

STUDIA MATHEMATICA 101 (2) (1992)

The Muckenhoupt class $A_1(R)$

bу

B. BOJARSKI (Warszawa), C. SBORDONE (Napoli), and I. WIK (Umeå)

Abstract. It is shown that the Muckenhoupt structure constants for f and f^* on the real line are the same.

Introduction. In a previous paper, [4], one of the authors has shown that if a function f lies in $A_p(Q)$, $Q \subset \mathbb{R}^n$, with constant c, then the nonincreasing rearrangement of f, f^* , lies in $A_p((0,|Q|))$ with another constant, c_1 , depending on n, p and c. In Theorem 1 we prove that in the special case n=1, the constant c_1 can be taken as c, which of course is optimal. To do this we will need a covering lemma. We also show, by means of an example, that this result is not true in dimensions higher than one. As a consequence of the theorem we obtain Lemma 2 with Corollary 1, a refinement of a lemma by Muckenhoupt [2]. This is also proved in a more direct way. Theorem 2 describes another property of the weights in the class $A_1(\mathbb{R})$.

Notations. We let $f_I f(x) dx$ stand for the mean value of f over I. For an interval \mathcal{J} we will use the notation $A_1(\mathcal{J};c)$ for the class of locally integrable functions f such that for every subinterval I of \mathcal{J} we have

(1)
$$\int_I f(x) dx \le c \operatorname{ess inf}_I f(x).$$

For any subinterval I of (0,1) let f_I denote the restriction of f to I and f_I^* the corresponding nonincreasing (left-continuous) rearrangement.

Theorems and proofs

THEOREM 1. Suppose that f is a function in $A_1((0,1);c)$ and I a subin-

¹⁹⁹¹ Mathematics Subject Classification: Primary 42B25; Secondary 26D15.

The Muckenhoupt class A1(R)

157

terval of (0,1). Then for each $\mathcal{I} \subset I$

(2)
$$\int_{\mathcal{I}} f_I^*(u) du \le c \operatorname{ess inf}_{\mathcal{I}} f_I^*(x).$$

Conversely, if (2) holds for all local rearrangements f_I^* of f, then $f \in A_1((0,1);c)$.

The implication of (1) is thus a set of inequalities for the functions f_I , $I \subset (0,1)$, with the common constant c. These inequalities completely characterize $A_1((0,1);c)$.

We stress the fact that, contrary to most of the recent literature (see e.g. [1], [3]), we require the nonincreasing rearrangement f^* to be continuous on the left. By this condition $f^*(t)$ is uniquely determined for each t > 0 and (2) implies

(2')
$$\int_{0}^{t} f^{*}(u) du \leq c \operatorname{ess inf}_{(0,t)} f^{*}(x) = c f^{*}(t).$$

We will first give a short proof under the extra assumption that f, and therefore also f^* , are continuous.

Fix an $I \subset (0,1)$. Let E_{λ} be the open set $\{x \in I; f(x) > \lambda\}$. If $\lambda \geq f_I f$ it can be written as the union of disjoint open intervals, $E_{\lambda} = \bigcup \omega_{\nu}$, where $f(x) = \lambda$ at the endpoints of the intervals except possibly at the endpoints of I. Therefore

$$\int\limits_{E_{\lambda}} f_I(x) \, dx = \sum_{
u} \int\limits_{\omega_
u} f_I(x) \, dx \leq \sum_
u c \lambda |\omega_
u| = c \lambda |E_\lambda| \, .$$

Dividing this inequality by $|E_{\lambda}|$ and using the fact that f^* is continuous we find that

$$\int_{0}^{|E_{\lambda}|} f_{I}^{*}(t) dt = \frac{1}{|E_{\lambda}|} \int_{E_{\lambda}} f_{I}(x) dx \leq c\lambda \leq c \operatorname{ess inf}_{t \in (0, |E_{\lambda}|)} f_{I}^{*}(t).$$

Thus we have proved statement (2') for $f^* = f_I^*$ in case $t = |E_{\lambda}|$ for some λ . Now take an arbitrary $t \in I$. Put $f_I^*(t) = \lambda_1$, $t_1 = \min\{t; f_I^*(t) = \lambda_1\}$. Then $|E_{\lambda_1}| = t_1$ and

$$\int_{0}^{t} f_{I}^{*}(t) dt = \frac{t_{1}}{t} \int_{0}^{|E_{\lambda_{1}}|} f_{I}^{*}(t) dt + \frac{t - t_{1}}{t} \lambda_{1} \leq \frac{t_{1}}{t} c \lambda_{1} + \frac{t - t_{1}}{t} \lambda_{1} \\
\leq c f_{I}^{*}(t) = c \min_{(0,t)} f_{I}^{*}(u).$$

This means that (2') holds with $f^* = f_I^*$. Since f_I^* is nonincreasing, this

implies (2). In fact, for an arbitrary interval $(a, b) \subset I$ we have

$$\int_a^b f_I^*(t) dt \leq \int_0^b f_I^*(t) dt \leq c f_I^*(b) = c \operatorname{ess inf}_{(a,b)} f_I^*(t),$$

which proves (2).

The implication $(2)\Rightarrow(1)$ is immediate. We choose $\mathcal{I}=I$ in (2). Then the stars may be removed and we conclude that $f\in A_1((0,1);c)$.

When f is not continuous, we will use the following covering lemma as a substitute for continuity:

LEMMA 1. Let E be a measurable bounded subset of R and $\varepsilon > 0$. Then there exist a sequence $\{\omega_{\nu}\}_{\nu=1}^{\infty}$ of intervals with disjoint interiors and a subset E_1 of E with the properties that $|E_1| = |E|$ and

(i)
$$E_1 \subset \bigcup_{\nu=1}^{\infty} \omega_{\nu}$$
,

(ii)
$$(1-\varepsilon)|\omega_{\nu}| \leq |\omega_{\nu} \cap E| < |\omega_{\nu}|, \quad \nu = 1, 2, \dots$$

Proof. First we choose as ω_1 a closed interval of maximal length satisfying (ii). Suppose then that the intervals $\omega_1, \ldots, \omega_n$ are chosen. Take as ω_{n+1} a closed interval of maximal length with interior disjoint from $\bigcup_{\nu=1}^n \omega_{\nu}$ and satisfying (ii). Put

$$E_1 = \Big(\bigcup_{\nu=1}^{\infty} \omega_{\nu}\Big) \cap E.$$

We have to prove that $|E_1|=|E|$. If this were not true, there would exist a density point x of the set $E\setminus E_1=E_2$. Put $\omega(x,\delta)=(x-\delta,x+\delta)$ for $\delta>0$ and suppose that there exists a δ such that $|\omega(x,\delta)\cap E_2|=|\omega(x,\delta)|$. Then ω_{ν} cannot be a subset of $\omega(x,\delta)$ for any ν . Therefore, if $\omega(x,\delta)$ intersects $\bigcup_{\nu=1}^{\infty}\omega_{\nu}$, it has to intersect at most two intervals $\omega_{\nu_1}\ni (x-\delta)$ and $\omega_{\nu_2}\ni (x+\delta)$. Then $\omega_{\nu_1}\cup\omega(x,\delta)\cup\omega_{\nu_2}$ is a candidate for an interval that should have been chosen in the process. This contradiction shows that

$$|\omega(x,\delta)\cap E_2|<|\omega(x,\delta)|$$
 for every $\delta>0$.

Since x is a density point of E_2 , there exists a δ_0 such that

$$|\omega(x,\delta) \cap E_2| \ge (1-\varepsilon)|\omega(x,\delta)|$$
 for $\delta < \delta_0$.

All of these intervals $\omega(x,\delta)$ have to intersect intervals of $\{\omega_{\nu}\}_{\nu=1}^{\infty}$ (otherwise they could be adjoined). However, each one of them can intersect at most two bigger intervals from $\{\omega_{\nu}\}_{\nu=1}^{\infty}$, say $\omega_{\nu_1} \ni (x-\delta)$ and $\omega_{\nu_2} \ni (x+\delta)$ with $|\omega_{\nu_k}| \ge |\omega(x,\delta)|$, k=1,2. Notice that x lies in neither of these closed intervals and therefore it is possible to enlarge at least one of them by adjoining the smallest $\omega(x,\delta)$ that has a common endpoint with ω_{ν_1} or

 ω_{ν_2} . This contradicts the construction process. Thus we have proved that $|E_2|=0$, i.e. $|E_1|=|E|$.

Proof of Theorem 1. f_I^* is the nonincreasing rearrangement of f_I and is uniquely determined when we require that f_I^* is continuous on the left.

We take an arbitrary $t \in (0, |I|)$ and let E_t be a subset of I with measure t such that $f_I(x) \leq f_I^*(t)$ for $x \notin E_t$. Then we use the covering lemma above to cover almost every point of E_t , a set we denote by $E_{t,1}$, by a union of intervals with disjoint interiors:

$$E_{t,1}\subset \bigcup_{
u=1}^\infty \omega_
u,$$

such that for every positive integer ν

$$(4) (1-\varepsilon)|\omega_{\nu}| \leq |\omega_{\nu} \cap E_t| < |\omega_{\nu}|.$$

Since the second inequality is strict, ω_{ν} contains a set of positive measure in the complement of E_t and we have

$$\operatorname{ess\,inf}_{\omega_{II}} f_I(x) \leq f_I^*(t)$$

and therefore, using (1) and (4), we obtain

$$\int_{0}^{t} f_{I}^{*}(u) du = \int_{E_{t}} f_{I}(x) dx \leq \sum_{\nu=1}^{\infty} \int_{\omega_{\nu}} f_{I}(x) dx$$
$$\leq c \sum_{\nu=1}^{\infty} |\omega_{\nu}| f_{I}^{*}(t) \leq \frac{c}{1-\varepsilon} t f_{I}^{*}(t).$$

Thus

$$\int_{0}^{t} f_{I}^{*}(u) du \leq \frac{c}{1-\varepsilon} f_{I}^{*}(t) .$$

Since $\varepsilon > 0$ was arbitrary, we may let ε tend to 0 to obtain (2') with $f^* = f_I^*$. The proof is now completed in the same way as we did when f was continuous.

The conclusion (2), implying that we have the same constant c for f^* and f, is in general not possible to achieve in higher dimensions as we will see in the following counterexample in two dimensions.

COUNTEREXAMPLE. There exists a function f which belongs to $A_1(Q)$ with constant c, but f^* does not belong to $A_1((0,|Q|);c)$.

Proof. Let $1/2 < l \le 1-s$ and define $f:[0,1] \times [0,1] \to \mathbf{R}$ by

$$f(x) = f(x_1, x_2) = \begin{cases} 1 & \text{if } l \le x_1 \le 1, \\ c^2 & \text{in } (0, s) \times (0, s) \cup (0, s) \times (1 - s, 1), \\ c & \text{elsewhere.} \end{cases}$$

Then we have, for every square Q,

$$\oint\limits_{Q} f(x) \, dx / \operatorname{ess \, inf}_{Q} f(x) \leq c(1 + s^{2}(c-1)/l^{2}) \, .$$

On the other hand,

$$\sup_{a} \int_{0}^{a} f^{*}(t) dt / \underset{(0,a)}{\operatorname{ess inf}} f^{*}(t) = \int_{0}^{l} f^{*}(t) dt = c(1 + 2s^{2}(c - 1)/l) = c_{1}.$$

Since l > 1/2, it follows that $c_1 > c$. In fact, with this construction, we can have c_1 arbitrarily close to 2c (for c large enough and l close to 1).

It is obvious that the same type of construction will work also in \mathbb{R}^n , n > 2.

From the theorem above we will now draw a conclusion about higher integrability of f. We will use the following lemma:

LEMMA 2. Let $c \ge 1$ be a constant and let g be a nonnegative, nonincreasing function on (0,1] satisfying

(5)
$$\int_{0}^{s} g(t) dt \leq cg(s) \quad \text{for } s \in (0,1].$$

Then g lies in $L^p(0,1)$ for p < c/(c-1) and

(6)
$$\int_{0}^{s} g^{p}(t) dt \leq \frac{1}{c^{p-1}(c+p-cp)} \left(\int_{0}^{s} g(t) dt \right)^{p} \quad \text{for } s \in (0,1].$$

Remark. The constant on the right in (6), as well as the upper bound of p, cannot be improved. In fact, the function $g(t) = (1/c)t^{1/c-1}$ is an extremal function, which gives equality in (6) and lies in L^p if and only if p < c/(c-1). For c = 1, g has to be constant in (0,1) and equality in (6) prevails trivially.

Proof. Without loss of generality we may assume that g is continuous on the left. We start by proving that g satisfies the inequality

(7)
$$\int_{0}^{s} g^{p}(t) dt \leq \frac{g^{p-1}(s)}{c+p-cp} \int_{0}^{s} g(t) dt.$$

Put $G(t) = \int_0^t g(x)dx$ and let ε be a small positive number. We integrate by parts and use the facts that $G(t) \le ctg(t)$ and $g'(t) \le 0$ to get

(8)
$$\int_{\varepsilon}^{s} g^{p}(t) dt = \int_{\varepsilon}^{s} g^{p-1}(t) dG(t)$$

$$= [g^{p-1}(t)G(t)]_{\varepsilon}^{s} - (p-1) \int_{\varepsilon}^{s} G(t)g^{p-2}(t) dg(t)$$

$$\leq g^{p-1}(s)G(s) - g^{p-1}(\varepsilon)G(\varepsilon) - c(p-1) \int_{\varepsilon}^{s} tg^{p-1}(t) dg(t) .$$

More integration by parts yields

(9)
$$\int_{\varepsilon}^{s} t g^{p-1}(t) dg(t) = \frac{1}{p} \left(s g^{p}(s) - \varepsilon g^{p}(\varepsilon) - \int_{\varepsilon}^{s} g^{p}(t) dt \right).$$

Now, combining (8) and (9) we obtain

$$\begin{split} \left(1-\frac{c(p-1)}{p}\right)\int\limits_{\varepsilon}^{s}g^{p}(t)\,dt \\ &\leq g^{p-1}(s)G(s)-g^{p-1}(\varepsilon)G(\varepsilon)-\frac{c(p-1)}{p}(sg^{p}(s)-\varepsilon g^{p}(\varepsilon))\,. \end{split}$$

Since g is nonincreasing, we have $G(\varepsilon) \ge \varepsilon g(\varepsilon)$. We also use the fact that p < c/(c-1) implies c(p-1)/p < 1. Therefore

$$\frac{c(p-1)}{p}\varepsilon g^p(\varepsilon) < \frac{c(p-1)}{p}G(\varepsilon)g^{p-1}(\varepsilon) < G(\varepsilon)g^{p-1}(\varepsilon),$$

which gives

$$\left(1-\frac{c(p-1)}{p}\right)\int\limits_{\epsilon}^{s}g^{p}(t)\,dt\leq g^{p-1}(s)G(s)-\frac{c(p-1)}{p}sg^{p}(s)\,.$$

By (5), $csg(s) \ge G(s)$ and thus

$$(c+p-cp)\int_{\varepsilon}^{s}g^{p}(t)\,dt\leq g^{p-1}(s)G(s).$$

By letting ε tend to zero we obtain (7).

Now we will use (7) to prove (6). Since g is nonincreasing, we have $g(s) \leq \int_0^s g(t) dt$. This together with (7) implies (6) but without the factor c^{1-p} . However, with some extra effort, we can achieve the optimal constant. For simplicity we may choose s=1 and also assume $G(1)=\int_0^1 g(t) dt=1$. We want to show that g(1) in (7) can be replaced by c^{-1} . From (5) it is

evident that $g(1) \ge c^{-1}$. If $g(1) = c^{-1}$, then the inequalities (6) and (7) are the same. Assume therefore that

$$g(1) = \lim_{t \to 1^{-}} g(t) = a > c^{-1}$$
.

For δ satisfying $0 < \delta < (ac-1)/ac$ we construct auxiliary functions g_{δ} , with the following properties: (i) $g_{\delta}(t) \leq g(t)$, (ii) $g_{\delta}(t)$ converges to g(t) in (0,1) as $\delta \to 0$, (iii) $g_{\delta}(1) = c^{-1}$ and (iv) g_{δ} satisfies the requirements of Lemma 2. To be more specific, we define

$$g_{\delta}(t) = \left\{ egin{aligned} g(t), & 0 < t \leq 1 - \delta, \ rac{1}{c} + rac{a - c^{-1}}{\delta}(1 - t), & 1 - \delta < t \leq 1. \end{aligned}
ight.$$

Then g_{δ} is nonincreasing and trivially satisfies (i)-(iii). To verify (iv) it remains to show that g_{δ} satisfies (5). This property is inherited from g for $0 < s \le 1 - \delta$. It is easy to check that $g_{\delta}(s) \ge (cs)^{-1}$ in $(1 - \delta, 1]$ and for s in this interval we have

(10)
$$\int_0^s g_{\delta}(t) dt \leq \int_0^s g(t) dt \leq 1 \leq csg_{\delta}(s).$$

It is therefore justified to use inequality (7) with $g = g_{\delta}$. We get

$$\int_0^1 g_\delta^p(t) dt \le \frac{1}{c^{p-1}(c+p-cp)} \Big(\int_0^1 g_\delta(t) dt \Big)^p.$$

Now we let δ tend to 0 and by dominated convergence we obtain (6).

We can now give an improved version of Muckenhoupt's lemma [2, p. 213], where we do not have to require f to be decreasing and also obtain the best constant.

COROLLARY 1. Suppose that f is a function in $A_1(\mathbf{R})$ with constant $c \geq 1$. Then for every p < c/(c-1) and every interval T

(11)
$$\int_{I} f^{p}(x)dx \leq \frac{1}{c^{p-1}(c+p-cp)} \left(\int_{I} f(x) dx \right)^{p}.$$

Proof. Without loss of generality we may assume that |I| = 1 and $f_I f(x) dx = 1$. Then, by Theorem 1,

$$\int_0^t f^*(u) du \le cf^*(t),$$

where f^* is the nonincreasing rearrangement of the restriction of f to I. We apply Lemma 2 to obtain (11) with $f = f^*$. The stars may be deleted and the corollary is proved.

The Muckenhoupt class A1(R)

163

The next theorem describes a very nice and sharp property of A_1 -weights, which is also easy to remember.

THEOREM 2. If $f \in A_1((0,1);c)$, then, for every p < c/(c-1),

$$f^p \in A_1((0,1); c_p)$$
 with $c_p = \frac{c}{c+p-cp}$.

Proof. Substitute the defining inequality for $A_1((0,1);c)$ into (11) and use the fact that $\operatorname{ess\,inf}_I f^p(x) = (\operatorname{ess\,inf}_I f(x))^p$.

Another way to proceed from the assumption $f \in A_1$ would be to try to make the function f continuous. A convolution method will not work. However, there is another type of mean value that has the advantage that it preserves the constant c even in several dimensions. We use it in the following lemma.

LEMMA 3. Suppose f is in $A_1(Q_0)$ with constant c, i.e.

(12)
$$\oint_{Q} f(x) dx \leq c \operatorname{ess inf}_{Q} f(x) \quad \text{for every } Q \subset Q_{0}.$$

Put

162

$$f_t(x) = \int_{Q_0} f(x(1-t)+yt) dy, \quad t \in (0,1).$$

Then $f_t(x)$ is continuous in Q_0 and $f_t(x)$ satisfies (12) with the same constant c.

Proof. A change of the order of integration gives

(13)
$$\oint_{Q} f_{t}(x) dx = \oint_{Q_{0}} dy \oint_{Q} f(x(1-t)+yt) dx$$

$$= \oint_{Q_{0}} dy \oint_{Q_{t,y}} f(z) dz \leq c \oint_{Q_{0}} \underset{x \in Q_{t,y}}{\operatorname{ess inf}} f(x) dy,$$

where $Q_{t,y} \subset Q_0$ is the cube $\{z = x(1-t) + yt; x \in Q\}$. By the integral representation of f_t it follows that f_t is continuous. We find that for some x_0

(14)
$$\inf_{x \in Q} f_t(x) = f_t(x_0) = \oint_{Q_0} f(x_0(1-t)+yt) dy \ge \oint_{Q_0} \underset{x \in Q_{t,y}}{\operatorname{ess inf}} f(x) dy,$$

since $x_0(1-t)+yt\in Q_{t,y}$. A combination of (13) and (14) now gives the desired result.

Second proof of Corollary 1. We may assume that $I = Q_0 = (0,1)$. We conclude from Lemma 3 that f_t is continuous. By our first short proof of the theorem it follows that f_t^* satisfies the hypothesis of Lemma 2.

Proceeding as in the previous proof of Corollary 1 we find that

(15)
$$\int_{0}^{1} f_{t}^{p}(u) du \leq \frac{1}{c^{p-1}(c+p-cp)} \left(\int_{0}^{1} f_{t}(u) du \right)^{p}.$$

We have

$$f_t(x) = \frac{1}{t^n} \int_{Q_t(x)} f(z) dz$$
, where $Q_t(x) = \{z = x(1-t) + yt; y \in Q\}$,

which is a cube containing x and with measure t^n . Therefore, we have $f_t(x) \to f(x)$ a.e. as $t \to 0$ and Fatou's lemma gives

$$\limsup_{t\to 0} \int_0^1 f_t^p(u) \, du \ge \int_0^1 \limsup_{t\to 0} f_t^p(u) \, du = \int_0^1 f^p(u) \, du.$$

On the other hand, by the dominated convergence theorem

$$\int_{0}^{1} f_{t}(u) du = \int_{0}^{1} dx \int_{0}^{1} f(x(1-t)+yt) dy = \int_{0}^{1} dy \int_{0}^{1} f(x(1-t)+yt) dx$$
$$= \int_{0}^{1} \frac{dy}{1-t} \int_{ty}^{ty+1-t} f(z) dz \to \int_{0}^{1} f(z) dz \quad \text{as } t \to 0.$$

Taking $\limsup_{t\to 0}$ in (15) therefore completes this proof of Corollary 1.

References

- [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988.
- [2] B. Muckenhoupt, Weighted inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- [3] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986.
- [4] I. Wik, On Muckenhoupt's classes of weight functions, Studia Math. 94 (1989), 245-255.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
ŚNIADECKICH 8
00-950 WARSZAWA, POLAND

DEPARTMENT OF MATHEMATICS UNIVERSITY OF UMEA S-901 87 UMEA, SWEDEN

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI UNIVERSITÀ DEGLI STUDI DI MILANO VIA MEZZOCANNONE, 8 L80134 NAPOLI, ITALY