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The Muckenhoupt class A;(R)
by

B. BOJARSKI (Warszawa), C. SBORDONE (Napoli),
and [. WIK (Umed)

Abstract. It is shown that the Muckenhoupt structure constants for f and f* on
the real line are the same.

Introduction. In a previous paper, [4], one of the authors has shown
that if a function f lies in A,(Q), @ C R", with constant ¢, then the nonin-
creasing rearrangement of f, f*, lies in A4((0,]|Q[)) with another constant,
¢1, depending on n,p and ¢. In Theorem 1 we prove that in the special case
n = 1, the constant ¢; can be taken as ¢, which of course is optimal. To do
this we will need a covering lemma. We also show, by means of an example,
that this result is not true in dimensions higher than one. As a consequence
of the theorem we obtain Lemma 2 with Corollary 1, a refinement of a lemma
by Muckenhoupt [2]. This is also proved in a more direct way. Theorem 2
describes another property of the weights in the class 4;(R).

Notations. We let F, f(z)dz stand for the mean value of f over I.
For an interval 7 we will use the notation A;(J;c) for the class of locally
integrable functions f such that for every subinterval 7 of 7 we have

(1) Iff(:v) dz < cesinnff(:t:).

For any subinterval I of (0,1) let fr denote the restriction of f to I and ff
the corresponding nonincreasing (left-continuous) rearrangement.

Theorems and proofs

THEOREM 1. Suppose that f is a funclion in A1((0,1) ¢) and I a subin-

1991 Mathematics Subject Glassification: Primary 42B25; Secondary 26D15.



156 B. Bojarski et al,

terval of (0,1). Then for eachT C T
(2) If f3 (u) du < cessinf [7(z).

Conversely, if (2) holds for all local rearrangements ff of [, then f €
Ay ((0: 1); c)‘

The implication of (1) is thus a set of inequalities for the functions fr,
I C (0,1), with the common constant c¢. These inequalities completely
characterize A4((0,1);¢).

We stress the fact that, contrary to most of the recent literature (see e.g.
[1], [3]), we require the nonincreasing rearrangement f* to be continuous on
the left. By this condition f*(t¢) is uniquely determined for each ¢ > 0 and
(2) implies

t
(2" Df ) du < cessinf f(z) = ef* (1)

‘We will first give a short proof under the extra assumption that f, and
therefore also f*, are continuous.

Fixan I C(0,1). Let B betheopenset {z €I; f(z)> A} A > F f
it can be written as the union of disjoint open intervals, £ =|Jw,, where
f(z) = XA at the endpoints of the intervals except possibly at the endpoints
of I. Therefore

J @) de=3" [ fiz)ds <Y eMlw = eAlBy.

Ex
Dividing this inequality by |E| and using the fact that f* is continuous we
find that
IE-\I 1 . .
F)dt= — #)dz <eA < ¢ essinf fF(1).
OJC i) [Ex] E{ fi(=) 5 iE F1O
Thus we have proved statement (2') for f* = ff in case t = | E;| for some A.
Now take an arbitrary ¢ € I. Put ff(3) = A1, & = min{t; ff (1) = A1}
Then |E),| =t and
IEl']_[

frrma=2 f g
0 0

t

t—t

h A1 < '%’C)\l + M
< eff(t) = emin fi(u).

This means that (2') holds with f* = f7. Since f} is nonincreasing, this
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implies (2). In fact, for an arbitrary interval (a,b) C I we have
b b :

friwyde< £ ) dt < ef(b) = cess inf fi(1),
a 0 &

which proves (2).

The implication (2)=>(1) is immediate. We choose Z = I in (2). Then
the stars may be removed and we conclude that f € 4;{(0,1);¢).

When f is not continuous, we will use the following covering lemma as
a substitute for continuity:

LEMMA 1. Let E be a measurable bounded subset of R and £ > 0. Then
there ewist a sequence {w,}52, of intervals with disjoint interiors and a
subset Ey of E with the properties that |Ey| = |E| and

00
(i) El C U Ly
) =
(i) (1-ew| LlwnE|<w,|, v=1,2,...

Proof. First we choose as wy a closed interval of maximal length sat-
isfying (ii). Suppose then that the intervals wy,...,wy ate chosen. Take as
Wyt & closed interval of maximal length with interior disjoint from {J_, w.
and satisfying (ii). Put

00
B = ( U wy) nE.

=1
We have to prove that |Fy| = | E|. If this were not true, there would exist
a density point ¢ of the set E\ By = Ey. Put w(z,8) = (z — §,2 4+ §) for
§ > 0 and suppose that there exists a § such that |w{z, )N B3| = |w(z, 6)|.
Then w, cannot be a subset of w(z,8) for any v». Therefore, if w(z,é)
intersects [ J°; wy, it bas to intersect at most two intervals wy, 3 (z — 8)
and w,, 5 (z + §). Then w,, Uw(z,8)Uw,, is a candidate for an interval
that should have been chosen in the process. This contradiction shows that

lw(z,8) N Es| < |w(z,8)] for every 6 > 0.
Since z is a demsity point of Ey, there exists. a 6p such that

lw(z, §) N Ea| > (1 - &)|w(z,8)] for § < o .
All of these intervals w(z, §) have to intersect intervals of {w, }$2, (otherwise
they could be adjoined). However, each one of them can intersect at most
two bigger intervals from {w,}52,, say w,, 3 (z — &) and w,, 3 (z + §)
with Jw,, | > |w(z,68)], k = 1,2. Notice that = lies in neither of these
closed intervals and therefore it is possible to enlarge at least one of them
by adjoining the smallest w(z,§) that has a common endpoint with w,, or
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wy,. This contradicts the construction process. Thus we have proved that
|Ez| = 0, i.e. |Eq| = |E|.

Proof of Theorem 1. ff is the nonincreasing rearrangement of f;
and is uniquely determined when we require that f} is continuous on the
left.

We take an arbitrary ¢t € (0, |I]) and let E; be a subset of I with measure
t such that f;(z) < f3(t) for = ¢ Ei. Then we use the covering lemma above
to cover almost every point of E;, a set we denote by E; 1, by a union of
intervals with disjoint interiors:

[o2]
Et»l C U wu,
v=1
such that for every positive integer v
(4) (1—&)wi} € Jwy N Ee| < |ws|.

Since the second inequality is strict, w, contains a set of positive measure
in the complement of E; and we have

esainf fr(z) < fi(2)

and therefore, using (1) and (4), we obtain

[fwdu= [ fi(a)dz <> [ fi(z)do
0

vzl w,

c

B,
< ey lool fH() < Tt ().
v=1

Thus

[
1-¢

t

f 13w du < ——F1(1).

0

Since ¢ > 0 was arbitrary, we may let ¢ tend to 0 to obtain (2') with
f* = fi. The proof is now completed in the same way as we did when f
was continuous.

The conclusion (2), implying that we have the same constant ¢ for f*
and f, is in general not possible to achieve in higher dimensions as we will
see in the following counterexample in two dimensions.

COUNTEREXAMPLE. There exists a function f which belongs to A,(Q)
with constant ¢, but f* does not belong to A;((0,]Q)); ¢).
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Proof Let 1/2<1<1- s and define f :[0,1} x [0,1] = R by
1 ifi<z <1,
f(z) = flz1,22) =< ¢ in (0,8) x (0,8) U (0,8) x (1—s,1),
¢ elsewhere.
Then we have, for every square @,

f f(m)dm/ es%inff(z) < c(} + 32(c _ 1)/12) )
Q ‘
On the other hand,
@ i
sup f f*(t) dt/ E?gil)lff*(t) = f f*(t)dt — C(l + 282(6— 1)/1) =¢.
a 35 ,a g

Since [ > 1/2, it follows that ¢y > ¢. In fact, with this construction, we can
have ¢; arbitrarily close to 2¢ (for c large enough and ! close to 1).

It is obvious that the same type of construction will work also in R™,
n > 2.

From the theorem above we will now draw a conclusion about higher
integrability of f. We will use the following lemma:

LEMMA 2. Let ¢ > 1 be a constant and let g be a nonnegative, nonin-
creasing function on (0, 1] satisfying

(5) JEg(t) dt < cg(s) for s € (0,1].
5 .
Then g lies in LP(0,1) for p < ¢f{c—1) and
3 » 1 g p
(6) Ofg (t)dt < m(gtg(t)dt) for s € (0,1].

Remark. The constant on the right in (6), as well as the upper bound
of p, cannot be improved. In fact, the function g(t) = (1/c)t*/°~! is an
extremal function, which gives equality in (6) and lies in L? if and only if
p < ¢/(c—1). For ¢ = 1, g has to be constant in (0,1) and equality in (6)
prevails trivially.

P roof. Without loss of generality we may assume that ¢ is continuous
on the left. We start by proving that g satisfies the inequality

3

, g 's)
(7). | of gQMmm 6[ g(t)dt..



icm

1860 B. Bojarski et al.

Put G(t) = fotg(:z:)dx and let ¢ be a small positive number. We integrate
by parts and use the facts that G(f) < ctg(t) and g'(2) €0 to get

s

® [o@di= [¢ ()G

2

- PO - (p—1) | G () da()

< g7 H(8)G(s) — g7 (e)G(e) ~ e(p— 1) f 1g” =1 (t) dg(2).
More integration by parts yields
@ furoan=1(r6-06- [oo).

Now, combining {8) and (9) we obtain

(1 - E(’:"—l)) [ewa

£

< g7 1(s)G(s) - g7 ()G (e} - C(L;—L)(SQ”(S) —eg™(z)).

Since ¢ is nonincreasing, we have G(¢) > eg{e). We also use the fact that
p < ¢/(c—~ 1) implies ¢(p— 1)/p < 1. Therefore

e(p ; 1—)59'?’(6) < E(_j'p_ﬁ_'l_)G(E)g”_1(E) < Gle)g"(e),

which gives
(1- =) Jowaseoae- L= Ygrs).
By (5), csg(s) = G(s) and thus
(e+p—cp) f gP(t)dt < g7~ 1($)G(s).

By letting ¢ tend to zero we obtain (7).

Now we will use (7) to prove (6).- Since g is nonincreasing, we have
9(s) < ; g(2) dt. This together with (7) implies (6) but without the factor
c1=?. However, with some extira effort, we can achieve the optimal constant.
For simplicity we may choose s = 1 and also assume G(1) = f01 g(t)ydt=1.
We want to show that g(1) in (7) can be replaced by ¢~!. From (5) it is
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evident that g(1) = ¢™1. If g(1) = ¢, then the inequalities (6) and (7) are
the same. Assume therefore that

g(1) = Jim g(t)=a> ¢t

For § satisfying 0 < 6§ < (ae— 1)/ac we construct auxiliary functions gs,
with the following properties: (i) g5(t) < g(t), (ii) gs(2) converges to g(t) in
(0,1) as & — 0, (iii) g5(1) = ¢~ and (iv) gs satisfies the requirements of
Lemma 2. To be more specific, we define

(1),
gs(t) = P |
® %+a ; {1-1), 1-é<t<].

0<ctL1-4,

Then gs is nonincreasing and trivially satisfies (i)-(iii). To verify (iv) it
remains to show that g5 satisfies (5). This property is inherited from g for
0 < s < 1—3§. It is easy to check that gs(s) > (cs)™!in (1 — §,1] and for s
in this interval we have '

(10) fgg(t) dt < fg(t) di <1< esgs(s).

It is therefore justified to use inequality (7) with g = gs. We get

1 1 .

Now we let & tend to 0 and by dominated convergence we obtain (6).

We can now give an improved version of Muckenhoupi’s lemma [2,
p. 213], where we do not have to require f to be decreasing and also obtain
the best constant.

COROLLARY 1. Suppose that f is a function in Ay (R) with constentc > 1.
Then for every p < ¢/(c— 1) and every interval T

P W—] T ) LT p.
(11) f1 (m)dzscp_1(c+pmcp)(ff( )ds)

Proof. Without loss of generality we may assume that |I| = 1 and
4, f(z)dz = 1. Then, by Theorem 1,

¢
f £ {u)du < ef* (@),
0 :
where f* is the nonincreasing rearrangement of the restriction of f to I. We

apply Lemma 2 to obtain (11) with f = f*. The stars may be deleted and
the corollary is proved.
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The next theorem describes a very nice and sharp property of Aj-weights,
which is also easy to remember.

THEOREM 2. If f € A;((0,1);¢), then, for every p < c/{c—1),
¢

fP € Al((o, 1),6;,) with Cp = m .

Proof. Substitute the defining inequality for A;({0,1);¢) into (11) and
use the fact that essinf; fP(2) = (ess infy f(=))".

Another way to proceed from the assumption f € Ay would be to try
to make the function f continuous. A convolution method will not work.
However, there is another type of mean value that has the advantage that
it preserves the constant ¢ even in several dimensions. We use it in the.
following lemma.

LEMMA 3. Suppose f is in A1(Qo) with constant ¢, t.e.

(12) f f(x)dz < cessqinff(m) Jor every Q C Qo .
Q

Put
fi{z) = ch(:r:(l-—t)+yt)dy, te (0,1).
Qo

Then f(z) is continuous in Qo and f,(x) satisfies (12) with the same con-
stant c.

Proof. A change of the order of integration gives

(13) f fle)dz= § dy § f(z(1—1) +yt)da
Q Qo Q

= dy Z¥dz< e essinf f(z) dy,

QJOC Qf 1) sz essinf f(z) dy

where Q;, C Qo is the cube {z = 2(1 — ) + yt;z € Q}. By the integral

representation of f; it follows that f; is continuous, We find that for some 2o

14} inf = = -1 dy > inf | [

(14) inf fu(=) = filz0) Qf Flro(1—t)+ yt)dy > Qf essinf f() dy,
0

since z9(1 — t) + 4t € Q:,y. A combination of (13) and (14) now gives the
desired result.

Second proof of Corollary 1. We may assume that I = Qo =
{0,1). We conclude from Lemma 3 that f, is continuous. By our first short
proof of the theorem it follows that f} satisfies the hypothesis of Lemma 2.
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Proceeding as in the previous proof of Corollary 1 we find that

- 1 L ?
(18) thp(”) du < m(éfft(u)du) .
‘We have
fl@)= = [ f(2)dz, where Quz)={z=x(1-1)+ ;v €Q},
Q (=)

which is a cube containing z and with measure i®. Therefore, we have
fi{z) — f(z) ae. as t — 0 and Fatou’s lemma gives

1 1 1
Yim sup Pl)du> | limsup f7(u)du= Plu) du .
pow [ ARG duz [l np f7(w) du J e
On the other hand, by the dominated convergence thecrem

1 1 1 11
fft(u)du-_m fd:z:ff(:c(l-—t)—i—yt)dy: fdy ff(w(lut)—{-yt)da:
0 ) 0 o 0

ty+1—1i 1

1
x!% tf f(z)dz — ff(z)dz ast—0.
v [\

Taking lim sup,_,o in (15) therefore completes this proof of Corollary 1.
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