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Two-to-one maps on solenoids and Knaster continua
by

Wojciech Debski (Katowice)

Abstract. It is shown that 2-to-1 maps cannot be defined on certain solenoids, in
particular on the dyadic solenoid, and on Knaster continua.

There are many results in which the non-existence of exactly 2-to-1 (con-
tinuous) maps defined on a given space (with values in Hausdorff spaces) is
shown, for instance, the non-existence of exactly 2-to-1 maps on Euclidean
n-cubes (Harrold (1939) for n = 1, Civin (1943) for n < 3 and Chernavskii
(1962) for arbitrary n). In the paper by Mioduszewski (1961) a method was
developed of detecting 2-to-1 maps defined on some singular spaces and it
was proved that such a map cannot be defined on the Knaster simplest in-
decomposable continuum. Applying this method, we shall show that 2-to-1
maps cannot be defined on certain solenoids, in particular on the dyadic
solenoid, and on arbitrary Knaster continua. We find this search inter-
esting in view of the yet unsolved problem raised by I. Rosenholtz (1974)
concerning the existence of 2-to-1 maps defined on indecomposable chain-
able continua to which the Knaster continua belong. An example of 2-to-1
map defined on a chainable decomposable continuum was given by J. Heath
(1989).

The search for a 2-to-1 map f defined on a space X reduces to the search
for the involution ¢ associated with f defined by f~1(f(z)) = {z,¢(z)}.
Although this involution is not necessarily continuous, it is semicontinuous
in the sense that if z,, converges to x, the accumulation points of ¢(x,,) lie
in {z,¢(z)}. If X enjoys a kind of regular structure, the search for ¢ can be
reduced to the search for a certain continuous involution on X associated
with ¢.

We show that every non-identity continuous involution on a solenoid is
homotopic either to the involution y = a - x~! for some element a of the
solenoid (the notation refers to the group structure), or to the involution
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y = (—1) - x, where —1 is the solution of the equation 22 = 1 different from
1 (if such a solution exists).

1. Continuous involutions on solenoids. A solenoid is the limit of
the inverse sequence

srElgrEt i

where i1, s, . .. is a sequence of natural numbers, and S* is the circle |z| = 1
on the complex plane. The dyadic solenoid, obtained by taking i, = iy =
... = 2, is particularly well-known. Solenoids are topological groups with
multiplication generated by multiplication on S'; for details see e.g. Eilen-
berg and Steenrod (1952), Chapter VIII, Exercises E. The equation 22 = 1
on S has at most one solution different from 1 since the coordinates of each
solution are 1 or —1. If infinitely many of i1,%9,... are even, then there is
only the solution 1; in the opposite case there are two solutions, and the one
which is different from 1 is denoted by —1. In the first case the homomor-
phism y = 22 is 1-to-1 (with kernel {1}) and it is a homeomorphism, and in
the second case it is exactly 2-to-1 (with kernel {—1,1}).

LEMMA 1. Any involution on a solenoid S is homotopic either to the map
y=x,0rtoy=a- x~1, where a is an element of S, ortoy=(-1)-x.

Proof. Let g : S — S be an involution. The map a~!-g, where a = g(1),
takes 1 into 1, and hence it is homotopic to a unique homomorphism h of S;
this is a consequence of a much more general theorem of Scheffer (1972)
stating that a continuous map of a locally compact connected commuta-
tive topological group into itself taking 1 into 1 is homotopic to a unique
homomorphism.

Now, g and a - h are homotopic. Therefore, the map a - h(a) -hoh =
(a-h)o(a-h) is homotopic to the identity. Its value at 1, a - h(a), can be
joined to 1 with an arc. Hence, h o h is homotopic to a - h(a) - h o h, and,
in consequence, to the identity. But, by the result of Scheffer quoted above,
homotopic homomorphisms are equal. Thus, A is an involution.

Let us consider the map dual to h in the sense of Pontryagin duality (see
Pontryagin 1966, Chapter VI). It is an involution on the subgroup of the ra-
tionals generated by the fractions 1/1,1/i1,1/(i1 - i2),1/(i1 - @2 - i3), ... (see
Hewitt and Ross, 1963, (25.3)). Each homomorphism of that subgroup into
itself is multiplication by a rational. If A is an involution, it is multiplication
by a square root of 1, i.e. by 1 or —1. It follows that A is either the identity
or the map y = 271

The involution ¢ is thus homotopic either toy =a-z ortoy =a -z~ 1,
where a = g(1).

In the first case the map y = a? - =, being the composition of y = a - =
with itself, is homotopic to the identity. This means that a?, the value of
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that map at 1, lies on the arc component of 1, which implies that a lies either
on the arc component of 1 or on that of —1. It follows that g is homotopic
either toy =z or to y = (—1) - z.

This finishes the proof.

A homomorphism multiplied by a constant will be called an affine map.
Remark. We have g(a?-b~1) = (g(a))?- (g(b)) ! for each affine map g.

Two maps g,¢" : X — X are called conjugate if go h = h o g’ for some
homeomorphism h: X — X.

To each arc component of S we assign an orientation. It is given by a
1-to-1 map of the reals onto the arc component such that in the composition
of that map with the projection of the solenoid S onto the first factor of
the inverse sequence, S — S!, the argument of the value is an increasing
function on the reals.

LEMMA 2. Homotopic involutions on a solenoid S are conjugate if one
of them is an affine map.

Proof. Let g,¢' : S — S be homotopic involutions and let g be affine.

The map k(z) = (g(x))~* - ¢’(x) is homotopic to the constant map 1. It
follows that the image of k is a subcontinuum contained in the arc component
of 1, and hence in an arc passing through 1. This arc is the one-to-one
image under y = x2 of an arc lying in the arc component of 1. The formula
(¢(z))? = k(x) defines a continuous map v with values in the arc component
of 1. It follows that 1 is homotopic to the constant 1.

Let h(xz) = g(z) - ¥(x). Then h is homotopic to g. Since g is a homeo-
morphism, A maps different arc components into different arc components.

We have (h(x))? = (g(x))? - ((2))? = (9(2))? - k(z) = g(x) - ¢'(2). The
map h is one-to-one on arc components. To see this note that its square
has this property. Indeed, g and ¢’ are homotopic homeomorphisms, since
g = kog, where k : S — S has values in an arc contained in the arc
component of 1. Therefore, on each arc component, g and ¢ are either both
orientation-preserving or both orientation-reversing. Hence, h? = g - ¢’ is
monotone on each arc component. In consequence, h is one-to-one on S.
This means that h is a homeomorphism.

We have (g(h(2)))2 = (g(h(x))? - (g(g(x)))"" - glg(x)) = g((h(x))? -
(g(x)™1) -z = g(¢'(x)) - = (as ¢ is affine; see the Remark above) and
(g (@) = 9(g' (@) - ¢(¢(@)) = g(g'(@)) - . Hence, (g(h(x)))? —
(h(g'(x)))?. Tt follows that the map g(h(z)) - (h(g'(z)))~! is equal to the
constant map 1 or —1. But the maps a(x) = g(h(x)) and B(z) = h(¢'(x))
are homotopic since g, ¢’ and h are homotopic. Therefore, the map g(h(x))-
(h(g'(z)))~! is homotopic to the constant map 1, hence it cannot be equal
to —1. In consequence, g(h(x)) = h(¢'(x)). So, g and ¢’ are conjugate.
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COROLLARY. An involution on a solenoid S which is not the identity is
conjugate either to y = x =%, or toy = (=1) - .

Proof. Let g be an involution on S. By Lemma 1, it is homotopic
either toy = x,toy =a-z~ 1, or to y = (—1) - x. The three maps are affine
involutions. By Lemma 2, g is conjugate to one of them. The first map is
excluded by the assumption that g is not the identity. If g is conjugate to
y = a-x~ !, then it is conjugate to y = x~!. Indeed, y = a-2~! is conjugate
to y = z~! by means of the homeomorphism y = b - 2, where b is a point of
S such that b2 = a~!. This completes the proof.

2. Semicontinuous involutions on solenoids. Let f be an exactly
2-to-1 map from a solenoid S onto a Hausdorff space f(S). We associate
with f the involution ¢ defined by f=(f(z)) = {z,¢(z)}. The involution
¢ is not necessarily continuous. However, as was shown by Mioduszewski
(1961), this involution, when restricted to any arc of S, has at most one
discontinuity point and becomes continuous if we change the value ¢(z) to
x at this point (in fact, this is true not only for solenoids but for spaces
which are locally bundles of arcs).

Let ¢ be the modification of ¢ obtained by taking ¢(z) = x for = being a
discontinuity point of ¢ restricted to an arc having z in its interior. Then ¢
is also an involution, and it is continuous when restricted to arcs. The set of
fixed points of ¢ (i.e. the set of points at which ¢ and ¢ differ) coincides with
the set of discontinuity points of ¢ restricted to any arc with the considered
point in its interior.

In particular, ¢ maps arcs homeomorphically onto arcs. If such an arc
and its image meet, their union is an arc on which ¢ is an involution with a
unique fixed point.

A value y of f is said to be a wvalue of openness if for each x such that
f(x) = y the value y lies in the interior of the image of each neighborhood
of z.

THEOREM 1. The involution ¢ is continuous on S.

Proof. Let 2 € S. We show that ¢ is continuous at x.

Consider the case ¢(x) # x. Suppose ¢ is not continuous at x. From the
Baire theorem it follows that the set of values of openness of f is a dense
Gs-subset of the image. Since f is exactly 2-to-1 (more generally, for f of
finite constant multiplicity) the set of values of openness is open. Then the
preimage of any sufficiently small neighborhood of a value of openness is
the union of two open sets, each mapped homeomorphically by f onto that
neighborhood. In consequence, ¢ is continuous on each of these two open
sets and maps each of them onto the other.
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Let U be an open non-empty subset of S on which ¢ is continuous. The
arc component of z, being dense in S, meets U. There is at most one fixed
point on that arc component. There are two arcs which are disjoint except
for having the common endpoint  and which both reach U. Hence, a point
a such that ¢(a) = a can only appear in one of these two arcs.

Let L be an arc with x in its geometric interior, meeting U and such
that ¢(a) # a for a in L. Let K be an arc in the geometric interior of L also
having these properties. Since x is by assumption a discontinuity point of
#, there exists a sequence x,, converging to = such that ¢(z,) converges to
a point different from ¢(x). By the continuity of f, ¢(z,) converges to the
point in f~!(f(z)) different from ¢(z), i.e. to 2. All but finitely many points
of the sequence x,, lie outside L, as ¢ is continuous when restricted to L.

Let L, be a sequence of arcs with topological limit L and such that xz,
lies in the geometric interior of L,,. Take arcs K, in such a way that each
K, lies in the geometric interior of L,, x, lies in the geometric interior of
K, and the sequence K, converges topologically to K.

A point a such that ¢(a) = a can only appear on finitely many of the
arcs K,,. Namely, if ¢(a) = a for a in K,,, then at one of the ends of L,, f
assumes the same value as at some other point of L,,. In other words, f sticks
an end of L,, to another point of L,,. There are points of K, lying between
these two points: a is one of them. Suppose that there exists infinitely many
arcs L, having these properties. Then f has the same values at one of the
ends of L and at some point of L such that the segment of L determined
by these points meets K. Thus, these would be two different points of L at
which f has the same value. It follows that ¢ has a fixed point on L. But
this is impossible as ¢ is fixed point free on L by assumption.

So, we can assume that ¢(a) # a for a in all arcs K,,.

The set f~1(f(K,)) then consists of two disjoint arcs, namely K, and
K! = ¢(K,). By continuity of f, the set of accumulation points of the
sequence of arcs K/, is contained in f~1(f(K)), which is the union of two
disjoint arcs K and K’ = ¢(K). The points ¢(z,,) lie on K/ and converge
to a point of K, namely to z. Hence, the set of accumulation points of K7, is
contained in K. In consequence, ¢ is discontinuous everywhere on K. But
¢ is continuous at some points of K, namely those in U. A contradiction.

Consider now the case ¢(z) = . Suppose that ¢ is discontinuous at z.
This means that there exists a sequence x,, converging to x such that ¢(z,,)
converges to the point of f~1(f(z)) different from ¢(x) = z, i.e. to ¢(z).

Since ¢(z) = z, there exists an arc K having z in its geometric interior
and such that ¢(K) = K. Then z is a unique fixed point of ¢ on K. This
is a consequence of the fact that the fixed points of ¢ coincide with the
discontinuity points of ¢ restricted to arcs, and that there is at most one
such point on any arc.
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All but finitely many x,, lie outside K, since ¢ restricted to K is contin-
uous.

Let K, be arcs topologically convergent to K and such that z,, lies in
the geometric interior of K.

The set of accumulation points of the arcs K/, = ¢(K,) is contained in
FUf(K)) = KU{¢(z)}. But ¢(z,) € K/, converges to ¢(z) ¢ K. Since
K has points arbitrarily close to ¢(z) if n is sufficiently large the set of
accumulation points of K], is a single point ¢(z) (which is isolated in the
set f~1(f(K))). In consequence, all points of K are discontinuity points
of ¢. This contradicts the fact that ¢ is continuous at each 2’ € K for
which ¢(z') # 2, i.e. at all the points different from x, as was shown in the
previous case.

COROLLARY 1. Let S be the solenoid defined by a sequence iy, s, ... with
in even for infinitely many n. Then there do not exist 2-to-1 continuous
maps defined on S.

Proof. Suppose that f is an exactly 2-to-1 map on S. By Theorem 1,
the involution ¢ induced by f is continuous, and, by the Corollary from
Section 1, it is conjugate to the map y = !, as in that case the solution
—1 of the equation 2% = 1 does not exist. In consequence, ¢ has exactly one
fixed point, as does y = z~!. We get a contradiction, since f is 2-to-1 when
restricted to the set of fixed points of ¢.

COROLLARY 2. There do not exist exactly 2-to-1 maps defined on the
dyadic solenoid.

By the Knaster continuum related to a solenoid S we mean the quo-
tient space obtained from S after identification of all pairs x, z~!. By the
endpoints of that continuum we mean the images of points of S such that
x = 271, i.e. the images of x such that 22 = 1. There are two endpoints in
the case when all but finitely many 4, are odd and one endpoint otherwise.

Remark. If all but finitely many i,, are odd then y = x2 is exactly 2-to-
1 on S. Another exactly 2-to-1 map on S is obtained by identifying all pairs
x, z~! and identifying the endpoints in the resulting Knaster continuum.

COROLLARY 3. Let S be a solenoid such that in the sequence i1,1s2,...
defining S all but finitely many i, are odd. If f is an exactly 2-to-1 map
on S, then f(S) is homeomorphic either to S or to the Knaster continuum
related to S with its endpoints identified.

Proof. By Theorem 1, the involution ¢ induced by f is continuous,
and by the Corollary from Section 1, it is conjugate either to y = 2~ or to

y= (=1
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In the first case f(S) is homeomorphic to the space obtained from S by
identifying all pairs =, z~! and the points 1 and —1. In consequence, it is
homeomorphic to the Knaster continuum with its endpoints identified.

In the second case f(S) is homeomorphic to the space obtained from S
by identifying all pairs x, (—1) - # by means of the map y = x? which maps
S onto S. Thus, the image is homeomorphic to S.

3. Two-to-one maps on Knaster continua. Let K be the Knaster
continuum related to the solenoid S given by a sequence 41,42, ... Then K
is the limit of the inverse sequence

T, . T,
Je—J—J— ...

where J = [—1,1] and T; are the Chebyshev polynomials serving as a
standard model for open maps from J onto J of multiplicity i, (the T} are
determined by the equation Rez* = Tj(Rez), and are given by T (z) =
cos(k - arccos(x))).

Note that for any two arcs containing a given endpoint of K, one of them
is contained in the other, and that only endpoints of K have this property.

Let f be an exactly 2-to-1 map from K onto a Hausdorff space f(K). Let
¢ be the involution associated with f by f=*(f(z)) = {z, ¢(x)}. As for the
case of solenoids, ¢ is not necessarily continuous, but when restricted to any
arc of K, it has at most one discontinuity point and becomes continuous on
that arc if we pass to the involution ¢ by changing ¢(z) to x at discontinuity
points. The set of fixed points of ¢ (i.e. the set of points at which ¢ and
¢ differ) coincides with the set of discontinuity points of the involution ¢
restricted to any arc with the considered point in its interior.

In particular, ¢ maps any arc homeomorphically onto an arc. If such an
arc and its image meet, their sum is an arc on which ¢ is an involution with
a unique fixed point.

THEOREM 2. The involution ¢ is continuous on K.

Proof. Let x € K. If z lies in an arc component containing no endpoint
of K, then the argument for the continuity of ¢ at x is the same as for the
solenoid S. So, we can assume that = lies on the arc component containing
an endpoint p of K.

The involution ¢ has no fixed point on the arc component of x.

To prove this, suppose that a is such a fixed point. Then a is not an
endpoint of K, since otherwise points of the arc component of x would be
fixed points of ¢. Let L be an arc with ¢(p) in its geometric interior; such
an arc exists as ¢(p) is in the arc component of z and is different from p.
Thus, ¢(L) is an arc with an endpoint of K in its geometric interior, which
is impossible.
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If x is not an endpoint of K then there exists an arc L with x in its
geometric interior and meeting the open set of continuity points of ¢. The
involution ¢ is fixed point free on L. Further argument for the continuity of
¢ at x is the same as that given for the solenoid S.

It remains to consider the case when z is an endpoint of K.

Once again, suppose that ¢ is discontinuous at z. Thus there exists a
sequence x,, converging to x such that qg(:cn) converges to a point different
from ¢(x). By continuity of f, ¢(z,) converges to the point in f~1(f(z))
different from ¢(x), i.e. to z; recall that x is not a fixed point of ¢ as ¢
has no fixed point on the arc component of z. Let L be an arc having z
as an end, and let a be the other end of L. As was shown in the preceding
cases, ¢ is continuous at non-endpoints of K; in particular, it is continuous
at a. The point ¢(a) lies outside L as otherwise ¢ will have a fixed point
on L (between a and ¢(a)). Let U be a neighborhood of a such that x does
not belong to the closure of U, ¢(U) is disjoint from U, and the closure of
#(U) is disjoint from L; the existence of such a U is a consequence of the
continuity of ¢ at a.

For x,, € U, let L,, be the arc component of z,, in K\ U. We can assume
that all z,, lie outside L as ¢ is continuous on L. Each L, is an arc with
ends on the boundary of U. In consequence, ¢(L,,) is in arc with ends in
the closure of ¢(U). But ¢(z,) converges to x, which is an endpoint of K.
Therefore, the arc ¢(L,,) joining ¢(z,) to the closure of ¢(U) meets U for
sufficiently large n.

To see this, note that the component of z in K \ U is disjoint from
the closure of ¢(U). The same is true therefore for the components of
points lying sufficiently close to x, in particular for z, with sufficiently
large n.

Thus, L, meets ¢(U) for those n. But the set of accumulation points of
L, is contained in L, and we get a contradiction, as L is disjoint from the
closure of ¢(U) .

COROLLARY. There do not exist 2-to-1 continuous maps defined on the
Knaster continua.

Proof. Suppose that f is an exactly 2-to-1 continuous map on a Knaster
continuum K. By Theorem 2, the involution ¢ induced by f is continuous.
Fugate and McLean have shown (1981) that the set of fixed points of a
continuous involution on a tree-like continuum is connected. Hence, the set
of fixed points of ¢ is a subcontinuum of K. It cannot be an arc, as ¢
restricted to any arc has at most one fixed point (as noted at the beginning
of Section 1). Thus, ¢ has exactly one fixed point. We get a contradiction
as f is 2-to-1 when restricted to the set of fixed points of @.
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