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Weighted norm inequalities
on spaces of homogeneous type

by

QIYU SUN (Hangzhou)

Abstract. We give a characterization of the weights (u,1) for which the Hardy-
Littlewood maximal operator is bounded from the Orlicz space Lg(u) to La(w). We
give a characterization of the weight functions w (respectively u) for which there exists
a nontrivial u {respectively w > 0 almost everywhere) such that the Hardy-Littlewood
maximal operator is bounded from the Orlicz space Lg(u) to Ls(w).

1. Preliminaries and main results. The main objective of this paper
is to study weight pairs (u,w) for which the Hardy-Littlewood maximal
operator is bounded from the Orlicz space Lg(n) to Lg(w) in the context
of spaces of homogeneous type. Some work in this direction was done in
[11-[3], [4]-[9], [11]-[15]. With this aim, we introduce some notations.

Let X be a sel. A nonnegative symmetric function d(z,y) defined on
X % X will be called a quasi-distance if there exists an absclute constant D
such that

d(z,y) £ D{d(z,2) + d(z,9))

for every z,%,2 € X, and d(z,y) = 0 if and only if # = y. Let u be
a positive measure defined on a o-algebra of subsets of X which contains
balls B(z,r) = {y;d(z,y} < r}. Now we say that (X,d,u) is a space
of homogeneous type if X is a set endowed with a quam—dlsta.nce d and a
positive measure ¢ such that:

(i) The family {B(z,r);2 € X, r > 0} is a basis of the topology of X;

(ii) There exists a natural number ¥ such that for any = € X and r >0
the ball B(z,r) contains at most N points z; with d&(z;, ;) > 375

(iii) p is a doubling Borel measure, i.e., there exists a constant D such
that 0 < pu(B(z,27)) < Dp(B(z,r)) for all g € X and r > 0.

Hereafter, we shall suppose that the continuous functions with compact
support are dense in LP(X,du) for 1 < P < oo.
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For a weight function v, define the Hardy-Littlewood mazimal operator
M, by
M, f(@) = supo(B)™" [ |flvdp,
B

where the supremum is taken over all balls B containing z and »(E) =
Jg vdu for any measurable set £.

When v = 1 we write Mf for M, f.

Now, we present the basic definitions concerning N-functions and Orlicz
spaces which will be used later (see [5], [10]).

An N-function is a continuous and convex function @ : [0, 00) — R such
that &(s) > 0 for s > 0, &(s)f/s — 0 as s — 0 and H(s)/s — oo as
s — 00. An N-function & has the representation #(s) = [’ ¢(t) dt, where
@ : [0,00) — R is continuous from the right, nondecreasing and such that
w(s) > 0for s >0, »(0) = 0 and (s) — oo as s — co. Associated with ¢
we define the generalized inverse p of ¢ by p(t) = sup{s; ¢(s) < ¢} which has
the same aforementioned properties of (5. Now we define the complementary
N-function ¥ of & by ¥(t) = jof o(t) dt.

An N-function & is said to satisfy the Ay condition in [0,00) if

sup $(2s)/P(s) < oc.
>0

In this paper we shall always suppose that ¢ and the complementary N-
fanction ¥ satisfy the A, condition.
Define the Orlicz space

Lo(o) = { £ [ #(If1)dv < oo},
with the Luzemburg norm || f||(z,4) = inf{t > 0; [ @(¢t~|f|) dv < 1}. There-
fore we have the Holder inequality,
J gl dv < Clflla,llgllw, -

When » = wdp for a nonnegative measurable function w on X we write

Lg{w) for Lg(v) and f|l(#,u) for [|f|](¢,u).
In this paper, we shall prove the following results.

. THEOREM 1. Let u and w be two weight functions, Suppose there exists
a weight function o for which o dy is @ doubling measure and

1) lloMa (g < Cllo fllie,u)
Jor all fo € Lg(u). Then M is bounded from Lg(u) to Ly(w) if and only if
(2) - JeM(xptowdp < C [ S(to)udy

B B

Jor every ball B, all positive t and a constant C independent of B and t,
where xp is the characteristic function of the set B.

icm
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THEOREM 2. Let u be a weight function, Suppose there exists a weight
function o for which (1) holds and o dy is a doubling measure. Then there
erists @ measurable function w, which is positive and finite almost every-
where, such that M is bounded from La(u) to Lg(w) if and only if for every
ball By there exists a covering {E;} of B, such that

(3) E;l]g ;;ng (éf@(ta‘)u d,u) - Ef DM (xpo))udu < oo

]

for all j, where the second supremum is taken over all balls B containing
B,

THEOREM 3. Let w be o weight function. Then there exists u > 0 finite
almost everywhere such that M is bounded from Lg(n) to Lg(w) if and
only if for some T € X, Hh(-,f)”@’w) < oo, where we write h(z,%Z) =
(1+ pu(B(z, d(z,%)))) .

Now let us say a little about the existence of a weight function ¢ for
which (1) holds. If u is a weight function such that

Jo(Mfwdu<c [ (1 yudp

for all f € La(u), then ¢ = 1 satisfies (1), An N-function & is said to satisfy
the A’ condition if there exists a constant ' such that

C™13(st) < B(s)d(t) < CH(st)
for 8,1 > 0. We will show that if & satisfies the A’ condition and o(1/u} is

a doubling measure, then (1) holds when ¢ = p(1/u). Recall that M, is a
bounded operator on Lg(o) when o is a doubling measure and that

C™(t) < #(o(1)) < Cto(t)
for £ > 0. Hence $(o)u = &(p(1/u))u = g(1/u) = o,
J B oMo (fyudu < C [ #(o)B(M,(f))udy

<C [ (M, (f))edp < C [ &(|f])odu

<C [ #alfludp,
and (1) holds when o = p(1/u). For example, &(t) = t? for some p > 1 and
o = /P, Vor a general N-function $, we still do not know the exact
condition on a weight function % such that a weight function o exists for
which (1) holds.

Theorem 1 is an outgrowth of the one in [11], [13], where &(t) = *
for some p > 1 was considered on the Fuclidean space R™ or on a space
of homogeneous type. It is still new and meaningful for a general Orlicz
space even when X = R™, though the condition (1) is not very computable.
I. L. Rubio de Francia ([12]) and L. Carleson and P. Jones ([3]) considered
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the existence of a weight function w such that M is bounded from Lg(u)
to Lg(w) when $(t) = t* for some p > 1 and X = R". We consider the
similar question on a space of homogeneous type in Theorem 2. Theorem 3
is a generalization of the results in [7], [14], [15], where &(¢) = t* for some
p > 1 was considered. Here we want to point out that the normal condition
in [15] is not essential because for a space of homogeneous type there exists
a normal space with the same topology.

In this paper, the same letter C' will be used to denote constants which
may be different at different occurrences.

The author thanks Professor Xianliang Shi for his advice. Thanks are
also due to Professor Mingiang Zhou for making the author aware of Gatto,
Gutiérrez and Wheeden’s paper [8] and for other useful suggestions. The
author thanks the referee for his useful and important suggestions.

2. Proof of Theorems

Proof of Theorem 1. First, we assume (2) holds. Fix a nonnegative
function f € Lg(u). For each integer k, let K be an arbitrary compact
subset of {2¥ < Mf < 2¥t1}, By the compactness of K we can find a
finite collection of balls {B¥} such that

Ky C UBk and p(BF)™ f | f(2)] du(z) > 2.
Bk
Put Ef = Bf N K, Ef = (BE\U,¢; BEYN Ky for j > 1. The E¥s are
obvicusly pairwise disjoint and UJ- Ejk = K. Since Ky C {2% <« Mf <
2411} we see that for arbitrary n € N,
[ oM f(@)u(z) du(z) < C Y 82" u(ES)

U:=-..K* ik
wl E¥ G(Bf) 1 1
scj‘zk (E])Q(#(Bf)——g(B;)B{ (fo )crd,u).

Let I'(t) = {(7,k); -n <k <n, o(Bf)™? [pe(fo~"odu >t} fort > 0
and ’ '

G(t) = U B;-c .
(i, k) en(t)
Obviously G(t) € {M,(f/o) > t}. By usmg a covering lemma in ([4],
p. 69), we can find a subfamily {B}} of {B*}(; xyer(y and a constant D
such that the B}’s are pairwise disjoint and for every B¥ there exists Bf
such that B C B!, where B! is the ball with the same center as B! and
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with radius D times that of Bf. Recall that the Ek’s are pairwise disjoint
and G(t) C {M,(f/o) > t}. Hence we have

J #(Mf(=))w(z)du(=)

U K
<c [rra o 2B, w(E¥)
ﬂf (j,g'e’;m (“(Bf))
<f —ldt;B% ((Big)"”wf)
<C frl ity [ e(M(otxg ) wdp
0 i §‘:
< ]

C ft'l dtz f F(ot)udpu
0 i B

l/\
c;_ﬁs

! dtz fdi(a't)ud,u

00

<C [ttdt [ #(otyudy
6(1) '

<C fi_l dt f F(to)udp
0 {M,(1/e)>1}
<C [ (oMo (flo)udu<C [o(fudp,

where the fourth inequality follows from (2), the fifth inequality follows from
the facts that u du is a doubling measure and

[ #(otM, (xp)ywdp < C [ #(toyudp,
. B

and the last inequality follows from (1). Hence we have proved that
[oMfywdu <O [ &(|f1udp
and
lleII(zp w < Cl e, W) -
Therefore {2) implies M is bounded from Le(u) to Ly(w).
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To prove the converse, we note that
|M(txso)li#,w) < Clitxsoll@,u)
and
f S(M(txpo)wdp < C f B(to)udpu.
B B
This completes the proof of Theorem 1.

Proof of Theorem 2. First we assume that there exists a measur-
able function w which is positive, finite almost everywhere and such that M
is bounded from Lg(u) to Lg(w). Then

f P(tM(xpo))wdp < C f H(to)udu.
B B

Define E; = {z € B, ; w(z)/u(z)> 277}, § € N. Then ;1 E5 = By and

J oM (xpoudp< ¥ [ S(tM(xpo))wdu
E; E;

<C [ #(M(xpo)wdp < C [ $(to)udy.
By B

Hence (3) holds.

Now we prove that (3) implies M is bounded from Lg(u) to Lg(w)
for some nontrivial w. First we observe that there exists a family of balls
{B(z:,7:)} which is a covering of X such that z is contained in B; = B(z;,;)
for at most M different ¢ for every ¢ € X, where M is a fixed integer
independent of #. For every B;, by (3), we can find a family of subsets
{E:;} which is a covering of B; such that

d;; = sup sup ( f sﬁ(tcr)ud,u) - f B(tM(xgo))udy < co.
i>0 BOB; B L. )

Define 5 ’
where E’.- = B(z;,5D%), h; = Ej)l chE-'i\U,<,- g, T axe, and ¢; =
279(d;; + 1)~ for j > 1. Now let us prove
J e frup, du < C [ &(|f)udu.
Using the same notation as in the proof of Theorem 1, we write
I'(t) = i\ U (),

UB; hi ’

where .
() = {(4,k) € I'(t); Bf n'B? # 0, BE N B; # 0}

icm
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Then we have

] e fup, dp
U:ﬂ_‘_" K

wdt o(BY)
<c = ; 3
I3 .= o(Zary) == )
5RYETR(1) ;
T dt o(B%)
+¢f—~ ¥ sﬁ(—’—t)uB.(E’F)
k [t}
o ¥ ien  MAED)

J
=h+1I.
Since the support of up, is B;, we get
o(B¥
S (e
(4:k)ETR(t), B CB; ’
T dt
< f - Z f P(tor)u du
0 (ik}ena() gh
o :
dt
<C " f
0 {M.(1/a)>1}
Therefore it suffices to prove
L<C [o(iflyudp.

Let 7 = max(jryery(y r(Bf) = r(B(z%,r)), where r(Bf) denotes the radius
of BY. Since (j,k) € I'(t), we have r > r(B;). Therefore there exists a
constant I} such that

T dt
I scdfmt—

F(to)udu < C [ &(\f|)udp.

B(zj1,Dr)> | BfuB
(jmk)EFZ(t)
and we got
o(B%) N _
2 ¢(m1) up, (Ef) < f @(M(xa(wf:,m)at))uh; dp
(4ik)EN(Y) J _ B;
< ch ] QD(M(XB(m;l‘Dr)crt))udug chd.-j f B(ot)u du
g By ! J B(x;]l ,Dr)
<¢ [ #otudpsC [ Hotjudy,
B(a*l,r) {M.(f[a)>1}

n
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where the fourth inequality follows from the fact that o is a doubling measure
and

llo Mo (X go4: @) < Cllotxpn ke -
J1 1n
Hence we have
v dt
nscfs f
o {Ms(i/0)>1t}
Until now we have proved the following;:
J B(M flup, dp < e; [ S(1f])u du

for some positive constant e;. Write

W= EeEIQ—iuBl, .

Then w is finite and positive almost everywhere and

JeMfywdp <2 [ &(|f)udp.
Hence Theorem 2 holds.

Proof of Theorem 3. First, we show that if M is bounded from
Ly(u) to Le(w) then ||h(-,Z)||(#,u) < oo for some T € X. Because u is a
measurable function and is finite almost everywhere, there exists a set E
such that 0 < u(E) < oo, u(E) > 0 and E C B(7, R) for some T € X and
0 < R < oco. Let f = xg be the characteristic fanction of E. Observe that
M f(z)> Ch{z,T) for all z € X and some small constant C'. Then we get

{11 Do) < CHM fll@,w) < Clfll@u) < 00

Now let us prove that if ||(+,Z)||(#,w) < o0 for some T € X then M is
bounded from Lg(u) to Ly(w) for some nontrivial u. Observe that

M (@) < sup {u(BY [ 17]du; u(B) < Coh(a, %)}
B .

B(to)udu< C [ &(|fudp.

+sup {u(B)™ [ If|ds; u(B) > Coh(z, )™}
B .

= le(x) + M2f(:‘),

where Cp is a sufficiently small constant to be chosen later. Therefore the
matter reduces to proving the following:

(4) 1M1 fll(e,u) < Cllfll(@u) »
(5) 1Mz fll(8,w) < Cllfll@,us) »

for some nonnegative measurable functions u; and u, which are finite almost
everywhere. :
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We prove (5) first. Observe that M, f(z) < Ch(z,%) [y |f]dp. Hence
we have

M2 flli@e) < C [ 1f1dp |, B) oy < C [ 1£1dps
X X

Let 1y = 21‘21 CiX B(,r:)\ B(%,r:—1) T C0X B(Z,r0), Where r; is chosen so that
p(B(T,r:)) < 2* and |J;, B(Z,7:) = X, and the ¢; are large constants to
be chosen later. Then

[ ¥z Yz dp <3 (B )P (e e < 2 el(e] ).
X

i=0 i>0

Because ¥(s)/s — 0 as s — 0, we can choose ¢; such that ¢;¥(¢;?) < 27
for i > 0. Then ||u;?||w,u,) < 0. Obviously u, is finite and positive almost
everywhere. Therefore by the Hlder inequality

Mo fllow) < C [ |F1ds < Cllfllg,unlluz s < ClFNi,un -
X

Hence (5) holds.
Now we prove (4). Define

M3 f(@) = sup {u(B) [ 1f]dus w(B) < C5"h(z,7)7 |
EEY B .

where Cp is chosen as in the definition of My and M;. Then we can prove
the following in the same way as in [15], [7] by choosing Cj sufficiently small:

w({Mif > 1) <Ot [|f|Mawdp
for all £ > 0 and
- M1 flleo < Cll flloo -
Hence by the interpolation theorem (see [5, Theorem 2.17]) we get
1M1 ll(# ) < Clifllie,m5) -

Therefore the matter reduces to proving that Mzw < oo almost everywhere.
When p{X) < o0, we see that A(z,%) is bounded below away from 0 and
bounded above, and that w(X) < oo. Therefore on account of the weak
type (1,1) boundedness of the Hardy-Littlewood maximal operator M, we
deduce that Maw < co almost everywhere. When p(X) = oo, for every z €
B(%,n) (n € N) and for any ball B containing z with p(B) < Cyth(z, %) <
Cn we have B C B(%,C,) for some constant C independent of B. Therefore

Maw(z) < M(wxB(z,c0) (@)

for all z € B(Z,n) and so Maw(z) < oo almost everywhere. Hence (4) holds
and Theorem 3 holds,
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3. Some remarks. We say the pair (u, w)on a space of homogeneous
type satisfies the Ag-condition if there exists a positive constant € such that
for every ball B = B{z,r} and every positive s,

(B [ udi)sp(u(By™ [ o(1fsw)dn) <c,
¥l B

where B = B(z,5D%r).
We can prove the following in the same way as in [5], [9].

THEOREM 4. Let (X,d, 1) be a space of homogeneous type. Then
(6) w{Mf> 1) <C) [ (1 Mudu

X .
for all 1 > 0 if and only if the weight pair (u, w) satisfies the Ag-condition.

THEOREM 5. (fiven a weight u on X, there exists a weight w > 0 almost
everywhere such that (6) holds if and only if for every ball B the following
conditions are satisfied:

(i) For almost everyz € X
sup sp(M(g(s™ w ™ xz)))(2} < oo.

(ii) sup ;lujps sso(u(Bx)"l Blf o{(su(Br)w)™) dn).< 00,

where the second supremum is taken over all balls By containing B.

Also we have

THEOREM 6. Let w be a nonnegative measurable function. Then there

ezists u > 0 finite almost everywhere such thai (6) holds if and enly if for
someT e X

w({h(z,F)>1}) < C iI;}:) ®(s)/B(st)
for alit > 0 and a constant independent of t.
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