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Abstract. Each homeomorphism from the n-dimensional Sierpiński gasket into itself
is a similarity map with respect to the usual metrization. Moreover, the topology of this
space determines a kind of Haar measure and a canonical metric. We study spaces with
similar properties. It turns out that in many cases, “fractal structure” is not a metric but
a topological phenomenon.

1. Introduction. The Sierpiński gasket. Fractals are commonly
defined in metric terms (Hausdorff dimension, similarity maps between a
space and its pieces etc.). This note will show, however, that often the
fractal structure is completely determined by the underlying topology.

The typical example is the Sierpiński gasket (Fig. 1). It can be defined
in R

n as a self-similar set A = f1(A) ∪ . . . ∪ fn+1(A) with respect to the
mappings fi(x) = 1

2
(x + ei), i = 1, . . . , n + 1, where the ei are vertices of a

regular n-simplex Cn [8, 13]. For convenience we work with barycentric co-
ordinates, i.e. we take R

n as the hyperplane {x = (x1, . . . , xn+1) |
∑

xi = 1}
and the ei as coordinate unit vectors in R

n+1, so that fi(x) = 1
2 (x1, . . . , xi−1,

1+xi, xi+1, . . . , xn+1). Since a self-similar set contains the points which may
be approached by repeated application of the fi [8], we easily get the fol-
lowing alternative definition for the Sierpiński gasket.

Write the coordinates of x ∈ Cn as binary numbers xj = 0.s1js2j . . . ,
sij ∈ {0, 1}. Then x is in A iff

∑

xi = 1 = 0.111 . . . holds “digitwise”:

A = {x ∈ R
n+1 | for each m > 0, there is an im with

smim
= 1 and smj = 0 for j 6= im} .

So each point of A is given by a sequence i1i2 . . . There is a slight ambiguity
in using binary numbers since 0.0111 . . . = 0.1. Consequently, two sequences
ijjj . . . and jiii . . . describe the same point. These points are called critical
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points (cf. Fig. 1).

3

e1 = p(1) 2
12 ∼ 21

Fig. 1

For a word w = i1 . . . ik ∈ {1, . . . , n + 1}k, the map fw = fi1 . . . fik

is a similarity, and Aw = fw(A) is the set of all points with prescribed
im, m = 1, . . . , k. The partition A = A1 ∪ . . . ∪ An+1 and the resulting
partitions of A into Aw, where w runs through all words of a fixed length
|w| = k, will be called the fractal structure of A. Note that two pieces Ai, Aj

have exactly one critical point in common and so the fractal structure is
determined by the critical points.

Proposition 1.1. The topology of A determines the fractal structure.

The proof consists in characterizing the critical points by certain sep-
aration properties. As a consequence, we have a kind of Haar measure
determined by the topology: The measure µ with µ(Aw) = (n + 1)−k for
each word of length |w| = k is the only Borel probability measure which
assigns equal values to sets of the same partition. Another corollary is

Proposition 1.2. Each homeomorphism from A into A is a similarity
map with respect to the Euclidean metric.

A metric d on a space X is called an interior metric if for each x, y
there is a z 6= x, y with d(x, y) = d(x, z) + d(z, y). Since we deal with
compact spaces, this implies existence of a path of length d(x, y) between
x and y [18]. The Euclidean metric de on A induces an interior metric
di(x, y) = inf{de-lengths of paths within A between x and y}.
Proposition 1.3. The metric di is the unique (up to a constant factor)

interior metric on A which transforms each homeomorphism into a similar-
ity.

The measure µ is the only Borel probability measure assigning equal
values to di-isometric sets. Thus in the case of the Sierpiński gasket, the bare
topology determines a canonical metrization as well as a “Haar” measure!
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Numerical constants like Hausdorff dimension [8] or average distance [11, 3]
become “topological invariants”. Our aim is to find many spaces which
share these extraordinary properties.

In the present paper, we concentrate on the fractal structure and homeo-
morphism group. The question of a “canonical metrization” seems more
complicated [5]. Penrose [17] proved a remarkable analogue of Proposi-
tion 1.3 for fractal dendrites with two pieces, but he had to assume that the
fractal structure is given.

Standard spaces like the interval, manifolds, the pseudoarc and solenoids
have a lot of homeomorphisms. On the other hand, there are many examples
of “rigid” topological spaces which do not admit any homeomorphisms onto
their subspaces [9, 12]. We are interested in having a few homeomorphisms,
but not too many—just enough to have the assertion of Proposition 1.2
satisfied. That is why we restrict our attention to a—sufficiently large—
class of recursively defined spaces which have been considered by Thurston
[19], Kigami [14] and others [1, 2, 10, 16, 17] in connection with Julia sets
and self-similar sets.

2. Invariant factors and their cutpoints. We start with two ex-
amples. Fig. 2 shows a self-similar set with respect to fi(x) = 1

2 (3ei − x),
i = 1, 2, 3. Clearly, there is a homeomorphism h from Fig. 2 onto itself
with h(ei) = ai. In contrast, Fig. 3 shows the analoguous construction for
five homotheties with similarity factor −(3 −

√
5)/2, for which the above

statements are true.

53
a1 a2

541 ∼ 453
a3 14 41e3

5
e1 = p(1)

e2

12 21

112 ∼ 221

Fig. 2 Fig. 3

Let us forget all metric features and describe such spaces topologically,
using the terminology developed in [1]. Let S = {1, . . . ,m}, C = S∞ the
space of sequences s = s1s2 . . . with the product topology, S∗ =

⋃∞
k=0 Sk the

set of words from S and S<n =
⋃

k<n Sk the set of words of length smaller
than n. For w ∈ S∗, the length is denoted by |w|, and the concatenation
with s ∈ S∗ ∪ C is written ws. Further, w is the periodic sequence with
period w, and the initial word of length k of s is denoted by s|k = s1 . . . sk.
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An equivalence relation ∼ on C is called invariant , and the quotient space
A = C/∼ is an invariant factor if ∼ is closed in C × C and for all s, t ∈ C
and i ∈ S

s ∼ t if and only if is ∼ it .

The set M = {s ∈ C | there is a sequence t ∼ s with t1 6= s1} completely
determines the invariant factor A. We call M the generator of ∼ and Q =
M/∼ the set of critical points. The latter term comes from Julia sets [19, 17,
2]. We shall consider invariant factors A = C/∼ for which M is finite and
contains no periodic sequence, or, equivalently, the projection p : C → A is
finite-to-one ([1], Th. 8). If there do not exist s ∈ M and w ∈ S∗ such that
ws also belongs to M , the relation ∼ and the factor A are called simple.

For an invariant factor A = p(C) and w ∈ S∗, we define Aw = p(Cw),
where Cw = {ws | s ∈ C}. There is a unique homeomorphism fw : A → A
with fwp(s) = p(ws) [1]. The sequence of coverings {Ai | i ∈ S}, {Aij |
ij ∈ S2}, . . . , {Aw | w ∈ Sn}, . . . of A will be called the fractal structure
of A.

For the Sierpiński gasket, the points of Q are {ij, ji} with i 6= j. It seems
more suggestive to describe the critical points by generating rules ij ∼ ji.
The rules for Fig. 1 are iij ∼ jji, i 6= j. In Fig. 2, 231 ∼ 324, 342 ∼ 435,
453 ∼ 541, 514 ∼ 152, 125 ∼ 213. (To check this, note that the fixed point
of fw is xw = p(w), and fv(xw) = p(vw).)

We have defined what was called “finitely ramified fractals” by Man-
delbrot and many physicists. Related mathematical papers are [14, 16, 17,
10, 1, 2]. Finite-to-one invariant factors have dimension ≤ 1. They can be
approximated by undirected graphs Gn, n = 1, 2, . . . The vertex set of Gn

is Sn, the edge set is S<n × Q. An edge can be written as vq, where v is a
word with |v| < n, and q a critical point, i.e. an equivalence class in M . The
endpoints of this edge will be the words (vs)|n with s ∈ q. Clearly, the edge
vq represents the point fv(q) ∈ A, and the adjacent vertices w correspond
to the pieces Aw which contain this point.

The graphs can have multiple edges. If some equivalence class q contains
more than 2 elements, the Gn are hypergraphs. In such cases, which we
neglect in the present paper, each hyperedge can be replaced by a star of
edges with a central point, so that we get graphs again. Anyway, it seems
most appropriate to consider Gn as a T0-space, where the vertices are open
points, (hyper-) edges are closed points and the open hull of an edge consists
of this edge together with all adjacent vertices (the dual of the natural
topology). For k < n, the projection pnk : Gn → Gk with pnk(w) = w|k,
pnk(vq) = v|k for |v| ≤ k and pnk(vq) = vq otherwise is continuous. A is
essentially the inverse limit of (Gn, pnk) [4].

For our purposes, G1 and G2 will be sufficient, however. Already G1
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gives important information on the topology of the factor [1, 10, 17]. A
is connected iff G1 is connected, and A is a dendrite iff G1 is a tree. We
shall assume throughout that A is connected , which implies that A is locally
connected and has dimension 1.

A point x in A is a cutpoint if A \ {x} is not connected. x is a local
cutpoint if x is a cutpoint of a connected neighbourhood of x. Obviously
all critical points q and their images fv(q) are local cutpoints. In order to
characterize the critical points by separation properties, we must exclude
other cutpoints like the ei = p(i) in Fig. 1. A connected graph G is said to
be 2-connected if it has no cutpoints, i.e. if G \ {u} is connected for each
vertex u in G. Note that G2 is 2-connected in Fig. 1 but not in Fig. 2.

Proposition 2.1. If A = C/∼ is a finite-to-one invariant factor and G2

is 2-connected , then A has no global cutpoints, and no local cutpoints other
than the fv-images of the critical points (v ∈ S∗).

P r o o f. We show by induction that Gn is 2-connected for n > 2. Assume
Gn−1 is 2-connected and Gn \ {u} = H1 ∪H2 for some vertex u = u1 . . . un,
where no edge connects the disjoint graphs H1 and H2. Since G1 is con-
nected, any copy of G1 in Gn is contained in either H1 or H2. Thus the
projections of H1 and H2 are graphs in Gn−1 which have no common vertex,
with the possible exception of u′ = u1 . . . un−1 which is the projection of u.
Now u′ is not a cutpoint of Gn−1, so one of the sets Hi must be contained
in the subgraph of Gn which corresponds to u′ and is isomorphic to G1.
Consider the larger subgraph G of Gn which contains u and is isomorphic
to G2. Both H1 and H2 intersect G, contradicting our assumption.

Since Gn is 2-connected, it cannot be disconnected by deletion of an
edge vq. Thus the points fv(q) are not global cutpoints. Finally, suppose
a = p(s) is a local cutpoint in A, but not of the form fv(q). Then the Aw

with w = s|k form a neighbourhood base of a, and Aw \ {a} is disconnected
for some k. This implies that As|k

\ As|n
is disconnected for some n > k,

which contradicts the 2-connectedness of Gn−k.

Note that if G2 is not 2-connected, it may still happen that G3 is 2-
connected. For an example, take m = 5 and any generating rules of the
form 122 . . . ∼ 211 . . . , 144 . . . ∼ 334 . . . , 255 . . . ∼ 311 . . . , 332 . . . ∼ 522 . . . ,
355 . . . ∼ 411 . . . and 455 . . . ∼ 544 . . . Even if all Gn have cutpoints, A need
not have global cutpoints: let m = 3 and 123 . . . ∼ 313 . . . , 122 . . . ∼ 211 . . .
and 233 . . . ∼ 322 . . .

3. Edge-balanced graphs. Here is a combinatorial concept which
will be very helpful for our proofs. A connected graph G with m vertices
and c edges is said to be edge-balanced if for each k with 1 < k < m, the
graph cannot be divided into k components by deleting (k − 1)c/(m − 1) or
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less edges. This property seems to be interesting enough to justify a brief
discussion.

A cycle with m vertices and edges is edge-balanced for each m. If one
edge is added to the cycle, the resulting graph is edge-balanced only for
m = 4. However, a pentagon with two chords or a hexagon with two chords
without common endpoint is again edge-balanced. On the other hand, no
vertex in an edge-balanced graph has degree 1.

R e m a r k 3.1. An edge-balanced graph is 2-connected.

P r o o f. Suppose a vertex u in G is a cutpoint. Then there are m1

vertices connected with each other and with u by c1 edges, and m2 = m −
m1−1 remaining vertices connected with each other and with u by c2 = c−c1

edges. If G is edge-balanced, then

c1 >
m1

m − 1
c and c2 >

m2

m − 1
c ,

which implies c > c.

R e m a r k 3.2. Let G be obtained from the complete graph Km with m
vertices by the removal of r edges, where 0 ≤ r ≤ m/2 − 1. Then G is
edge-balanced.

P r o o f. Suppose we can divide G into k < m components by deleting not
more than (k − 1)c/(m − 1) edges. Then since (m − 1)/2 ≤ c/(m − 1), we
can separate any singleton from a component with not more than m/2 ver-
tices, obtaining k′ = k +1 components by deleting not more than (k′ − 1)c/
(m − 1) edges. Thus we can assume from the beginning that k − 1 of
the components are singletons. The number of deleted edges is at least
m − 1 + . . . + m − k + 1 − r. By assumption,

1

2
(k − 1)(2m − k) − r ≤ (k − 1)

(

m

2
− r

m − 1

)

,

which implies (k − 1)(m − 1) ≤ 2r. Even the smallest value, for k = 2,
contradicts our choice of r.

We can remove even more edges provided they have no common vertex.

4. Separation properties of critical points. In this section we
show that for many factors, the fractal structure is fully determined by the
topology of A. It will be sufficient to show that the family {Ai | i ∈ S} is
determined by the topology: since each Ai is homeomorphic to A, we can
then determine the Aij and, by induction, the Aw. Next, since the Ai are
the closures of components of A \Q, it suffices to describe Q in terms of the
topology of A. We shall characterize Q by separation properties.
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A finite set F in a connected space X is said to cut X into k pieces if X\F
has k components. For the “n-dimensional” Sierpiński gasket, Q is the only
subset with n+1 points which cuts A into more than n pieces. Here is a more
general statement. Let us say that a set V of words contains predecessors
if V contains the empty word, and v1 . . . vn ∈ V implies v1 . . . vn′ ∈ V for
n′ < n.

Theorem 4.1. Let A be a simple finite-to-one invariant factor such that
G1 is edge-balanced and G2 is 2-connected. Then a finite subset F which
cuts A into k pieces must satisfy

card F ≥ k − 1

m − 1
card Q .

Equality holds iff F has the form F =
⋃{fv(Q) | v ∈ V }, where V contains

predecessors.

P r o o f. Let c = card Q and d = card F . We can assume that all points
of F have the form fv(q) with v ∈ S∗ and q ∈ Q, since by Proposition 2.1,
other points are not local cutpoints. Since A is simple, this representation
is unique. Let Fv = F ∩ fv(Q), and let V = {v | Fv 6= ∅}. For v ∈ V let
dv = card Fv and kv the number of components of Av \Fv. Since 1 ≤ kv ≤ m
and G1 is edge-balanced, dv ≥ (kv − 1)c/(m − 1). Summing over v, we get

(∗)
∑

v∈V

(kv − 1) ≤ d

c
(m − 1) .

Equality holds iff kv = m for all v ∈ V .
Let k denote the number of components of A \ F . We show

(∗∗) k − 1 ≤
∑

v∈V

(kv − 1) ,

using induction on card V . Let V = V ′ ∪ {w}, let (A \ F ) ∪ Fw have k′

components, and assume k′−1 ≤ ∑

v∈V ′(kv−1). If we subtract Fw, we have
only to regard that component B which contains the interior of Aw. Now
Aw \Fw has kw pieces, and B \Fw cannot have more. Thus k ≤ k′ +kw −1,
which implies (∗∗).

Combining (∗) with (∗∗), we get

k − 1

m − 1
≤ d

c
,

which we wanted to prove. Equality in (∗) was true iff Fv = fv(Q) for each
v in V . Under this condition, let us discuss when (∗∗) turns into equality.
In our induction, assume the words are ordered by increasing length, and
w is the last word of length |w|. If the predecessor of w is contained in V ′,
then B ⊂ Aw and k = k′ + kw − 1. Otherwise, by the 2-connectedness of
the graphs Gn, there is a path in A \ Aw with endpoints in two different
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components of Aw \Fw. Either the path is contained in A \⋃{Fv | v ∈ V ′},
or part of this path connects one component of Aw \ Fw with a component
of some Av \ Fv with v ∈ V ′. In both cases, k < k′ + kw − 1. The theorem
is proved.

Theorem 4.2. Let A be a simple finite-to-one invariant factor of
{1, . . . ,m}∞ such that G1 is edge-balanced and G2 is 2-connected. Then
the fractal structure of A is determined by the topology.

P r o o f. Theorem 4.1 says that Q is the only set with c points which
cuts A into m pieces.

To show that the theorem applies to the Sierpiński gasket, it remains to
check that G2 is 2-connected. This graph consists of m = n+1 copies of
the complete graph Km, where any two copies are joined by an edge. This
graph can only have a cutpoint if all edges from one copy to the others start
in the same vertex. For the generating rules ij ∼ ji, i 6= j, this is not the
case. More generally, we have

Proposition 4.3. Define an invariant factor A by the rules isij ∼ jsji,
1 ≤ i, j ≤ m, i 6= j. If none of these sequences is a tail sequence of another
one, and if for each i, not all sij have the same initial letter , the assumptions
of Theorem 4.1 are satisfied.

Obviously there is a continuum of different sets of rules, even if we require
that for each i, all sij have different initial letters. From Remark 5.7 it will
follow that only m! of these factors can be mutually homeomorphic, so
that the number of non-homeomorphic factors of this type has at least the
cardinality of the continuum.

5. The structure of the homeomorphism group

Theorem 5.1. Let A be a simple finite-to-one invariant factor such that
G1 is edge-balanced and G2 is 2-connected. Then each subset of A homeo-
morphic to A is of the form Aw.

P r o o f. It is enough to show h(A) = A for each homeomorphism h :
A → A for which h(A) is not contained in some Ai. First assume h(A)
intersects the interiors of A1, . . . , Ak with 2 ≤ k < m, let Q1 denote the
set of critical points which are contained in two sets Ai with i ≤ k, and
Q2 = Q \ Q1. Deletion of the edges corresponding to Q2 divides G1 into
m − k + 1 components. Thus card Q2 > (m − k)c/(m − 1). On the other
hand, deletion of Q1 from h(A) divides h(A) into k components, so that by
Remark 3.2, card Q1 > (k − 1)c/(m − 1). Adding we get card Q > c.

The contradiction shows that h(A) must intersect the interiors of all
pieces Ai, so that Q divides h(A) into m pieces. Thus h(Q) = Q by our
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characterization of Q, and there is a permutation π of {1, . . . ,m} such that
h(Ai) ⊆ Aπ(i). Now we repeat the above argument to conclude that h(Ai)
contains fπ(i)(Q). Proceeding by induction, we show that h(A) contains
fw(Q) for all w ∈ S∗. Hence h(A) = A.

Corollary 5.2. Each homeomorphism h from A into A can be written
as h = fwg, where w ∈ S∗ and g is an onto homeomorphism.

P r o o f. If h(A) = Aw, define g = f−1
w h.

Let A be a finite-to-one invariant factor. A homeomorphism h from A
onto A is said to preserve the fractal structure if for each n ≥ 1 and each
w ∈ Sn, there is a word v ∈ Sn with h(Aw) = Av. Theorem 5.1 may be
rephrased as follows.

Corollary 5.3. Each homeomorphism h from A onto A preserves the
fractal structure.

We add some remarks concerning the structure of the group of all homeo-
morphisms h preserving the fractal structure of a finite-to-one invariant
factor A. Since h permutes the pieces Ai as well as their intersection points,
the critical points of A, it induces a graph isomorphism h1 : G1 → G1.
Similarly, h permutes the Aij and induces an isomorphism h2 of G2. By
induction it is easy to show

R e m a r k 5.4. A homeomorphism h of a finite-to-one invariant factor A
preserves the fractal structure iff it is the inverse limit of a sequence of graph
isomorphisms hn : Gn → Gn with hn−1pn,n−1 = pn,n−1hn, n = 1, 2, . . .

Let Hλ denote the group of all graph isomorphisms of G1 which can
be extended to such a compatible sequence. For each h1

λ ∈ Hλ we fix one
extension hλ = (hn

λ)n∈N. The map h1
λ describes a permutation of the Ai. If

h1
λ = id, the Aij , j ∈ S, can still be interchanged, but those Aij which are

incident to some Ak, k 6= i, have to be fixed. For w ∈ Sn, n = 1, 2, . . . , let Iw

denote the set of all i ∈ S such that wi is connected in Gn+1 to some vertex
vj with v 6= w. Let Hw be the stabilizer of Iw in Hλ. For each h1

w ∈ Hw we
again fix one extension hw = (hn

w)n∈N. Then each homeomorphism g on A
preserving the fractal structure is given by a family (hw ∈ Hw)w∈S∗ .

R e m a r k 5.5. For any finite-to-one invariant factor , there is a one-
to-one correspondence between

∏

w∈S∗ Hw and the group of all structure-
preserving homeomorphisms on A which assigns to (hw)w∈S∗ the following
compatible sequence of graph isomorphisms gn : Gn → Gn:

gn(i1 . . . in) = hn
λ(i1 . . . in)hn−1

i1
(i2 . . . in) . . . h1

i1...in−1
(in) .

We omit the straightforward proof and discuss those cases where the
group of structure-preserving homeomorphisms is finite. Obviously, Iw ⊂
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Iuw and hence Huw ⊂ Hw for arbitrary words u,w ∈ S∗. Consequently, we
have

Corollary 5.6. If there is a k such that Hw = {id} for all w ∈ Sk,
then Hw is also trivial for all words of length greater than n, and the group
of structure-preserving homeomorphisms is finite.

R e m a r k 5.7. Let A be a simple finite-to-one invariant factor. If either
G1 is an odd cycle and G2 is 2-connected (as in Fig. 3), or G1 = Km, m ≥ 3,
and in G2 only m vertices have degree m− 1 (as for the Sierpiński gasket),
then Hw is trivial for |w| ≥ 1, and each homeomorphism from A onto A is
fully determined by the corresponding permutation of the pieces Ai of A.

For the Sierpiński gasket and Fig. 3, each permutation of the pieces is
realized by an isometry. This proves Proposition 1.2. In general, however,
the above assumptions on G1, G2 do not guarantee that non-trivial homeo-
morphisms from A onto A exist. An arbitrary choice of generating rules
rather leads to a rigid factor. Let us also mention an example with infinite
automorphism group. Let m = 4, and let A be generated by the rules
12 ∼ 21, 23 ∼ 32, 34 ∼ 43 and 41 ∼ 14. Then Hw has two elements if w
ends with ii or i(i + 2 mod 4) for some i, and is trivial otherwise.

6. The minimal fractal structure. In Theorem 4.2, we had to assume
that m is given in order to make the fractal structure unique. The ordinary
Sierpiński gasket (n = 2), for instance, has m = 3 pieces, but it can also be
divided into 5 pieces by Q∪ f1(Q). This flaw can be overcome by requiring
that either m is minimal , or G1 is edge-balanced.

Theorem 6.1. Let A be a simple finite-to-one invariant factor such that
G1 is edge-balanced and G2 is 2-connected. Then A = A1 ∪ . . . ∪ Am is
the only covering of A by m or fewer sets homeomorphic to A. If A =
B1 ∪ . . . ∪Br is another covering of A by homeomorphic copies of A, where
no Bi is contained in another Bj , then the corresponding graph G1 is not
edge-balanced.

P r o o f. Both assertions are obvious from Theorem 5.1. For the second
one, reverse the roles of m and r.

It is easy to show that the Bi must be the closures of components of A\F ,
where F =

⋃

v∈V fv(Q) and V contains predecessors (cf. Theorem 4.1). This
is a stronger form of minimality of the covering of A by the Ai.

It seems unclear whether the uniqueness of a minimal fractal structure
holds under more general conditions. In Fig. 2, for instance, it can be
shown that the closure of each component of A \ {e1} is homeomorphic to
A. Nevertheless, this covering of A by two homeomorphic copies does not
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lead to an invariant factor: with two pieces and one critical point, such a
factor must be a dendrite.

It remains to show Proposition 1.3. If d is a metric such that each
homeomorphism from A onto A is an isometry, then d(ei, ej) = t > 0 for
all i 6= j. Now suppose fi is a similarity with factor ri, and d is an interior
metric. Since each path from ei to ej passes through a critical point, each
of these paths is longer than rit + rjt, except for the shortest path through
the point corresponding to ij ∼ ji, which has exactly this length. Thus
t = rit + rjt for i 6= j, which implies ri = 1/2 for all i. The side length of
Aw is 2−|w|t, and this uniquely determines an interior metric.
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