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Characterization of Mellin distributions
supported by certain noncompact sets

by

ZOFIA SZMYDT and BOGDAN ZIEMIAN [Warszawa)

Abstract. A class of distributions supported by certain noncompact regular sets
K are identified with continuous linear functionals on C§°(#). The proof is based on a
parameter version of the Seeley extension theorem.

The paper is devoted to establishing theorems characterizing Mellin dis-
tributions supported by sets Z# (see Section 4). They can be regarded as
the extension to certain noncompact sets of the following theorem charac-
terizing compactly supported distributions (cf. [1]):

THEOREM 1. Let u € D3 (R"}, where K is a connected compact set in
R™ such that any two points T,y € K can be joined by a rectifiable curve in
K of length < Clz — y|. Then there exists a constant C' < o0 and k € Ny
such that

i <C D sup

lo| <k Y€

(2) v, proeci@)

1. Notation and necessary facts of the theory of Mellin distri-
butions. Any set in R™ of the form

{(ml 1t mn)
, @y D1, - by are given real numbers or oo with a; < b; for
,m, is called an open polyinterval in R™. Any set of the form

{(z1,--+1%n)
is called a right- closed polyinterval. N denotes the set of positive integers
and Np is the set of nonnegative integers. For a = (a1,-..,05) € N§ we
write ol = a1+ .-+ an, al=oql.. . an!.

ca;<mi<bfori=1,...,n},

where a1, .
1==1,..

o<z <b<+oofori=1,...,n}

1001 Muathematics Subject Classification: Primary 46F10.



26 Z. Szmydt and B. Ziemian

Throughout the paper we use the following vector notation: if a,b € R,
a={(ar,...,an), b= (b1,...,b,) then o < b (a < b, resp.) means a; < b,
(@ < by, resp.) for j = 1,...,n. Weset R: = {z ¢ R* : 0 < 2},
I'=(0,tj ={z e R} : = < t}, where t € R}. We write r = (r,...,7), in
particular 1 = (1,...,1) € R™

For x € R} and z = (z1,...,2,) € C" we write

A N
Weset e™¥ = (e7¥,...,e7¥) for y € R" and similarly, if z RY, Inz =

(Inzy,...,lnz,). In particular, for z € R} and o € N, (Inz)®
(lnz ) ... (Inz,)*. Vector notation is also used for differentiation:

6 _(9. i) L 0
gz \bx’ oxn) YAz \Maz " Fa. )

and if » € Nj then

(ﬂ)”_ v Hvn mi V_ _i V1 8 b
6z) ~ B2 Bz pz) ~ \bay) T \"E,)

Let A C 2, 2 open in R™, We denote by O (12) the set of smooth (i.e.
C°) functions on 2 with supports in A. We write CF if 2 = R™. Observe

that the formula
B o
(@) wlx)

Iellle = sup
[D%k:ne}'(
defines an increasing sequence of norms on C¥. The set CF equipped with
the topology defined by this sequence of (semi)norms is denoted by Dg-.
The space Dy is complete (see e.g. [3] or Proposition 3 for a similar proof)
and so is the dual space (Dg)".
Let u € (Dg ). The value of u on a function ¢ € C% is denoted by ultp].
Let {2 be an open subset of R”. We denote by C¥{2) (k € Np U oo) the
set of functions of class C*(12) whose supports are compact subsets of (2.
If A C {2 is relatively closed in (2 we denote by Ciy(A) (C™(A), resp.) the
space of restrictions to A of functions in C§°(2) (C'°(12), resp.). We equip
C&,(A) with the inductive limit topology as follows:

D(A) = lim Dgl4,
KCh
where K ranges over all compact subsets of {2 and Dyl a denotes the space
of restrictions to A4 of elements of Dx with the topology induced from Dy,
The dual space D'(A) is called the space of distributions on A.

Note that if A is open then we take A = 2 and D’(4) is the “usual”
space of distributions on an open set.

I

for p e C¥ (k=0,1,...)
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In applications we take A = I = (0,#] C R%, or 4 = [0,#] C R™ with
t>0,teR™.
Let a € R", t € RY. Note that the polyinterval
I=(0f={zeR*: 0<2 <t}
is relatively closed in RY and that C°°(I) denotes the space of restrictions
to I of stnooth functions on C*°(R}).
For a € R™ we introduce the space

M, = M, (I) = {cp e C™(I) :

Qa,x ((to) = sup
vl

< 00, aENB‘}

5\
ma+a+1(5&;> L,D(E)

equipped with the topology defined by the sequence of the seminorms
{ @a,,ﬂ}u.er\m. An equivalent sequence of seminorms is

x%F1 (w;%) Oth(:c)

‘We shall show in the next section that the space M, is complete. Fo.r
w & (RU{co})™ we define the function space M(,)(I) as the inductive limit

M(w)(f) = li'_%lﬂﬁra(f) .
a<u

, oelNg.

B, (i) = sup
wel

The following topological inclusion is clear:
DT} € My (D).
Moreover, it can be proved that C’E’S) (I) is dense in M, (I). Hence we derive
easily that M{,,(J) is a subspace of D'(I), where My, () denotes as usual

the dual space of M,)(I) endowed with the pointwise convergence topology.
Therefore the elements of M, are called Mellin distributions. The totality

of Mellin distributions is denoted by M'(I):
M= | MuyD= U M0
we(RL{oo})™ ) weRn
Note that the lollowing operations of (pointwise) multiplication are con-
dhauous: :

' M(u) - M(w;Reﬁ)a
(1)

:‘cﬁ H J'l’fa had Mam-Reﬂ} m'B
af 1 M{yy = Myipep) -
We shall yet introduce a space Mg (I):
M () = lim My(I)
(D) il



28 Z. Szmydt and B. Ziemian

equipped with the projective limit topology: y, — 0 in M, if and only if
@, — 0 in M, for every b > a.

M;_4; coincides with the space of Mellin multipliers, i.e. functions m €
C=(I) such that multiplication by m is continuous My, — M, for every
w € (RU {co})™ We formulate two propositions leaving the proof of the
first one to the reader.

ProrosiTioN 1. Let u € M(’w)(I), w € (RU {m})ﬁ, mo,my € My
( =1,2,...), my — mg in the projective limit topology of Mi_y. Then
myu — mot in M ().

In the next proposition we study the properties of cut-off functions \ €
CeMR) with0 S A< L, As)=0for s <1, A=1for s > 2 Letr elRy.
‘We put

(2) Xr(€) = Alz1/r) ... Mzn/r) forz e R™.

It is easy to see that x» € C*(R"), 0 € x» < 1, xr(z) = 1 for z > 2r,
suppxr C {zx € R® : z > r}.

PROPOSITION 2. Let x, be the function defined by (2). Then x, € My
and for every o € N} there exists a constant C, < co (independent of T)

such that
a o
(m “5;6“) xr ()

and x; — L in M_1)(I} as r — C.

sup
xel

<0

Proof. Clearly xr € M_1 C M..y}. The desired estimate can be proved
by induction. Now take § > 0 and observe that

5—1+5,Q(X'r - 1} = Sup
el

as v — 0, where J, =T\ {x e R

8 [=3
(a5 ) G- )| < Cusup Ja®| 0

z SL‘EJT'
Dz > 2r}

For the use of Section 2 it is convenient to introduce the following sub-
spaces of C>((0,¢)), € € R, :

C=((0,¢))

?

4
= {Lp € C%((0,£)) : Jo7 ¥ extends continuously to (0,¢] (7 =0, 1,2, )}
and C*([0, ¢)) defined analogously. It is clear that 6'50((0,5]) c C((0,¢]),

C=([0,&)) ¢ C®([0,¢)). By the Seeley extension theorem (see [2]) the
converse inclusions are also true. In Section 2 we shall brove a parameter
version of the Seeley extension theorem. '
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2. Seeley type linear extension mapping on a polyinterval. We
shall construct a linear continuous extension mapping

£+ Mu((0,¢]) > M,((0,7))

We begin with a lemma which is a parameter version of the Seeley extension
thecrem from a half-line to the real line.

Let « € R", z € R, ¢ € R} and write ¢ = (a1,a"), z = (@1,2),

for any ¢ > t.

t=(t1,t) with ¢’ = (as,...,e4), ' = (z2,...,25), t' = (t2,...,ts). Take
gz € Ry and set
5°°([0,€);ﬂ/{af((0,t’])) = {(p € C*°((0,e) x (0,%]) :
, a o a [«5]
su g+ (m’———) (—) z1,2)| < o0
(O,E)XI()U,t"] ( ) dz! 3.’31 lto( 1 )

for @ = (a1, a') € N2, o, 2') € 0%([0, ) for every z' € (O,t’]}.
In an analogous way we define C((—¢,¢); Mo ((0,%7)) and CF ({0, 00);
My ((0,2)).

LEMMA 1. There exists a linear extension mapping

g O%([0,); Mar((0,81)) = 0% ((—e,€); Mar ((0,£1))

such that for every o € N there exists a constant Cy, such that

(/)42 (-a%) (=) " ),

=1} . 2 o 5 P )
(:rr‘)a +1 (:E’@) (553;) (p(ml,iﬂ )

< sup
. ; ©)x(0¢1]
for every @ € C([0,€); Mar((0,¢])).
Proof. Lety € C3°(R) be 1 in a neighbourhood of zero and x(z1) =0
for lzy| > £/2. Define

(3) sup
(—e.e)x(0,8]

(4) Ero)(z) =Y mp(3'z, 2 )x(3'z1)
=0

for p € C°([0,2); My ((0,£])), where {d;} is a sequence of real numbers.
Observe that for each z; > 0 only finitely many terms on the right hand
side of (4) are nonzero and (£'y){(z) = 0 for @1 2 £/2. Clearly

B 8%([0,6); Mar ((0,8])) — O ey (0, 00); Mar ((0,))
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and this map is linear. We shall choose the sequence {o1} to satisfy

(5) Z|a.;|3'!p<oo forpeN,
1=0
[ =]
(6) 20,53“’ =(—1)? forpeN.

Assuming this for a moment we find by differentiating (4)

0 () @)

=S as?( ) (xte)elons)

=0

forpeN.

3=3£:l’}1

Thus from the properties of x and from (5} we get the estimate

@i (05 ) () @)

< Oy Z sup (z/)* 1 m’—a— ) 2. ’ (z1,2)
oz’ Oz PAEL ’

=0 (0 e /2] % (0,
with some constant Cyo, < 00, and on the other hand we find

. ' 0 o 0 « ol !
RENC 5_) () Eler)

Susn(r2) (&) oo

(8) sup
(0,e)x(0,%']

where

CANY A\ . LAY 8 ,
(“ amf) ((BM) ‘*’><°’m>“wfﬁ%+(w) (3_561) p(a1,a).

Now by (6)

2 () (&) o)
e (&) )e

for every a € Nij; denote this expression by .

() (&) @)oo
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The desired extension is obtained by taking
ry, 2! for 0 < t
(£} (21,7 = {Cp(ll : NS mEs N
(o) (—zy,a') for —e<z1 <0, 0< 2’ <¢.
Now (8) and the assumption that v € C°°([0,&); M, ((0,t])) vield (3).

Finally, to find a sequence {0;} satisfying (5) and (6) we note that the
function

h(z) = cos(m(3* — 1)/2)
is entire and h(p) = (—1)* for p € N. We take a; ({ = 0,1,...) to be
the coeflicients of the power series expansion of the function C 3 w —

cos(r((1w — 1)/2)), Le. h(z) = 2% ai(3).

Remark 1. (Slw)(ml,m’) = 0 for z;

< —¢/2 since (E'g)(z) = 0 for
T 2 3/2

THEOREM 2. Let a € R™, 0 < t <t € R%. Then for every 0 < e < { —*t,
g < t there exists a linear extension mapping

Ee 1 Mp((0,t]) — Ma((o,ﬂ)
continuous in the respective topologies and such that for every v € Ma((0,#)),
(Eetp) (@) =0 if t; + &5 <z <4; for some 1< j < n.

Proof. Let v € M,{(0,t]), choose 0 < & < t,& < I —t, and observe that
the function '

(0,81) x (0,#] 3 (z1,2") = Pan,2") = @(t1 — 1, 2")
belongs to G°°([0 £1); Mg ((0,¢])). Thus by Lemma 1 and Remark 1
EF € C®((—e1,e1); Mo ((0,8]),  (E'@)z1,a') =0 for 21 < —£1/2,
(E'F) (b —z1,2') = Bty —zy,2) forti—er <m <ty, 0<a’ <t
Since Bty = w1, ') = @z, o) for by —e1 <21 <1, 0< 2" < t' we get
ooy, ) = (E33) (¢ —21,2")  Forty —ey <@g <t1, 0 < x <,
which yields the correctness of the following definition:

, wley, ) for 0 <my <t1, O< <¢,
(8&*1(:9)(3;1, & ):{ (515)(?51 _ ccl,:z:’) fort; —ep <oy <ti+eq 0< o <t
Tt is clear that £ is an extension of & to My ((0, (t1 +¢1,¢')]) and in fact
to M, ((0, (£1,t)]) since ('@)(z1,2') = 0 for @3 < —€1/2. The continuity
of &, follows from the continuity of gL
Ifn > 2 we iterate the above procedure starting with £, ¢ defined above.
instead of ¢ and (1,) instead of .

PROPOSITION 3. The space M, (I) is complete.
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Proof Let {p;}32; be a Cauchy sequence in M,(I). Take t >t
0<e<t—t e <tanda continuous extension map & from Theorem 2.
Let 5; = L (j = 1,2,...). By the continuity of &, {&;}372, is also
a Cauchy sequence in Ma((O,t}). This means that for every a & NE the
sequence {z*+tet1(8/ acc) $;}32, satisfies the Cauchy condition for the -

form convergence on I = (0, t] Thus there exist functions h, (o € Nf)
continuous on [ vanishing near the boundary T \ I and such that

(9) sup [¢*"*1(8/02)°F; — hal — 0
zcl

ag j — 00,
Hence, for every compact set K C f,

g\ h a\" h
ata+l - - L R — 7 T
¢ ((82) i $a+u+1)' Z Cax cek (Bm) P T patatl
where Cp e = mingex %1t > 0. This in view of {9) implies that

(10) hm (8/39:) = by /aotet

sap

— )
zed

almost uniformly on T,

Set 3{x) = ho/a** ! for z € Int T and ¢ = @l,. Then ¢ € C°°(I) and
from (10), (8/82)%% = ha/2*t*+! for € Int T, o € N} and consequently

sup [2°Tt(8/8z)%p; — hg| — 0

as j — oo,
zel

which proves that ¢; — @ in M.(I).

Denote by M(,,)({0,1]) the space of functions ¢ € M(,,y((0,%]) vanishing
with all derivatives (8/8z)*¢ on the set (0,] \ (0,%) with the topology

induced by the topology of M.((0,%]). Here as usual w € (R U {oo})",
i € R}. By Theorem 2 we get

COROLLARY 1. Let 0 < t <% € RY.
there exists a linear eztension mapping

& M(w ((Oﬂt]) —* M(w ((0 E‘])

continuous in the respective topologies and such that (E.p)(z) = 0 if t; +¢;
<z < farsomel<3<n '

Then for every 0 < e <i—t, e <{,

3. Characterization of Mellin distributions supported by a
smaller polyinterval

THEOREM 3. Let u € M[,((0,%]) and suppu C (0,1] for some t < 7.
Then for any b < w there ezist constants C = C(b) and k = k(b) € Ny such
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that
) il 0 Y aw | (52 ela)| for o e M(OF.
|| <k xe (0,1]

Hence the restriction mapping
My ((0,2]) 3 0 — ©lio,5 € My ((0,])
induces a lineor isomorphism
(12) {u € M, ((0,%])
Proof. Let x, be the functions defined by (2). Let I=
Propositions 1 and 2
(13) 1in%) Up = U

: suppu C (0,¢]} = M{w)((git])‘
(0,%]. Then by

in M('m)(f), where 1w, = x,u for r > 0.

Observe that suppu, is a compact set K, C (0,t]N{z € R® : & > r}.
Hence by Theorem 1 there exist constants € = C, < 00, b=k, € Ny such
that for every @ of class C* in a neighbourhood of K,

(1) wlel ¢ 3w |(2) ot

jafg *€ 57
Take any b < w, a function y € M,((0,1]) and its extension ¥ € M ((0,%])
(e.g. ¥ = €, see Th. 2). From (14) we derive that

6 o
15 7| < Cn o1 (w—) ).
(13) ur[F]] < bwzgﬂwsg% T 7z 1)
Define

wly] = w 5] for v € Mp((0,4]), 7 > 0.

The definition of the functionals v, is correct (i.e. does not depend on the
choice of the extension 7 in view of (14)) and by (15), v € M;((0,1]) for r >
0 since K, < (0,4 We can also write v.[ipl(p,n] = wurg] for p € M ((0,2])

and putting v = ¢|(, we get by (13)

vply] = ufp] asr—Oforpe My ((0,2)).
Thus for every b < w there exist constants Cj < 0 and k € Ny such that

a &
bl <6 Y sup [ (357 ) (@)

| i<k me(G,t]
and hence (11) holds since v(z) = p(z) for z € (0,1].
To prove the isomorphism (12) take u satisfying the assumptlons of the

theorem. Define

for ¢ € My((0,%])

ﬁ[(p] = u[gs(p] for S M(w)((ont]) .
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It follows from Corollary 1 that @ € M{,,((0,%]) and from (11) we see that the

definition of ¥ is independent of the choice of the extension £;p. Conversely,
given & € M ,((0,1]), the formula

for v € M.»((0, )

1) with support in (0,¢]. This ends the proof.

‘ oo} = o]
defines u € M(’w)((O,ft-

4. Seceley type linear extension mapping on the set Z/. Let
A € GL(n;R) have nonnegative entries. Define

(16) SR} =R}, S(y) =exp(A™ Iny)

Since the transpose A% of A also has nonnegative entries it follows that the
set

fory € RY .

ZH =50 ) CRy  (teRY)
is bounded. Actually S((0,¢]) C (0, 5(t)]. Note that
§H(e) = exp((4%) " Ina)

and the Jacobian of S~ equals

- 1 -1 1, -
ISTHe) = = (57 (@) e

for ¢ € RY

For a & B™ let

Mo(Z{) = {0 € O®(Zf) : 0ia(p) < oo for o € N},

where

ot () = sup |2+ 1(D /02 ) () |
il f

and, as in the case of 0°°(I), C®(Z#) denotes the space of restrictions to
Z{ of functions in C*°(R"). We also define, for w € (R U {c0})",

My (Z1') = lim Mo(Z#).

o<W

for a € Nf

Lett <t e RY and let £ be the linear extension mapping of Corollary 1:

.ge : M(Am)((oaﬂ) ~* M(Aw)((ﬂﬁﬂ)'
Define '
EMp) =

ISTHE(JS pe8) o571 for g € My, (Zf).

PROPOSITION 4. Let h = S(£), h =
linear extension mapping

A
&7 My (24

S(t), t <%. Then £4 is a continuous

&) — My ((0,7) .
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In the proof we shall need assertions (17) and (18) of the following

LuMma 2. Letw € (RU{oo})™, t < T, h=8(t), h = S(&). The following
mappings are continuous in the respective topologies:
(17) ‘n’[(w)(ZtA) D pr JS - (Cto o S) € IVI(Aw}((Dat])u
(18)  Man(0.8) 290 57 (%o 57 € My (0.h),
(19) Maw(0.,8]) 3 9 — JS7 - (w0 §71) € My (Z{)

Proof. We consider first the mapping (18). Take any ¢ € M(Aw)((o,?]),
choose § € R} such that ¢ € Maw—5((0,%]) and extend + by zero to R%.
Hence ¢ o M x) = 0 on RZ \ IntS((0,£]). Select § € R such that
A§ < 6. We shall prove that ( z))tz=t 9o SY(z) is in M,_5((0,h))
and thus in M, ((0, k). Since (S7Hz)*a™* = a:f_ll‘l, by (1) it fol-
lows that (§~*(&))'z~* - (v o S H)(&) € M, _;((0,h]) if and only if ¥ o

S~Hz)e M, _ P ({0, 7). Hence it suffices to prove that 1o S~ (z) €

M, s 4-11-2((0, h]). Observe that under the notation x8/0x = (£10/0%1,
., 2n0/Bz,) we have the following vector formula:

v (s o) = (47 (v )8 )57,

Then for any o € Nj we get

woira (o 2 s (e

sup
ze(0,h] )
. ~ 8 o
e R C R
y&(0,1) v,/
- 8 &
= sup yA“’“‘A‘S(A“l(ya—)) ?J)(y)'-
yel0:f] Y

The last expression is finite since M aw—s{(0,1]) © My, _ 45(0,2]) by the
choice of 8. Thus
(6~ (@) e~ (o S™1)(®) € Miwy((0,h).
The proof of (19) is analogous and the extendibility of JS~1(0S571) to

an element of M.y((0, %)) follows from (18).
To prove (17) let ¢ € My(Z8) for some b < w. Deﬁne

(y) = det A-p(S@) SNy fory (0.4
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Proceeding analogously to the proof of (18) we prove for any k & Np the
sup

estimates
Ab+1 f_)“ ‘
lal<k ¥E01 Y (yay w(y)
<02, = (S—l(w))Abﬂﬁ(S“l(H:))ml(A(wé%))méo(x)

lal<k €44
a\"
a:b"“l(m—am) ()

which ends the proof of the lemma.

3

=C E sup
|GE|SR: mGZtA

Proof of Proposition 4. Let p € M(w)(Zf‘). Then by Lem-
ma 2(17), ¥ = JS - (ip 08} € M(a.((0,¢]) and hence by Corollary 1, £.¢ €
M{4.)((0,7]). Again by Lemma 2(18), JS~-((E.46)0 S™1) is in M, ((0, A]).
Clearly £ is linear and continuous.

Now in the same way as in the proof of Proposition 3 we prove, by using
the extension mapping £4,

PROPOSITION 5. The space M, (Z{) with the topology given by the semi-
norms pf ,, & € N, is complete.

Remark 2. Proposition 4 generalizes Corollary 1 (£, = & 14} and hence
also the Seeley extension theorem.

5. Characterization of Mellin distributions supported by the

set ZA. Proceeding analogously to the proof of Theorem 3 we get the
following generalization of that theorem:

THEOREM 3. Let u & M(’w)((O,ﬁ]) with suppu C Z# for some t <
S7(h). Then for any b < w there ezist constants ¢ = C(b)y and
k(b) € Ng such that

ulell <6 3 sup |e"*2(wd/8z)p(2)|  for v € My((0, ).

la|<k ZEZE

B

t
k

Hence the restriction mapping
My (0, R)) 3 0 = plzp € My (23
induces a linear isomorphism

{u € My (0,H) : suppu ¢ 23} = Mgl (2.
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6. Application: substitution in a Mellin distribution; the Mellin
transform of substitution. Let v € M(’w)(I ) and let § be defined by (16).

Since M(’W)(I ) C D'(I) and 87! is a one-to-one C'°° mapping of R onto

R’} with nonvanishing Jacobian JS~! we may define the substitution v o &
by the formula

: 1
(20) wo S = (gpulb 0 57e) - (ST @)aY,
for v € C'{“EJ(S“I(I)). Then uo § € D'(S71(1)), where §71(I) is relatively
closed in S™(R?) but need not be bounded. By imposing the restriction
suppu ZtA on the support of the Mellin distribution 4 we establish in
Theorem 4 below that » o § jtself is a Mellin distribution and we give a
formula for the Mellin transform of this substitution. Note that we adopt
the following definition of the Mellin transformation (see [4]):

DEFINITION. Let u € My, (7) for some w & (RU {o0})™. We define the
Mellin transform of u by

Mu(zy=u[z7*7*] for Rez < w.

It turns out that Adw is a holomorphic function for Rez < w.
Now, we are in a position to state the following

THEOREM 4. Let t € R and let S{y) = exp(A™ Iny) for y € R} where
A € GL(m;R) has nonnegative entries. Let u & My, ((0, h]) with h = S(t)

and suppu C Zi' = 5((0,1]). For ¢ € M{4.,)((0,]) define
(21) uo S[Y] = uly],
where (see (20))

o) = mw 0§71 e) - (ST (@))'a™t forz € 27

(here u is regarded as an element of M{,,, (Z4)). ThenuoS € M 4.,,((0,4])
and

(Mu) o A7H(E)

M(uo S)C) = for Re¢ < Aw.

" |det A

Proof Letf > ¢, h = S(f) and observe that u can be considered as a
functional in M(’w)({o, R}) (namely as T[] = ultb|ron)] for ¥ € M) ((0, A])).
Hence by Theorem 3, u can also be considered as an element.of M, (Z)
and by Lemma 2(19) formula (21) defines correctly the functional uo 5 €
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M{,,,((0,%]). From (21) we get

Miuo ) = e STy~ = (57 ) (8@
- |detA|“[”_A_1C"1] - |detAi(Mu) o A7,

which ends the proof.

Remark 3. After the change of variables R* 3 y =+ e¥ € R, Theo-
rem 3' (and hence Theorem 3) extends Theorem 1 to the case of the non-
compact set A®(In(0,¢]).
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Weighted inequalities for square and
maximal functions in the plane

by

JAVIER DUOANDIKOETXEA* and ADELA MOYUA (Bibao}

Abstract, We prove weighted inequalities for square functions of Littlewood—Paley
type defined from a decomposition of the plane into sectors of lacunary aperture and for
the maximal function over a lacunary set of directions. Some applications to multiplier
theorems are alse given, ‘

1. Introduction. Square functions are often used in Harmonic Analysis
because their action on a function gives a new one with equivalent LP-norm.
They can be viewed in some sense as a substitute of Plancherel’s theorem
in LP, p 5% 2. .

In this paper we consider two such square functions associated with a
decomposition of R? into angles of lacunary aperture. Let us take the lines
through the origin with slope £27, j € Z, and consider the angular sectors
they determine. More precisely, we set

A= {(z1,22) €R? | 277 < fanfma| < 277%}
and define the multiplier operator S; as (S;f)" = XAJ.J? {we denote by xa
the characteristic function of 4). Our first square function will be
o0 1/2
dh = 157) "

j=—os

We shall also consider a smooth decomposition defined as follows: let
; be a homogeneous function of degree zero, supported on A; U A4;,, and
such that the restriction to the unit circle S* (denoted again by ;) is C°°
and satisfles : :

|D%p;(8)] < 27 lil* (¢ independent of j).
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