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Law equivalence of solutions of some linear
stochastic equations in Hilbert spaces

by

SZYMON PESZAT (Krakdiw)

Abstract. Sufficient and necessary conditions for equivalence of the distributions
of the solutions of some linear stochastic equations in Hilbert spaces arve given. Some
facts in the theory of perturbations of semigroup generators and Zabczyk’s results on law
equivalence are used.

0. Introduction. Let Xy and X, be the solutions of the following
stochastic linear equations on a real separable Hilbert space H:

(0.1) dX1 = Ay Xqdt + dW, X]_(O) =z €N,
(0.2) dXy = Ag Xodil 4 dW, Xz(o) =zecH.

In (0.1) and (0.2), W is a cylindrical Wiener process on H, Ay and Az stand
for the infinitesimal generators of Co-semigroups Sy and Sy from a class
to be specified later. By the solution of (0.1) and (0.2) we understand the
so-called mild selution.

Let £(Xy( ,2)}and £L(X,(, =)} be the laws (distributions) in L*(0,T; H)
of the solutions of (0.1) and (0.2). This paper is concerned with the study
of necessary and sufficient conditions for equivalence of L{Xy( ,2)) and
L(Xa( ,2)) (i.e. law equivalence of Xy and X3). Tt will be shown that if
D(Ay) = D(A,) and

1
[ {4z = A1)S (8|13 dt < o0,
0

then for all T > 0 and ¢ € H the laws £(X1( ,2)) and L(Xa( ,%)) are
equivalent in L2(0,T; H), and in many important cases these conditions are
also necessary.

Conditions for law equivalence of solutions of general linear stochastic
differential equations were given by Zabezyk [10]. In our paper Zahczyk's
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270 S. Peszat

conditions are formulated in terms of generators and semigroups. The prob-
lem of law equivalence of the processes {0.1) and (0.2) was also considered
by Kozlov [6] and [7] for elliptic generators and by Koski and Loges [5] for
self-adjoint and commuting operators. Using a completely different method
Peszat [9] obtained sufficient conditions for law equivalence. The cases of
general self-adjoint and elliptic generatars are considered in the last section
concerning particular cases. Note that the results obtained in [7] and [5]
follow from the main theorems of the present paper.

1. Notations and preliminaries. In this paper, the spaces of boun-
ded, Hilbert—Schmidt and trace (i.e. nuclear)} operators on H are denoted
by L(H), La(H) and Ly(H), respectively. || ||, | [z and || |}y stand for the
operator, the Hilbert-Schmidt and the trace norm. The space L(0,7T; H)
is denoted by Mr. By Co we denote the collection of all generators of
Co-semigroups acting on H. In our considerations an important role is
played by the class I of generators A € Cy such that the semigroup §
generated by A satisfies the condition

JIS@I3 dt < 0.

Let (2, 7, P) be a probability space with a right-continuous increasing
family F = (F;)iz0 of sub-o-fields of F each containing P-null sets. Let
{em} be an orthonormal basis in # and let {W,,} be a sequence of inde-
pendent, real-valued F-Wiener processes. By a cylindrical Wiener process
on H we mean the series

W(t) = Z W (t)enm -

This series does not converge in H but in an arbitrary Hilbert space I
containing H with a Hilbert—-Schmidt embedding.

Assume that X is a separable Hilbert space and denote by My(K') the
space of all B(]0, +00)) X F-measurable processes ¢ taking values in X such

that:

(i) ¢(t) is Fy-measurable for all £ > 0,

(i) E f] |¢(s)[% ds < 00, £ > 0.

TrEoREM 1.1([8], Theorem 5.1). There exists a linear operator J acting
from My(La(H, K)) into My(K) such that:

(a) J¢ has continous sample paths, .

(b) J¢ is a martingale,

(c) ET§(2) =0, E\T¢t)k = E [; 16(s)}, 1,1y ds. 2 0.
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Remark 1.1. J¢(t), usually denoted by f} ¢(s) dW(s), is called the It
integrol and can be defined as the L?(12, 7, P) limit of the series

S [ dls)em AW .

m=1 0

For more information on Wiener processes, stochastic Ité integrals and
measures on Hilbert spaces the reader is referred to [8] or [2].

In this paper we study stochastic equations of the form
(1.3) dX = AXdt+dW, X0 =z¢cH,

where A € U is the infinitesimal generator of a semigroup §. By Theorem 1.1
the process

(1.4) X() = S(t)z + f S(t—s)dW(s), t20,

takes values in . The process X is called the mild solution of equation (1.3).
Let L : Hr — Hr and m € He be defined by the formulas

i
(Lu)(t) = [ S(t—s)u(s)ds, m(t)=S(t)z,
0

for w € My, t € [0,T7. Note that the operator L is injective. The following
well known theorem (see [2], Chapter 5) presents properties of the process
X which will be used in the sequel.

THEOREM 1.2. Let A €U, @ € H and let X be given by (1.4). Then:

(1) for each T > 0, X( ,w) € Hy P-almost surely and X : 2 — Hyp is
¢ measurable mapping,
(ii) the law of X, L(X)(B) := P(X~Y(B)), B € B(Hr), is Gaussian
with mean m. and covariance operator Q = LL*.
Recall ([8], p. 28) that a probability measure v on a Hilbert space ¥ is
Gaussian il and only if for every h ¢ H

m(B):=v(keM:{khne B), BeBR),

is a Gaussian meagure on R with mean m,, and covariance Q. The (unique)
element m € H and self-adjoint operator Q on M such that {m, 2}y = m,
and (Qh, h)y = Qp, are called the mean and the covariance operator of v.
Suppose that Ay, A; e U, T > 0 and =z € H, Let §, and 53 be the
semigroups generated by A; and Aj, respectively. The processes

(1.5) Xy(ta) =St + [ Si(t—s)dW(s),
V]
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(1.6) - Xa(t,2) = Si(t)e + f Syt — 8)dW(s)

are the mild solutions of equations (0.1) and (0.2). We consider X7 and
X, as random elements in the space Hr = L*(0,T; H) (i.e. measurable
mappings from {2 into Hr).

Let Ly,L2 : Hy — Hr, and my, my € M be defined by the formulas

(Lru)(t) = f Si1(t —syu(syds, (Lau)(t) = f S2(t — s)u(s)ds,
0 0

for v € He, t € [0, 7], and
my(t) = Si(t)z, my(f) = Sy(t)z, fortel0,T].
As a consequence of Theorem 1.2, we have

Remark 1.2. The laws £(X1( ,2)) and L(X,( ,z)) are Gaussian; my,
ar_xd m3, Qi = InL{ and Q3 = L;L¥ are the means and the covariance
operators of L(X1{ ,z)) and L{X;( ,z)).

We say that Xy and X; are law equivalent if the laws £(X;) and £(X3)
are equivalent (i.e. mutually absolutely continuous). This means that for
every B € B(Hr), £L{X1)(B) = 0 if and only if £(X:;)(B) = 0.

Recall [8] that two Gaussian measures are either singular or equivalent.
For further reference we present Zabezyk’s theorem on equivalence (see [10]).

{lts proof is based on the Feldman-H4jek theorem (see [8]) and is omitted
ere.

TreoreM 1.3. The laws L(X1( ,z)) and L(X2( ,x)) are equivalent if
and only if the following conditions hold:
(i) ImL1 = I]Ile,
(11) the operator (Ly 'Ly (Ly'Ly)* — Z is Hilbert-Schmidt,
(i) m; —my e Im Ly,
Uging elementary arguments one can prove that (i) implies that the
domains D(A;) and D(A,) are equal (more generally, ImL; C ImL, implies

that D(A;) C D{A;)). Moreover, the o = L7
C perator K = L;'L; — 7 has on
C(0,T; H) the following expressio;l: P

(1.7} (Lu)(t) = (A — Ay) fS1 (t—s)u(s)ds.
0

Therefore, we may rephrase condition (i) in a more convenient but equiva-
lent form. The operator K defined on C1(0,7; H) by (1.7) has a bounded
extension to Hr and the operator M = K 4+ K* + £K* is Hilbert—Schmidt.
Of course, if X is Hilbert-Schmidt then so is M. Difficulties in application
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of Theorem 1.3 lie in the fact that the form of the operator K is known only
on C'(0,T; H) and a priori it is possible that AM is Hilbert~Schmidt even
if K is not. In fact, the main theorems of the present paper show that the
latter situation does not occur for a variety of cases.

Before proceeding further we need a few definitions. In what follows
1< p< oo, A€ Cg and § stands for the semigroup generated by A.

DEFINITION 1.1. We say that a linear operator (K, D(K)) belongs to
Pp{A) if it has the following properties:
(i) D(A) = D(K),
(i) K R(), A) is bounded for some X from the resolvent set of A,
(iii) for ¢ > 0, the operators K S(t) defined on D(A) have bounded ex-
tensions to H,
(i) fo IKS(D)|Pdi < co.

Now,let A €ld.

DEFINITION 1.2. We say that a linear operator (K, D(K)) belongs to
R(A) iff K € P1(A) and
1
JIES@®I3dt < o0.
0 :

The class Py(A) was introduced by E. Hille and R. Phillips {see {4]).
The classes P2(A) and R(A) were introduced by Peszat in [9] (with different
notation: Py{A4), Pa(A) and R(A) were denoted by P(A), P1(A) and P2(A),
respectively).

DEFINITION 1.3. A generator A € Cp belongs to § if there exist a self-
adjoint strictly negative operator (A, D{A)) and 1 < p < oo such that:

(i) D(A) = D(A4) = D(A¥),

(i) A — 4 € P,(4),

(i) 4* — 4 € Py(A).

S is a subspace of the space of all analytic generators, containing the
self-adjoint generators. One can show that each uniformly elliptic operator,
with smooth coefficients and 0-boundary conditions on a bounded region,
belongs to S (for more details see the last section).

2, Formulation of main results. Now, we are ready to formulate
the main results. Recall that A;,A; € U and X1, X, are given by (1.3)
and (1.4). The main results of this paper present relations between the
following conditions of probabilistic nature: '

(C.1}) Forsome T > 0, L(X1( ,0)) and L(Xs( ,0)) are equivalent in Hr,
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(C.2) Forall T>0,z€ H, L{X1(,2)) and L(X3( ,2)) are equivalent
' in HT,
and the following analytic conditions:
(C3) A —A€ R(A1),
(04) Ay~ Az € R(Az)

It will be proved (see the next section) that (C.3) and (C.4) are equivalent
and (see the proof of Theorem 2.1, or [10]) that the operator K is Hilbert-

Schmidt if and only if (C.3) holds. The first theorem contains sufficient
conditions for law equivalence of the processes X; and X,.

THEOREM 2.1, (C.3) (or equivalently (C.A4)) implies (C.2).

Two theorems below contain sufficient and necessary conditions under
the additional assumption that the difference Ay — A; is “small”.

THEOREM 2.2. Suppose that Ay — Ay € Pa(A1). Then (C.1)~(C.A4) are
equivalent.

THEOREM 2.3. Suppose that D{A1)N D(A}) N D(A}) is dense in H and
Az — Ay € P1(A1). Then (C.1)-(C.4) are equivalent.

Theorem 2.4 contains necessary and sufficient conditions for law equiv-
alence, under the assumption that the generators differ only slightly from
self-adjoint operators.

THEOREM 2.4. Suppose that Ay, Ay € §. Then (C.1)-(C.4) are equiva-
lent.

COROLLARY 2.1. Suppose that Ay and Ay are self-adjoint. Then (C.1)~
(C.4) are equivalent.

The proofs, based on the theory of perturbations of semigroup genera-
tors, are given in Section 4.

3. Perturbations of generators. The following theorem, whose proof
Is omitted here, contains facts obtained by E. Hille and R.. Phillips [4] (The-
orem 3.4.1, p. 399, Corollary 1, p. 400, and Theorem 13.5.3, p. 410; see
also [9] and [3]).

TuEoREM 3.1. Let K € Py(A). Then:

(i) The operator A+ K, with domain D(A), belongs to C.
(ii) P1(A) = P1(A+ K).
(i) If U is the semigroup generated by A + K then

(3.8) U(t)y=5(@)+ fS(t-—a)KU(s)ds:S(t)+ fU(ths)KS(s)ds
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Before proceeding further we will prove the following easy lemma.

LEMMA 3.1. The conditions:
(i) Aeu,
(ii) for each t > 0, S(t) € L1(H) and [, [1S()]1 < oo,

are equivalent,
Proof. (i)=(ii) follows from the inequality
IS@I = [S@/28@/2)h < 1SE2H20S@/2)ll: = |5/ 213 -
(ii)=>(i) follows from the inequality
I3 = 1S @)l2 < SIS @Il -

The following theorem gives some more information about the class of
R(A) perturbations and it will be used in the proofs of the main theorems.

THEOREM 3.2. Let A€ U, K € P1(A). Then:

() A+ K el,
(il) R(A + K) = R(A).

Proof. Let U be the semigroup generated by A+ K. We will show that
U satisfies condition (ii) from Lemma 3.1. By (3.8)

W@l < IS+ [ 15 = 8)LIIKU(s)|| ds.
0

Since K € P1(A + K), we h‘ave
1 1 1 1
Jio@iedt < fUs@lhde+ [1S@ dt [[|KU(s)]ds < oo.
0 0 0 0

Now, we prove (i), By Theorem 3.1, ~ K € P1(A+K) and it is enough to
prove that R(A)C R(A+K). Let F € R(A), then F € Py (A+K) = P(A).
Since

1 1
f f IFSGs = nIIKTEIdrds < [IFS(s)llds [ KT dr < oo,
0 0
we have (see [4], Lemma 13.3.2, p. 393)

FU(s) = F§(s)+ fFS(s - rYKU(r)dr
0
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and for each ¢ € [0, 1]
¢

t t 1
JIFU (2 ds < [IIFS(s)lzds+ [IIFS(s)liads [IKU() dr
[1] Q 0

0

= (1+ [UKUCIar) [ IFSOlds =M [ IFS(E)lads
0 0 4]

Note that there are only two possibilities:
1° There exists 0 < £ < 1 such that forall 0 < s <¢
IFU(8)ll2 < MIIFS(s)|]2 -

2° There exists a decreasing sequence {¢,} converging to 0 such that for
alneN,0<t,<1and

[FU(E)ll2 = M| FSE)2
In the first case

1 £ 1
JIFU@3ds = [HFUSHEds+ [ IIFU(s)|3 ds
0 0 £

—

< 1
<M [IIFS(s)i3ds + | FUE)® [ U(s)[3ds < o0,
0 o

In the second case

f HFU(S)IzdS—Z f |FU(s)||2 ds + f IFU(s)13 ds

n=l tn-l»l

SZ”FU(%-{-I)HZ sup NU(s = tnt1)|[*(tn ~ tnt1)

n+1 8<

+ f |FU(s)|l; ds

SMZOSUP IIU(S)HZZHFS(HH 13 (tn — tas1)

n=1
1-ty

+IFUE)® [ U(s)3ds< oo.
0

Thus the proof is complete.

. 4. Proofs of Theorems 2.1-2.4. Although Theorem 2.1 was essen-
tially proved in [10] (and in [9] using a completely different method) we
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present a proof. We show that condition (C.3) implies that the operator K
(given by (1.7)) has a Hilbert—Schmidt extension. Let {en} be an orthonor-
mal basis in H and let {f,,} be an orthonormal basis in L2(0, T;R). We may
assume that for each n, e, € D(Ay)} = D(A;3). Moreover, we assume that
for each m, f, € C'. The functions {fen; m,n € R} form an orthonormal
basis in Hr and

4
K fmen(t) = (A1 — A2} [ S1(t — 8)fm()en ds
0

= f (Ay — A2)51(t — 8) fm(3)en ds.
0

Hence (see [B], Example 3, p. 6)

Z Z(Kfmena fdel)?}-[.r

nd m,d

T 4 2
=32, ( [ [ (A1 = A2)S1(t = $)em, e it fn(8)Fa(t) ds dt)

nt m,d 00

T
=2 f f((Al*A2)51(t—3)6m61)§fdsdt
n,d 0

(=

fT fll Ay — A3)81(t — 8)||3 ds dt

0 0
T
<T [ (A - ARSI dt < co.
0

This means that K has a Hilbert—Schmidt extension to Hr. As L:(K + I)
= Ly, we have Im Ly C Tm Lp. Since R(A1) = R{Az), the inclusion
ImLy, € Lm L; can be proved by replacement of A; with Az. Now, we
show condition (iii} in Theorem 1.3. By (3.8)

my () — ma(t) = Si(t)z ~ Sa(t)e = — j §y(t — 8)(Ag — A1),5'2(.5)a: ds.
Let u(s) = —(Ag — A1)82(s)z. Since

T
J 1A — 40)Su(s)elirds < lefy [ 1A = A)S2(a)Pds < oo,
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wehaveu € Hy and m;—my = Lyju € Tm L;. Thus the proof of Theorem 2.1
is complete.

Now, we prove Theorems 2.2-2.4. Note that (C.3)<(C.4) follows from
Theorem 3.2, (C.3)=-(C.2) follows from Theorem 2.1 and (C.2)=(C.1) is
obvious. Therefore we only have to prove (C.1})={C.3). Assume that (C.1)
holds. Let K = Ay — Ay, let {e,} be an orthonormal basis in H and {f,,,} an
orthonormal basis in L2{0, T; R). As in the proof of Theorem 2.1 we assume
that for each m, f,, € C1. In the cases of Theorems 2.3 and 2.4 we assume
that e, € D(A1) N D{A}) N D(A}). These assumptions guarantee that for
all » we have

T
J UK Si(enl’ + (K Si (1)) enll) dt < oo.

Let
g 1(t5 8) = Loy (K S1(t — 8)en, edmr

Gt 8) = L (K S1(s = 1)) en, e},
tAs

qﬁ,,(t, s) = f ((KS81(s ~7))*en, (KS1(t — 7)) e)) g dr .
0

After simple calculations we have
{(K+K* + KK*) fmen(t), fa)er)n

T
= [ {ahat8) + @21ty 5) + 43 (8, )} fn () (1) ds.
0

Using arguments similar to the proof of Theorem 2.1, we have

YA+ K™+ KK*) frnen, faet)l,

m,d

T T
= [ [{adu(t,s)+ &2, (t,6) + @2 (2, 8)}? ds dt.
6 0

Let 0 < Tp £ T, to be specified later. Assumption (C.1) and Theorem 1.3
imply that M = K 4 K* + KK* is Hilbert—Schmidt. Hence
Ta ¢

E f f {‘Imlm,l(t#‘g) + qz,l(ta 3) + flﬁ,r(tv’)}z dsdi < ”Mllg <.

nd 0 0

Since for all 0 < s <, ¢2 ,(2,5) = 0, we have

Ty &
Z f f {_‘Irlu,x(t;s) + qg,‘(t, P dsdt < 0.
nd 0 0
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This means that
Ta t
49) 3 [ J{ksit-s)enedn
n,d 0 0

+ f ((KS1(s = 1)) en, (KS1{t = ))*et)mr dr}2 ds dt

To ¢
=3 [ I<K.5‘1(tu~s)(en+
nd 0 0

= 2
[ S1(s = 1)K Si(s —r))*en dr),e;)Hd.s dt < 00 .
0

Suppose that A3 — A = —K € P1(A;) (we consider the cases of Theo-
rems 2.2-2.3). The operators

Z(s) = f Si(s - r)(KSi(s —7r))dr, s2>0,
0

are bounded and

12N < [0~ IKSi(s = lldr < sup 150 [ 1S dr.

Hence we may choose 0 < Ty < T such that

(4.10) sup{|Z(s)][ : 0 < s < To} < 1/2.
From (4.9)
To ¢
[ [IKSi( = )T+ Z()] dsdt < oo
0 0

From (4.10) the operators I + Z(s), s € [0, Ty], are invertible and
sup{[|(Z+ Z(s)) 7'} : 0 S s < To} £ 2,

Therefore

To
[ JIES (¢~ 9)|f dsdt
0 0

To ¢
= [ [IKS:(t - 8)(T + Z())T + Z(s)) |1} ds dt
0 0

To &
<4 [ [UESi(t— )T+ 2(s)}dsdt < oo
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and finally fo ° ||& 81(t)]|3 dt < co. This proves that A; — A; € R(A;). Thus
Theorems 2.2 and 2.3 are proved.

The case of Theorem 2.4 is more complicated. We need the following
lemma.

LeMMA 4.1. Suppose that A € §. Then for all s > O the operator
Zo(sy= [ S(s—r)(AS(s—r))dr=[ S(r)(AS(r))*dr,
0 0

D(Zo(s)) = D(A"),

has a bounded eziension (denoted also by Zy(s)) to the whole space H. More-
over, if A € S N then for each £ > 0 there exists 0 < Ty < T such that

sup{[|Zo(s)[| : 0 < s < To} £ 1/2+ €.
Proof.

Zo(s) = [ §*(r)(AS(r))*dr + f (S(r) - S*(r))(AS(r))* dr
0 0

= Zo1 (.9) + Zoz(s) .
Obviously Zoi(s) = 3(5*(2s) — I). Suppose that 4 is a self-adjoint strictly

negative definite operator, p € (1,00) and A~ A € Pp(A), A* ~ A € P,(4).
From (3.8) (here S stands for the semigroup generated by A )

(4.11) S(r) = 5(r) + f S(r — u)(A - D) (v) du,
0

(4.12) S* ) =50+ [ 8*(r — u)(A* —A)F(w) du.
0
Hence, by the Hélder Inequality (g is such that 1/p+ 1/¢ = 1)

I156) =S < f IS0 = w)lCA - A)F(a)] s
0
+ 1S = w)lIiCA - ) du
< s 8¢ v)li{(f 4= A5 aw) ™

+ (Uf”(*“*“z)b—’(u)ll”du) v “hette = w(r)rfa.
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Since S is an analytic semigroup, there exists M such that

| Zox ()| < f M ()9 (AS(r))|| dr < f M(r)yr/1Mr=tdr

< sup M(r)M fr”""’ dr = Cy{s)s'/?.
0<r<s

Hence Zy(s) is bounded and
(4-13) 1Zo(s)ll < §i1S*(29) = Zi| + Cu(s)s'/2.

If A €U then A € U as well. Since A is strictly negative, ||5(2s) - Z|| = 1,
for s > 0. From (4.12)

15%(26)~Z1| < I5(28)-Tll+ [ N5*@s—w)[{A*~D)S(w)]| du = 1+C3(25).

From (4.13)
1Zo(s)]| € £+ Ca(2) + Cu(s)st/ =} + C(s)..

Let £ > 0. Since C'(s) converges to 0 as s converges to 0, there exists T > 0
such that sup{C(s) : 0 €< s € Ty} € e. This completes the proof of the
lemma.

According to Theorems 2.1 and 3.2 we may replace A; by A; + AZ and
Az by Ay + BI. Therefore, without any loss of generality we can assume
that Ay is invertible and ||I ~ A;A7?|| < 2. In this situation

Ki=4,-A4; = (I-- AzAi’l)Al = BA,,
where || B|| < 2. By Lemma 4.1 the operators

Z(8) = fSl(s — YK 81(s—r))*dr = Zo(s)B*, s€][0,T}],
0

are bounded and there exist 0 < 77 < 1 and 0 < Tp < T such that
sup{||Z(s}]|: 0L s < T} £ 1—n.

Using the same arguments as in the proofs of Theorems 2.2 and 2.3 we can
conclude from (4.9) that

To H TO t
[ JIES = s)lfdsdt <y [ [|KSi(— )T+ Z(a))l[3 dsdt < oo
0 0 0 0

and finally fo ° || K S1(t)|| dt < oo. This completes the proof of the theorem.
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5. Some special cases. In this section we consider particular classes of
generators. First we deal with self-adjoint generators and then with elliptic
generators.

Let (A, D(A)) be a self-adjoint, negative definite generator of the semi-
group S acting on H. Note that A € I iff A~! is nuclear. Therefore we
assume that A=1 € Li{H). Let {~Ag, ez} be the sequence of all eigenval-
ues and the corresponding normalized eigenvectors of A. We assume that
0< Ay €A £ ... The semigroup 5 has the form

o0

Sz =Y exp(—Aet){z, ex)mex
k=1

First we solve the problem when an operator (F, D{F)) belongs to R(A).

LeMMA 5.1. F € R(A) iff D(F) = D(A) and the operator F(—A)~1/?
defined on D(A) has a Hilbert-Schmidt extension to the whole space H.

Proof. For k € N and 0 < t, we have F'S(t)e; = exp(~Ait)Fer. Hence

1 o0 1
JIFSWIZde=3" [ exp(—2Axt) de|Fesly
0 k=10

1 o0
=5 Z(l — exp(—2M A7 | Fegl}y
k=1

!
b=
(s

(1~ exp(—24;))[F(~A4) e}y

e
[

1

<

[ ST

1
IF(=A)"2)1F < (1 - exp(=22))"" f [ FS()|} dt.
0

This completes the proof.

Corollary 2.1 and Lemma 5.1 lead directly to the result obtained earlier
by Koski and Loges ([5], Proposition 1).

THEOREM 5.1. Let Ay, Ay be self-adjoint operators having the form
Ajen = =Apen, Azen = —fren, neN,

where {en} is an orthonormal basis in H and {\,}, {8} are scquences of
positive numbers such that

o0 ]
D A <oo, Y8 <o
n=1 n=1

Then for each T > 0 and » € H the laws L{Xy( ,z)) and L(X2( ,z)) are
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equivalent in Hr if and only if

(5.14) i (Bn = An)?/An < 0.

n=1

Proof. (5.14) holds if and only if D(4:) = D(Az) and (A; — A,)
o(—A; )"1/? is a Hilbert~Schmidt operator on H. This completes the proof.

Now, suppose that A; and A, are uniformly elliptic differential operators
of orders 2my and 2my on a bounded region G C R*. We assume that the
operators have infinitely differentiable coefficients in G, G is of class C* (see
[1}, p. 128) and that their domains are given by

D(Ar) = H*™(G)NHF*(G), D(A:)= H*™(G)n B (G)-

LEMMA 5.2, (1) D(Al) = D(Az) lﬁ my = M = my.
(il The operators A;, 1 = 1,2, belong to §.
(ili) Fori = 1,2 the operator A; belongs to U iff 2m; > n.

Proof. (i) is obvious, (ii) follows from the fact that for every elliptic
operator A of order 2m one can choose an elliptic self-adjoint operator A
of order 2m such that the order of A — A is less than 2m — 1 (see [1]) and
it is easy to verify that there exists p > 1 such that A — A € P,(A). Part
(iii) follows from: Theorem 3.2, statement (ii) and the fact that each self-
adjoint elliptic differential operator of order 2m on a ¢ C R™ has a pure
point spectrum {—Ag, k& € N} such that Ax =~ ck*™/™ as k converges to co
(see [1], Sec. 14).

The following theorem is a special case of Theorem 2.4.

THEOREM 5.2. Suppose that the orders 2my and 2mgy of the operators
Ay and Ay are greater than n. Then for all T > 0 and for all initial values
z € L*(G) the laws of solutions of the stochastic purtial differential equations

dX, = AL X dt -+ dW, Xl(()):zm,
dX, = Ap Xodt +dW, X3(0) ==z,
are equivalent in L2(0,7; L*(G)) if and only if Ay — Ay belongs to R(Ay).

The remark below is a consequence of Theorem 3.2, Lemmas 5.1 and 5.2
and Theorem 13.5 from [1].

Remark 5.1, (i) If the order of Az — Ay is less than m — n/2 then
Ay — Ay belongs to R(Ay).

(ii) If Ay — Ay belongs to R(Ay), then the order of Ay — Ay isless than m.

Kozlov ([7], Theorem 4, p. 161) proved that if A, and Aj are elliptic and

self-adjoint operators on a smooth compact manifold M without boundary,
then the laws £(X,) and £(X3) are equivalent if and only if the order of
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Ay — Ay is less than m — n/2, where 2m is the order of A; and Az and n
is the dimension of M. Using Theorem 2.4, Theorem 3.2(ji) and the same
arguments as in the proof of Lemma 5.2(ii) one can generalize this result
to the class of all elliptic operators on M. However, for arbitrary elliptic
operators the problem whether A; — 4y € R{A4,) if and only if the order of
Ay — Ay is less than m — n/2 is open,
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The Littlewood—Paley function and ¢-transform
characterizations of a new Hardy space HK,
associated with the Herz space

by

SHANZHEN LU and DACHUN YANG (Beijing)

Abstract. We give a Littlewood-Paley function characterization of a new Hardy
space HKy and its po-transform characterizations in M, Frazier & B. Jawerth’s sense.

§ 0. Introduction. In [8] we have introduced some new Hardy spaces
HK, associated with the Herz spaces K, where 1 < p < oco. More impor-
tantly, we have established the atomic and molecular structural theorems
for HK,, 1 < p < co. In §1 of this paper, we present a Littlewood—Paley
function characterization of HK,. In §2, using the atomic and molecular
character of TK, and the characterization of a special “tent space” 'K in-
troduced in [8], we give the p-transform characterization of #K in Frazier
& Jawerth’s sense (see [3] or [4]). ‘

§1. The Littlewood—Paley function characterization of HK,.
Let Qp = {z = (21,.-.,%n) € R" : |&5] € 2%}, Ck = Qi \ Qp—1, and
X, = Xo, » k € Z. The following definitions are given in [8] and [6].

DeriNiTION 1.1, Suppose 1 < p < o0, 1/p+ 1/p" = 1. The Herz space
K, consists of those functions f € L, (R™\ {0}) for which

1/, = E 208/ | Fyall < oo,

k=00
DEriNerioN 1.2, Let 1 < p < oo, A function a(z) defined on R™ is said
to be a central symmetry (1, p)-atom if
(1) supp a C @, where @ is a cube centered at the origin,
(2) [a(z)yde=0,
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