimension n. However, every compact metric space of dimension n does
contain an n-dimensional Cantor manifold. If X is a compact metric space
of dimension n, then K(X), the n-dimensional kernel of X, is the union of
all n-dimensional Cantor manifolds in X. R. Pol [P], in answering a question
of Aleksandrov [A], has given an example of a space X such that X \K(X)
is still n-dimensional. As Pol pointed out to us, Aleksandrov also raised the
question of what the descriptive complexity of K(X) could be. For Pol’s
example, it turns out that K(X) is a Borel set. We will determine the exact
bounds on the complexity of K(X) in this paper. We first note the following
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simple bound on the complexity of K(X).

Theorem 1. Let X be an n-dimensional complete separable metric space.

Then K(X) is a Σ1
2 or PCA set.

P r o o f. Let C be the set of all Cantor manifolds in the space, and K(X),
of all compact subsets of X. Then K(X) = proj1{(x,M) : x ∈ M and
M ∈ C}. Also, K(X) \ C = proj1{(M,L) ∈ K(X) ×K(X) : dim L ≤ n − 2
and L separates M}. Clearly, this last set of pairs is an analytic set. Thus,
C is a coanalytic or Π1

1 set and K(X) is a PCA set.

Our next theorem is to show that this simple estimate is fairly sharp.
We assume all our spaces X are compact.

Theorem 2. Let n ≥ 2.

(a) If X ⊂ R
n and dimX = n, then K(X) is an Fσ set.

(b) There is an n-dimensional compact set X in R
n+1 for which K(X)

is a complete Π1
1 set. In particular , K(X) ∈Π1

1 −Σ
1
1; K(X) is coanalytic

but is not an analytic set.

(c) There is an n-dimensional compact set X in R
n+2 for which K(X)

is a complete Σ1
2 set. In particular , K(X) ∈ Σ1

2 −Π
1
2; K(X) is PCA, but

not CPCA.

R e m a r k s. Parts (a) and (c) of this theorem are the best possible. We
do not know whether part (b) can be improved to Σ1

2 as well. Also, we
could easily make the sets constructed for parts (b) and (c) continua.

P r o o f. For the proof of (a), let us recall that every compact n-dimen-
sional Cantor manifold in X lies in a maximal Cantor manifold in X, a
dimensional component of X [E, p. 99]. Since every n-dimensional subset
of R

n contains an open set and no two dimensional components of X can
have interior points in common, X has only countably many dimensional
components. Thus, K(X) is an Fσ set.

To prove parts (b) and (c), we assume for simplicity that n = 2. The
general case differs little from the arguments below.

To prove (b), let B = {(0, 0, z) : z ∈ C}, where C is the middle third
Cantor set. Let P ⊂ B beΠ1

1. We will produce a compactum X ⊂ R
3 such

that K(X)∩B = P . This easily gives that K(X) is not necessarily a Borel
set and that K(X) may be Π1

1 complete. We will define X by defining its
“sections”, Xz = {(x, y) : (x, y, z) ∈ X}, for each z ∈ C.

Suppose now that z ∈ C. We first construct a set Dz, “a framework”,
which will always be a subset of Xz. Figure 1a illustrates this framework.
We begin with the triangle which is the union of the line segments join-
ing (0, 0, z), (1, 1, z) and (−1, 1, z). We then adjoin the line segments Lk

from (1 − 1/2k, 1, z) to (0, 0, z), for k = 0, 1, 2, . . . We next add a series of
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2-dimensional “tubes” as follows. We first add tubes T (1), T (2), T (3), . . .
where T (i) is the intersection of the above triangular region with the rect-
angular region {(x, y, z) : |x| ≤ 1 and |y−1/2i| < 1/4 ·2i}. For convenience,
we also set T (0) to be the top edge of the triangular region. The top edge
is the only tube which is not 2-dimensional. We then add tubes T (i, j) as
follows: first T (i, 0) = T (i) and if j 6= 0, then:

(a) T (i, j) is the intersection of a rectangular region with the triangular
region formed by the line segment L0 and the top and right edges of the
original triangular region.

(b) Each T (i, j) lies strictly between T (i) and T (i + 1).

(c) T (i, j) lies above T (i, j + 1).

(d) T (i, j) ∩ T (i′, j′) = ∅, for (i, j) 6= (i′, j′).

(e) For each i, the only limit points of
⋃

j T (i, j) not in
⋃

j T (i, j) lie on
T (i + 1).

In general, we construct tubes T (i1, . . . , in) for all (i1, . . . , in) ∈ ω<ω

such that T (i1, . . . , in−1, 0) = T (i1, . . . , in−1) and for in 6= 0 satisfying the
analogous requirements:

(a) T (i1, . . . , in) is the intersection of a rectangular region with the tri-
angular region formed by the line segment Ln−2 and the top and right edges
of the original triangular region.

(b) Each T (i1, . . . , in) lies strictly between T (i1, . . . , in−1) and
T (i1, . . . , in−1 + 1).

(c) T (i1, . . . , in) lies above T (i1, . . . , in + 1).

(d) T (i1, . . . , in) ∩ T (i′1, . . . , i
′

n) = ∅, for (i1, . . . , in) 6= (i′1, . . . , i
′

n).

(e) For each (i1, . . . , in−1), the only limit points of
⋃

j T (i1, . . . , in−1, j)
not in

⋃
j T (i1, . . . , in−1, j) lie on T (i1, . . . , in−1 + 1).

The framework Dz is completed by adding all the sets T (i1, . . . , in) to
those already adjoined.

Let P ⊂ B be Π1
1 and let T be a tree on {0, 1} × ω which codes P . In

other words, T ⊂
⋃

∞

n=0
{0, 1}n × ωn with the property that (r, s) ∈ T →

(r|k, s|k) ∈ T , for all k < ln(r) and T is such that for all z ∈ {0, 1}ω (≃ C) we
have (0, 0, z) ∈ P ↔ Tz is well-founded, where Tz = {s ∈ ω<ω : (z|ln (s), s)
∈ T}.

For a fixed z ∈ {0, 1}ω , we obtain Xz by adjoining to Dz certain regions
as follows:

Let f : ω → ω be an onto map such that f−1(n) is infinite for all n. For
each (i1, . . . , in) such that (f(i1), . . . , f(in)) 6∈ Tz we add to Dz the open
region R(i1, . . . , in) which is bounded by the line segment Ln−2 and the
line segment from (0, 0, z) to (1, 1, z) (where L−1 is defined to be the left
hand boundary of the triangular region) and by the tubes T (i1, . . . , in) and
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T (i1, . . . , in + 1). Of course, the boundary of this region is already in Xz .
This second stage is illustrated in Fig. 1b.

Fig. 1a. The framework Fig. 1b. Adjoining regions

(−1, 1, z) (1, 1, z) (−1, 1, z) (1, 1, z)

(0, 0, z) (0, 0, z)

Dz Xz

This completes the definition of Xz and hence of X. Since X ⊂ R
2 ×C,

dim X ≤ 2 and since the sections of X are 2-dimensional, dim X = 2.
Clearly, each section Xz of X is closed. In order to see that X itself

is closed, let {(xn, yn, zn)}∞n=1 be a sequence of points of X converging to
a point p = (x, y, z). If (x, y, z) ∈ Dz, then p ∈ X. So, suppose p lies
in some open region Rz(i1, . . . , im). For n sufficiently large, (xn, yn, zn) ∈
Rzn(i1, . . . , im). This implies that for n sufficiently large, (f(i1), . . . , f(im))
6∈ Tzn

. Since zn → z in {0, 1}ω , we have (f(i1), . . . , f(im)) 6∈ Tz. This
implies (x, y, z) ∈ Xz and X is closed.

We now show (0, 0, z) ∈ P ↔ (0, 0, z) ∈ K(X). Note that if M is a
Cantor manifold lying in X then M must be a subset of some section Xz ,
since any two sections of X can be separated from each other by a zero-
dimensional set—namely the empty set.

First, assume (0, 0, z) 6∈ P . The tree Tz is ill-founded meaning there
is a sequence (j1, j2, . . .) ∈ {0, 1}ω such that (z|m, (j1, . . . , jm)) ∈ T for all
m. Thus, for any (i1, . . . , im) such that f(i1) = j1, . . . , f(im) = jm, the
portion of the open region R(i1, . . . , im) lying between Lm−2 and Lm−1 is
disjoint from Xz. However, by removing countably many points from Xz

(along each line Lk and the left and right edges of the triangular region), we
may then clearly disconnect Xz by a countable set. Since the sets f−1(jq)
are infinite, we may, in fact, disconnect Xz by a countable set C so that
Xz \C = U ∪V where V ⊂ Bε(0, 0, z), for ε arbitrarily small. Thus, there is
no Cantor manifold M lying in X and containing (0, 0, z). So, (0, 0, z) 6∈ P
implies (0, 0, z) 6∈ K(X).

Assume now that (0, 0, z) ∈ P , or equivalently, the tree Tz is well-
founded. Let Mz = T ∪ R, where T is the union of all 2-dimensional



Some complexity results 79

tubes in the framework and R is the union of all adjoined regions.
Clearly, (0, 0, z) ∈ Mz. We claim that Mz is a Cantor 2-manifold, which
completes the proof.

By way of contradiction, assume there is a 0-dimensional set I ⊂ Mz

such that Mz \ I = U ∪ V , where U and V are nonempty, disjoint and
relatively open sets in Mz \ I.

Lemma 3. There exist a pair of “consecutive” tubes, i.e., tubes of the

form T (i1, . . . , im−1, im) and T (i1, . . . , im−1, im + 1), such that T (i1, . . .
. . . , im−1, im) \ I ⊂ U and T (i1, . . . , im−1, im + 1) \ I ⊂ V or vice versa.

P r o o f. It is easy to see that each of U and V must contain a tube
(mod I), and the tubes are partitioned accorded to whether they are a subset
of U or of V (mod I). Suppose that the lemma fails and let T (i1, . . . , im) be
a tube in U (more precisely, T (i1, . . . , im) \ I ⊂ U). Since the lemma fails,
we have T (i1, . . . , im−1, j) \ I ⊂ U , for all j ≥ 1. This then implies that
T (i1, . . . , im−1 + 1) \ I ⊂ U . Likewise, we then get T (i1, . . . , im−2 + 1) \ I ⊂
U, . . . , T (i1 + 1) \ I ⊂ U . Similarly, starting with a tube contained in V ,
we get a tube T (j1 + 1) such that T (j1 + 1) \ I ⊂ V . This easily gives the
lemma.

Assume now, without loss of generality, that T (i1, . . . , im) \ I ⊂ U and
T (i1, . . . , im + 1) \ I ⊂ V . Since T (i1, . . . , im + 1) \ I ⊂ V , it follows that
T (i1, . . . , im, im+1) \ I ⊂ V , for some im+1 ≥ 1 (in fact for all sufficiently
large im+1). From this we easily get consecutive tubes T (i1, . . . , im, im+1) \
I ⊂ U and T (i1, . . . , im+1 + 1) \ I ⊂ V (note that we may have im+1 = 0).
Continuing, we define a sequence (i1, i2, . . .) ∈ ωω. Since Tz is well-founded,
some (f(i1), . . . , f(ik)) 6∈ Tz with k ≥ m, and thus R(i1, . . . , ik) ⊂ Mz .
This is impossible, since T (i1, . . . , ik) \ I ⊂ U , T (i1, . . . , ik + 1) \ I ⊂ V ,
and T (i1, . . . , ik) ∪ T (i1, . . . , ik + 1) ∪ R(i1, . . . , ik)) \ I is connected. This
establishes part (b) of the theorem except for the fact that K(X) is Π1

1. A
straightforward computation shows that P is the complicated part of K(X);
the part of K(X) not on the z-axis is an Fσ set.

P r o o f o f (c). We work now in R
4. We will use the construction given

in the proof of part (b). Let C be the Cantor middle third set (we again will
think of C as {0, 1}ω). Let P ⊂ C be Σ1

2. We define a compact subset X
of R

4 such that for z ∈ C, (0, 0, z, z) ∈ K(X) ↔ z ∈ P . This will certainly
show K(X) may be Σ1

2 complete.

Since P is Σ1
2, we have P (z) ↔ H(z,w) where H ⊂ {0, 1}ω × {0, 1}ω

is Π1
1. The idea is to associate with each z in C a collection of triangular

regions, one for each w ∈ {0, 1}ω , with common point (0, 0, z, z). Each such
triangular region Tz,w is filled in exactly as in part (b), using now the pair
(z,w) instead of z. Thus, we might envision such a set as in Fig. 2.
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Fig. 2

w1

z

w2

w3

We run into a problem trying to carry out this construction in R
3, how-

ever, as we cannot guarantee that the sets Tz,w corresponding to different
z’s will be disjoint. We found it necessary to add one more dimension to
assure this last disjointness property holds.

To be specific, for each z,w ∈ {0, 1}ω , we define a “triangle” in R
4, Tz,w,

to be the union of the closed line segments joining the points (0, 0, z, z),
(1, 1, w, z) and (−1, 1, w, z). For each such (z,w) ∈ {0, 1}ω × {0, 1}ω , we
define Ez,w to be the “filled-in”version of Tz,w exactly as Xz was the filling
of Dz in case (b). We then set X =

⋃
z,w Ez,w.

An argument analogous to that given in part (b) can be given to show
that X is closed. Also, note that X is still 2-dimensional, since it is a subset
of R

2 × C × C.
Also, if z ∈ P , then for some w ∈ {0, 1}ω , (z,w) ∈ H. But then, arguing

exactly as in case (b), Mz,w is a Cantor 2-manifold containing (0, 0, z, z).
Thus, (0, 0, z, z) ∈ K(X).

Finally, suppose z 6∈ P . So, for all w ∈ {0, 1}ω , (z,w) 6∈ H. We show
that (0, 0, z, z) 6∈ K(X). Suppose to the contrary that M were a Cantor
2-manifold with (0, 0, z, z) ∈ M ⊂ X. If for some w ∈ {0, 1}ω , we have
M ⊂ Ez,w, then we would have a contradiction exactly as in (b). Thus, for
some (z′, w′) 6= (z,w),M ∩Ez,w 6= ∅ and M∩Ez′,w′ 6= ∅. If z 6= z′, we have a
contradiction as we may define a separation of M by U = M ∩ {(a, b, c, d) :
d > s}, V = M ∩ {(a, b, c, d) : d < s}, where s is between z and z′ and
s 6∈ C. So, we may assume M ⊂

⋃
w Ez,w and M ∩ Ez,w 6⊆ {(0, 0, z, z)}

and M ∩ Ez,w′ 6⊆ {(0, 0, z, z)} for some w 6= w′. However, we may then
clearly separate M \ {(0, 0, z, z)}, a contradiction. This completes the proof
of Theorem 2.

As we remarked, the construction for part (c) of the theorem seems to
require working with R

4.
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Question 1. If X ⊂ R
3, is K(X) always Π1

1?

Question 2. Simply from the general theory of projective sets we know
there is some Σ1

2 norm (or Σ1
2 operator) on X which yields K(X). It would

be very interesting to give some natural topological definition of this norm
or operator. Perhaps such a norm or operator would be Π1

1 for continua in
R

3. This would give a positive solution to our Question 1.

Question 3. Is there an n-dimensional compactum X such that K(X)
is Σ1

2 complete and X \ K(X) is also n-dimensional? We conjecture the
answer to this question is yes. If so, can X be taken to be homogeneous?

Question 4. Is there a continuum M such that the homeomorphism
group X of M is n-dimensional and X\K(X) isΣ1

2 complete? (We note that
the existence of totally disconnected homeomorphism groups of dimension
n is not completely settled [B,M].)

II. A result about Lebesgue measure. A real-valued function f
defined on a complete separable metric space X is said to be countably con-

tinuous provided X can be partitioned into countably many disjoint Borel
sets B1, B2, . . . such that for each i, the partial function f |Bi is continu-
ous on Bi. Clearly, every continuous function is countably continuous and
there are countably continuous Borel measurable functions of arbitrarily
high Borel class.

N o t e. In this definition of countably continuous we required the sets
B1, B2, . . . to be Borel sets. However, this is no restriction within the class

of Borel measurable functions, in view of the fact that a Borel measurable
function f is countably continuous in our sense if and only if there is a
partition of X into sets C1, C2, . . . such that f |Ci is continuous on Ci. To
prove this equivalence one uses the fact that if f is continuous on E ⊂ X,
then there is a Borel set Ê ⊃ E and a continuous extension f̂ of f to Ê.

Recall that f is lower semicontinuous if f is the pointwise supremum of a
sequence of continuous functions. Adyan and Novikov showed there exists a
lower semicontinuous function which is not countably continuous [A–N]. We
reprove this result here. We then give an explicit example by showing that
Lebesgue measure regarded as a function on the space of compact subsets
of [0, 1], which is upper semicontinuous, is not countably continuous.

We first provide a quick proof of the result of Adyan and Novikov which
illustrates our proof for Lebesgue measure.

Theorem 4. Let X be an uncountable complete separable metric space.

Then there is a lower semicontinuous f : X → R which is not countably

continuous.
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P r o o f. Fix a Σ0
1 set U ⊂ X × ω which is universal in the sense that

for each x ∈ X, Ux = {n : (x, n) ∈ U} is a complete Σ0
1(x) set. For each

x ∈ X, let f(x) ∈ R be defined by f(x) =
∑

∞

n=0
3−nan, where an = 1 if

n ∈ Ux and an = 0 if n 6∈ Ux.

First, note that f is lower semicontinuous. To see this, write U(n, x) ↔
∃m R(x,m, n), where R ⊂ X × ω × ω is recursive. Then, for each k ∈ ω,

define fk : X → R by fk(x) =
∑k

n=0
3−nan,k, where an,k = 1 if ∃n ≤ k

R(x,m, n) and 0 otherwise. Clearly, f = supk fk, and each fk is continuous
(in fact recursive).

Suppose that f were countably continuous, and let α1, α2 . . . ∈ X code
Borel sets B1, B2, . . . which have disjoint union X and such that f |Bi is
continuous for each i. Since f |Bi is continuous, there is a “real” βi ∈ X
providing a code for f |Bi; i.e., the relation {(s, t) : s, t ∈ ω, s, t code basic
neighborhoods Ns, Nt of x such that f(Bi ∩ Ns) ⊂ Nt} is ∆0

1(βi). Let
γ = 〈α1, . . . , αn, β1, . . . , βn〉. Then γ ∈ Bi for some i, and thus, f(γ) ∈
∆0

1(γ, βi) = ∆0
1(γ). This contradicts the fact that f(γ) is Σ0

1(γ) complete.

We turn now to the corresponding question for Lebesgue measure. We
now let Y denote the compact metric space {0, 1}ω with Lebesgue or Haar
measure, µ. This is for convenience only as the proof below will work with
minor modification for Y = [0, 1] and the usual Lebesgue measure.

Theorem 5. Let X denote the space of closed subsets of Y with the

Hausdorff metric. Then µ : X → R is upper semicontinuous but is not

countably continuous.

P r o o f. It is well known that µ is upper semicontinuous. Let us assume
that µ is countably continuous. Following the outline of the above argument,
it is enough to show that for any γ′ ∈ Y = {0, 1}ω , there is a closed F ⊂ Y
such that if γ ∈ Y is the real coding F (i.e., γ codes the tree T ⊂ {0, 1}<ω

representing F ), then γ =T γ′ and µ(F ) 6∈ ∆0
1(γ), where ≤T denotes Turing

equivalence. Since the argument below works uniformly in any degree, we
may now take γ′ =T 0. That is, we produce an F ⊂ Y with recursive code
but such that µ(F ) is not recursive.

To do this, let A ⊂ ω be a Σ0
1 complete set, so A(n) ↔ ∃m R(m,n) where

R ⊂ ω × ω is recursive. Define a tree T ⊂ {0, 1}<ω by T (s) ↔ s ∈ {0, 1}<ω

and s = t∧0∧u where t is a sequence of 1’s of even length 2j, u ∈ {0, 1}<ω ,
and ∀k ≤ length (u) [∃m ≤ k R(j,m) → u(k) = 1]. Clearly T can be coded
by a recursive real γ. Let F ⊂ Y be the closed set corresponding to T . We
claim that µ(F ) is not recursive. For suppose µ(F ) were recursive. Then
we could show A is recursive as follows: Given n ∈ ω, consider all possible
sums of the form s =

∑n−1

p=0
εp(1/4)

p+1 where εp = 0 or 1. For each of these,

determine if |µ(F )−s| < 1/4n+2. If any of the s satisfy this inequality, then
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n ∈ A, otherwise n 6∈ A. This follows since µ(F ) =
∑

∞

p=0
εp(1/4)

p+1 where
εp = 1 if p 6∈ A and is 0 otherwise. Since µ(F ) was assumed recursive, this
is a recursive procedure, violating the assumption that A is Σ0

1 complete.
This completes the proof of the theorem.

Question 5. We conjecture that almost all derivatives are not count-
ably continuous. Consider the Banach space of all bounded derivatives on
[0, 1]. Is it true that the set of functions in this space which are countably
continuous is meager?

In fact, we conjecture the same is true for functions in Baire class 1:

Question 6. Consider the Banach space of all bounded Baire class 1
functions on [0, 1]. Is it true that the set of functions in this space which
are countably continuous is meager?

Added in proof. Results of related interest concerning countable continuity have
been obtained by J. Cichoń, M. Morayne, J. Pawlikowski and S. Solecki, Decomposing
Baire functions, J. Symbolic Logic 56 (1991), 1273–1283.
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