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Linear topological properties
of the Lumer Smirnov class of the polydisc

lry

MARERX NAWROCOK! (Poznai)

Abstract. Lincar iopologien] propertios of the Lumer Smimov class LN« (U™) of the
widt polydise T are pladied, Tha topelogienl dual and the Fréchot envelope are deseribed.
It i proved thnt LN.(U™) lins & weak Dasis hut it is nouseparable io its original topology.
Moraover, ik is shown it the Orlios Pettls theorem fails for LNG(T™).

1. Introduction. Let ¢ [~00,00) - [0,00) be a nondecreasing convex
function not identically 0 and let f be a holomorphic function on the unit
dise U in the complex plane €. It is well known that the following assertions
are equivalent:

n
(Hel) 1k = sup [ pllog|F(re™)]) dt < oo,
rel
(Hep2) w(log |f|} < w  for some u harmonic in U.

The family of all f satisfying (Hipl) or (He2) is called the Hordy class H,.
Tn particular, if o(t) = t+ = max{t,0} then Hy, is the Nevanlinno class
N(U) of the unit dise while the set-theoretical sum of all H, with @ strongly
convez (L., @(t)/t — o ag ¢ —+ 00) I8 the Smirnov class N.(U) of the unit
dise, It is known that N(U) equipped with the topology defined by the
mettic

[{ER

ACg) = s [ log(1+1(f = g)re")) db

is a topological vector group and N, (U) is the Jargest linear subspace in
N(UY which i a topological vector space in the relative topology (see [24}).

“The topological veclor space structiee of the Smirnov class Vi (U) was ex-

tensively studied by N. Yanagibara (see [28, 26]).
When one passes to several complex variables, say 0 the polydisc U™
ip C*, then it is possible to use in (Hp2) at least two nonequivalent types
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1991 Muthematics Sulbject Clossification: 468510, 46718, 32A35,



88 M. Nawrocki

of harmonicity; namely n-harmonicity and pluriharmonicity. The first one
leads to the standard Hardy, Nevanlinna and Smirnov classes of the polydise
(see [18]). Many functional-analytic properties of the Smirnov class IV, (U?)
were described in [12].

The present paper is devoted to a study of the topological vector space
structure of the Lumer-8mirnov class LN,(U™) of the unit polydise U,
i.e., the space of holomorphic functions on U™ defined just like N, (U™) but
with u in (Hp2) being pluriharmoenic. LN, {U") equipped with the vector
topology defined by the F-norm

[ f1l] = inf{u(0) : u is pluriharmonic and log(1 + If]) < u}

is an F-space (complete metrizable t.v.g.).

The paper is organized as follows. In the next section we collect bagic
definitions and notation, and we show a few equivalent descriptions of the
Lumer-Smirnov classes LN, (22) of arbitrary balanced bounded simply con-
nected domains 2 in C". 'We observe that, as in the case of the dise, LN.(f%
1 the largest linear subspace of LN (§2) which is a topological vector space
in the relative topology.

In Section 3 we prove that each f € LN, (f2) can be written in the form
f = h-k, where k = ¢9, h, g are holomorphic, h is bounded, k & LN,{(£2)
and Re g > 1. This factorization theorem is crucial for the rest of the paper
but it has also some independent interest, In particular, it implies that the
modulus of any function f in LN.(2) can be majorized by the modulus
of another function k in LN.(2) which is zero-free. An example due to
W. Rudin ([17], Example) shows that a similar majorization is impossible
with f, k belonging to the Lumer-Hardy space LH,(12) at least when p =
2/m, m e N. _

In Section 4 we prove that if n > 1 then LN, (U™ contains an isomor-
phic copy of the Banach space £ of all bounded complex sequences. In
particular, this implies that LN,(U") is nonseparable and so the space of
all polynomials is not dense in LN, (U™)

[n Section 5 we describe all continuous linear functionals on the closed
subspace L.Nog(U") of LN, (U") spanned by the polytominls, Moreover, we
construct the Fréchet envelope of LNy(U™), L.e., a Fréchet space LF, (U of
holomorphic functions on U™ which contains LNp(U™) as a dense subspace
and has the same topological dual as LNp(U"). These results form a very
important step in the proof of our main theorem (Theorem 6.1) which states
that the space of all polynomials is always weakly dense in LN, (U™). This
theorem allows us to identify the dual space of LNo(U™) with the dual
of LN,(U™) as well as to show that LE. (U™} is the Fréchet envelope of
the entire space LN, (U"), In addition, it turns out that LN, (U™) is an
F-space with separating dual which has a weak Schauder basis though it is

v
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nongeparable i its own topology. This phenomenon was first observed in
weak-Ly, sequence spaces {(p, 0o) for 0 < p < 1 (see [11]) and, of course, it is
possible becanse of the failure of the Hahn-Banach theorem in these settings.
N. J. Kalton [6] proved that the Hahn-Bavach theorem must fail in every
Fgpace X which is not locally convex. He also showed that if, moreover,
X s separable and las a separating dual then it containg a proper closed
weakly dense (PCWD) subspace [7], LNL(U") is nonseparable but it still
hag & POWD-subspace which s very regular. 'We show that LNy(U™) is a
Mabius invariant PCWD-subspace of LN, (U").

Theorem 6.1 has other interesting consequences. Using it we prove
that if n ¢ m then LN, (U™} is not isomorphic to LN,(U™). Moreover,
we show that the copy of #% constructed in Section 4 as well as every
infnite-dimensional locally hounded subspace of LN, (U™) must be uncom-
plemented. .

We Hnish the paper by provig that if n > 1 then there exists a seres In
LN, (%) which is woakly subseries convergent but is not converggnt in th.e
original topoiogy of LN, (U"), e, LN,(U") does not have the Orhcz---Pet‘tls
property (OP1Y). Thus, contrary to the case of se:I)&ral?le ‘F-Spaces Vﬁ..'lth
separating duals (wee [5]), the Orliez Pettis theorem fails In our setting.
The suthor proved in [11, 15] that if 0 < p < 1 and n > 1 then also the
Lumer Havdy space Hu{B,,) of the unit ball in C* as well as the weak-Lp,
sequence space {(p,o0) do not have the OPP.

2. Preliminaries. let 2 be a bounded bal#nced simply connecte_d
doroain in C* and let. I3 be its Bergman-Shilov boundary. Thnfou‘ghout th_us
paper H(£2) will denole the space of all functions Lolomorphic in 2 while
RP(£2) will be the set of all pluriharmonic functions in 2 (= real part_s of
functions in M (§2)), H™(£2) will denote the space of all bounded fu.nci'uons
belonging to L (f2) and A{£2) the space of all functions holomorphic in £2
and cottinuous on 2. - e

oy 3. 4 9 e ) o |« ] c -

Lt 19 1 [00, a0) < |0 m) be a mmduc:ewuxg convex function lnlo 1 .
tically 0 such thad @(--o0) = (0, The Lener-Hurdy cla.?s LH,(2) s deﬁngd
to consist of all [ & H(§2) such that @(log|f]) € w for some € anl( 2‘[
(see [10]). Taking @(f) = exp(t?), 0 < p < oo, we obtain the standar
Lumer - Flardy apace LIT,(82).

The Lumer Nevanlinna class LN({2) is thje‘ space LH,({2) defined by
the funciion (1) s £F =V 0. For each f & LN(£2) define

NI = inE{u(0) s v € RP(R2), log(1 +[f) S u}..

It is casily seen that |||f]]! is finite for each f G.LN (.(2), LN ({2) is a Ix;?cgor
space, and d{f, g) = |||f -~ g/|| 18 a translation invariant metric on LN(£2).




90 M. Nawrocki

In fact, the metric d defines on LN(£2) the group topology » which has a
base at zero consisting of balanced sets (i.e., (LN(£2),r) is a topological
vector group). It was shown in [10] (see also {20], Chap. 7) that

WA= sup  sup [ log(1+]f(r())) de()
re(0,1) eeMo(B)

for each f € LN({2), where Mo(B} is the set of all probability Borel mea-
sures ¢ on B such that f(0) = [, f(¢)de({) for all f € A(£2).

The Lumer-Smirnov class LN,(¢2) is the set-theoretical sum of all Lu-
mer—Hardy classes LH,(2) with ¢ strongly convex. In the sequel we give
two other descriptions of LN, (2).

We will say that a set A of Borel functions on B is My(B)-uniformly
integrable whenever '

(a) there exists a K > 0 such that [, |f|de < K for all f € 4 and
0 € Ms(B), and

(b) for each & > 0 there is a § > 0 such that [, |f|do < & for every Borel
set E C B such that o(E) < §, f ¢ A, and g & My(B).

LeMma 2.1. A set A of Borel functions on B is Mg(B)-uniformly inte-
grable if and only if there are a K > 0 and a sirongly convexr function ¢
such that [ o(If|)do < K for all f € A and ¢ € My(B).

The procf of this lemma is essentially the same as the proof of Theo-
rem 3.1.2 in [18] and so it may be omitted.

PRrOPOSITION 2.2. For an arbitrary subset G of LN(£2) the following
assertions are equivalent:

(a) G is absorbed by each neighbourhood of zero in LN (2);

(b) the family {log(1+ |fr]) : 7 € (0,1), f € G} is My(B)-uniformly
integrable, where fr is the function on B defined by f,(¢) = f(re);

(c) there emists a K > 0 and a strongly convex function ¢ such that
SeQog|fr|)de < K for allr € (0,1) and ¢ € My(B).

Proof. The equivalence (b)«(c) follows immediately from Lemma 2.1

while (a)«(b) can be proved in a similar way to [2], Theorem 4.1 (see also
[13], Proposition 1.2).

COROLLARY 2.3. (a) LN, (2) = {f € LN(£) : limgp ljaf]|| = 0} =
{f € LN() : the family {log(1+ [f-]) : r € (0,1)} is My(B)-uniformiy
integrable}.

(b) LN.(2) is the largest linear subspace of LN (£2) which is a topological
vector space in the relative topology.

(¢} LN.(12) is a topological algebra.
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Proof. (a), (b) It is easy to see that a locally balanced group topology 7
on a vector space X is linear if and only if every element ¢ € X is absorbed
by each T-neighbourhood of zero in X. Thus (a) and (b) follow easily from
Proposition 2.2.

(c) The inequality log(1+ts) < log(1+t)+log(1l+s), t, s = 0, implies that
LN.(2) is an algebra and that the multiplication operation M is continuous
at the point (0,0). However, LN,({2) is also a topological vector space, so
M is continuous at every point of LN, (£2) x LN,(2).

3. A factorization theorem

THEOREM 3.1. For cach f & LN.(f2) there are b € H®(2) and g €
H(£2) such that

(a') f=0be9,

(b) Reg > 1,

(c) e? € LN, (£).

For any sequence P = {p} C (0,1) we define the function
o0
(%) Gp(z) = Zil""“zp’“ for z€ C, Rez > 1.
k=1

For the proof of Theorem 3.1 we need some lemmas.

LeMMA 3.2. For every positive, strongly convex, and strictly increasing
function @ on [L,00) satisfying w(t) = t there exists a sequence P = {pp} C
(0,1) such that

o (Rez) S ReGp(2) forallzeC, Rez>1.

Proof. Since i is strictly increasing and strongly convex, ¢~ exists and
is strongly concave, i.e., o~ {¢)/t — 0 as t — oo, Let {tx}52, be a strictly
increasing sequence of positive numbers such that ¢ = 1 and e Ht) <
2kt for all t > t, k= 1,2,... We can find a sequence P = {px} C (0,1)
guch that tP% > ¢/2 for all 1 < ¢t < #gy1, k = 1,2,... Let Gp be the function
associated with P according to (¥). Fix z € € with tx < Rez < tx41. Using
the inequality (Re z)? € Rez”, which holds for all z € C with Rez > 1 and
any p € (0,1), we obtain

o (Rez) £ 27" Rez £ 27F(Re )™ < 27" Re ™

=] o
< 2 27k Re zP% = Re ( Z 2"“2”’“) = Re Gp(2).
k=1 k=1
The proof is finished.

LEMMA 8.3. Let h € H{2), Reh > 1. For every sequence P = {pc} C
(0,1) the function exp(Gp o h) belongs to LN, (£2).

1
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Proof. Observe first that exp(h?) € LN, (f?) for every p € (0,1). In-
deed, fix p € (0,1) and choose ¢ > 1 such that ¢p < 1. Let # be any non-
increasing convex function on [—oc, o) such that ¥(¢) = ¢¢ for ¢ € [, 00).
Then 1 is strongly convex and

¥(log |exp (RP) |} = (Re h?)? < |RP|? = |RPY| < Cpy RehPY,

where Cl,, is a positive constant which depends only on.pg (the range of AP
lies in the wedge {|arg z| < mpg/2}). Consequently, exp(h?) € LHy C LN,.

Let now P = {px} be an arbitrary sequence contained in (0, 1) and set
G = Gp o h. Each function RehP*, k= 1,2,..., is pluriharmonic, so

szp{ f RehPx(r{)do(¢): o€ My(£2), r € (0, 1)}
B
= sup Re hP#(0) = K < co.
h

For each r € (0,1) define 4, = {{ &€ B: ReG(r{) > 1} and C, = B\ A4,.
Then, using the inequality log(1 + ¢} < 2z, which holds for each z > 1, we
obtain ‘

J log(1 + 1(e%)]) do
E

< f log(1 + | (%), |) do + f log(1 +{(e%),) de
EnA, ENC,

<2 [ ReG,do+o(E)log?
B

<2327 [ log(l+ |(exp(h?))),|) de
=1 B

o
+2 3 277 [ Reh? do+ o(E)log?
Fmmepl E

L)

< Yo f log(1 + |(exp(kP/)),[) do + K27 ™ 4 o( B log 2
Jj=1 E

f(EJI all » € (0, 1'), e € Mo(2), and m = 1,2,... We know that each func-

tion exp(h?7), 7 = 1,2,..., belongs to LN,({2), so we see that the family

{log(1 + |(e9),]) : = € (0,1)} is My(B)-uniformly integrable. Finally, by
Proposition 2.2, ¢9 € LN,(02).

Proof of Theorem 8.1. Fix f € LN,. There is a strongly convex
t such that f € LH,. Thus, ¢(log!f|) < Reh for some & H($2). We
may agsume that ¢(#) > ¢ for all't > 1 and that Reh > 1. Therefore, by
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Lemma 3.2, there is a sequence P = {py} € (0,1) such that w HRez) <
ReGp(z) for all z € C, Rez > 1. Consequently, taking g = Gp ok we obtain

7| < exp(™" (Reh)) < exp(ReGp o h) = [ef] .

Finally, f = b-eY, where b = fe™9 ¢ H®(2) and, by Lemma 3.3, ef €
LN, ().

Remark 3.4 In [17] it was shown that for any p > 0, £ > 0 and any
J € LH,({2) there 18 a zero-free function g € LH,_.(£2) such that |f| < |g|.
This theorem and Theorem 3.1 suggest the following problem. Suppose that
i and  are strongly convex functions such that limg_, o0 ©(8)/9(£) = oo, and

let f € LH,(£2). Docs there exist a zero-free function g € LHy(f2) such
that || < [g]?

4. The Lumer-Smirnov class of the polydisc. Throughout the rest
of the paper we will assume that (2 is the unit polydisc U™ in C?, i.e., the
n-fold product of the unit disc Uin C. It is convenient to equip €™ with the
SUPROTIL |+ oo, 1€ (2|00 = max{|z;] : L < i <n} for z = (z1,...,2,) € C™.
Moreover, let T denote the unit circle, dm the normalized Lebesgue measure
on T, and Z; the set of all nonnegative integers. For a natural number n,
T, dmy,, 2} will denote the n-fold products of T, dm, and Z.. respectively.
Obviously, T" is the Bergman -Shilov boundary of .

For f & H(U") and & = (@1,...,0,) € Z%, let f{a) denote the ath
Taylor coeflicient of f.

K 2= (21,...,2,) €C* r €(0,1) and a = (o1,...,,) € Z7, we will
frequently use the notation rz 1= (rzy,...,rz,), 2% = 2% ... 28,

Since for each positive pluriharmonic function  on U™ and ¢ € U™ the
slice function ue, defined by we(A) = u({A), A € U, is a positive harmonic
function on U, we have

(4.1) ue(A) € 2u(0)/(1 - [A]).
Consequently,
(4.2) )| < exp(»igv'—!—lljzl-u») for each f € LN.(U) and z € U™.

(2] m _ _
The above sstimate shows that the topology v of LN (42) is stronger than the
compact-open topology s. This implies easily that LN.(U™) is an F-space
whose topological dual separates points.

PRrorosrrioN 4.1. Let n > 1. There is a sequence {fi} of homogeneous
pelynomials on C" such that:

(a) for each sequence v = {~y} in the Banach space £ of all bounded
compler sequences the series Y yufi 19 r-convergent to a function fy €
Hee ("), and '
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(b) the linear operator £ 2 v — fy &€ LN,(U") is a topological (into)
isomorphism. '

Proof. This result and its proof are close in spirit to [19], Theorem (see
also [20], Theorem 7.4.6).

If n < m then LN, (U") is isomorphic to a subspace of LN,(U™). There-
fore, without lost of generality we may assume that n = 2.

It is easily seen that if z,w € U and |(z + w)/2| is close to 1, then 2
must be close to w. Consequently, there exists a sequence {¢;} < (1/2,1),
lime; = 1, such that the sets V; = {(z,w) € U? : |2+ ¢w| > 2},
j=1,2,..., are pairwise disjoint. Find a strictly increasing sequence {n; } of
positive integers such that 7 < 277 and define g;(z,w) = ( (z+e"iw)/2)™
forzzweUand 7=1,2,...

For each (z,w) € U? there exists at most one set V; such that (2, w) &€ V.
Therefore, for v = {v;} € £° we have

|3 stz w)| < 3 Inlef + ez )] < 2o
Fetk
Consequently, the series ¥ i gk is s-convergent to a function g, in H*(U")
and the mapping T : {*° > v — g, € H*(U") is continuous. This implies
immediately that T' is a continuous operator from £°° into LN, (U™). Ob-
serve that the sequence {T'¢;} = {g;} is not convergent to zerc in LN, (U"),
where e; is the jth unit vector in ¢, Indeed, if we take { = (1,e"%7) € T?
then the slice function {g;)¢ belongs to N, (U) and, obviously

lilgsll] = sup f log(1 +|g;(r{w)]) dm(w) = 1.
T
T
Applying [1], Corollaire, we can find a subset M = {n;} of N such that the
mapping T restricted to the subspace £°(M) (= £°°)} of £ consisting of all
sequences whose supports are contained in M is a topological isomorphism.
Taking f; = g, we conclude the proof.

In Section 7 we show that the copy of £%° constructed above as well as
every infinite-dimensional locally bounded subspace of LN,(U™) must be
uncomplemented.

Proposition 4.1 implies that the space LN, (U™) is nonseparable if n > 1.

In particular, the polydisc algebra is not dense in LN, (U™}). Throughout.

the rest of the paper we will denote by LNy(U") the closure of A{U™) in
LN (U™).

We recall that a set X ¢ H(U") is M&bius invariant (i.e., invariant with
respect to the group Aut{U") of all holomorphic automorphisms of U™) if
fo® € X whenever f € X and & € Aut(U™),

PROPOSITION 4.2. (a) LNo(U") = {f € LN,(U") : v-lim,;— fr = f}.
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(b) The set of all polynomials s dense in LNp(U™).
(c) LNo(U™) s Mdbius invariant.

Proof. Easy proofs of (a) and (b) may be omitted.

(c) Fix # € Aut(U") and define alinear endomorphism T of LN, (U") by
Tpf = fod. It is obvious that Tp is continuous if we equip LN, (U™) with the
pointwise convergence topology. This and the closed graph theorem imply
that Ty is a continuous automorphism of LN, (U™). Since Aut(U") C A(U™)
we have Tp(A(U")) ¢ A(U"), and the result follows from the density of
A(Un) in LN[)(UN).

5. Linear functionals on LNp(U"). In this section we describe all
continuous linear functionals on LNp(U™) and we construct a Fréchet space
(locally convex F-space) of holomorphic functions on U™ which contains
LNp(U™) as a dense subspace and has the same topological dual as LNy (U™).
This space is unique up to isomorphism and, in fact, it is isomorphic to the
Fréchet envelope of LNy(U™). We recall that the Fréchet envelope E of an
F-space F = (£, r) whose topological dual separates points is the comple-
tion of the space (E, %), where 7¢ is the strongest locally convex topology
on F which is weaker than r. Obviously, if B is a base of neighbourhoods
of zero for 7, then the family {convU : U € B} is a base at zero for ¢
It is known that +° coincides with the Mackey topology of the dual pair
(E, E.), where E. is the topological dual of (E, ). We refer to [9, 21, 22]
for information on Fréchet envelopes. '

Taking as a model the Fréchet envelope F, of N, = LN,(U) constructed
by N. Yanagihara [25), we define the space LF,(U") = {f ¢ H{U"): || f|lx =
sup, | Fla)|exp (—~|a|1/2/k) < o for all k € N}. LF,(U") equipped with
the topology ¢ defined by the sequence of norms {| - ||z : k¥ € N} is a
Fréchet space. Using essentially the same arguments as in [25], Theorem 1
and Theorem 4(ii}, one can prove assertions (a) and (b} of the foliowing
proposition.

ProposiTioN 5.1. (a) For each f € LE(U™), p-lim fr = f.

(b) LE(U™) = {f & H(U") : sup,eun [F(#)|exp {c/(1 = |2|oc)) < oo for
each ¢ > O},

In particulnr,

(¢) A(U™) 48 a dense subspace of LF,(U");

(d) LNL(U™) ¢ LE(U") and the inclusion mapping is continuous.

In the above proposition, (c) is a direct consequence of (a) while (d)
follows from (b) and (4.2), .

Observe that the mapping f — {f(a)}agzy is a linear bijection of
LF,(U™) onto the space A;(ja|'/?) consisting of all complex families =
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{z(0)}aezy such that [z(a)f = Olexp(cler|*/?)) for all ¢ > 0. Fixing any
bijection j of Z% onto Z4 such that j(a) < j(a'}if (| < |o’|, we introduce
an order in Z7. Just like in [14] we can check that the sequence {i(a)}
has the same rate of growth as the sequence {|e|"} as || —+ co. Conse-
quently, the mapping z — z 0§~ is an isomorphism of 4 (|a|'/?) onto the
space A; (71/2™) consisting of all complex sequences = {z{f)} en, such
that |2(j)| = O(exp(esf'/*)) for all ¢ > 0. Therefore, we have just shown
the following resuit.

PROPOSITION 5.2. LF,{U™) is isomorphic to the nuclear power series
space Ay (51/%).

The reader is referred to [3, 16] for information on nuclear power series
spaces.

THEOREM 5.3. Each continuous knear functional T on the space
LN (U™ or on the space LE,(U") is of the form

(+) Tf=Tf =) Fla)r(a),
where f € LNo(U} or f € LF,(U") respectively and {A(a)}oaen 15 o family
of complex numbers such that
(#5) sup [A(a)exp (|a]'/*/m) < oo
for somem € N,
For the proof of this theorem we need the following lemma,

LEMMA 5.4. Let O(U") be the set of all restrictions to U™ of functions
defined and holomorphic on some neighbourhood of U™ in C™. Then for each
e > 0 there exists 0 § > 0 such that

nf {sup|Ffle)lexp (~8laf*?) : £ € OW™, [Ifl] S e} > 0.
+

Proof. For n =1 this lemma was proved in [14], Lemina 3.3 (see also
[12], Lemma 4.4).

In general, fix an ¢ > 0, find § > 0 and a sequence {fi} C @(U) such
that |/x(k)| > Sexp(6/k|'/?) and |||fx]|| < € for k = 0,1,2,... For each
a € Z7 choose i, € {1,...,n} such that oy, = max{oy :i=1,,,.,n} and
set ky = oy,. Then the formula

gal2) = fralmia) - I[ 22
iy,

defines a function which belongs to O(U™) and |)|g.||| < e, for each o € Z7,
Obviously, for every o« € Z7,

[Gac(@)] = |fra (ka)| 2 & exp(6k%/%) > Sexp(s]al/?/n).
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Proof of Theorem 5.3. LNy(U™) is a dense subspace of LF,(U")
and its topology is stronger than the relative topology {see Proposition 5.1).
Therefore, every continuous linear functional on LF,(U") is the extension of
a unique continuous linear functional on LNo(U™). If we identify LF,(U")
with A (jee|*/?) as we did in our discussion following Proposition 5.1, using
[16], Proposition 7.4.8, we easily see that (¥} together with (#*) describe
all continuous linear functionals on LF,(U™). Thus, for the proof of the
theorem it 13 enough to show that every continuocus linear functional T on
LNp(U™) can be represented by (%) with some sequénce {A\(a)} satisfying

Fix a contimmous linear functional " on LNp(U™) and set Ala) = T'(z%)
for each « € Zi}.. There is an & > 0 such that

(-+) Tfl<1 foreach fe LN(U™), l||If]]] €.

For each f & ©(U") (ie., f holomorphic in a neighbourhood of U") define
a function T on T™ by Ty(() = T(f({-)). The Taylor series of f((.) is
uniformly convergent on U™, so it is convergent in LNg(U™). Consequently,
T(FC)) = 3 fla)A(@)C™, and so f(a))\(a) is the ath Fourier coefficient
of Ty with respect to the orthonormal system {¢*} in the Hilbert space
Lo(T™ my,). () implies that sup{|T¢(¢)] : ¢ € T*} < 1 for sach f €
O(U™) with |||f]]| < . Using the Bessel inequality we obtain |Fla)A(e)] <
1Tl e < (T4 lloe S 1 for all £ e OWR), [||fI| €& It follows that |[A(a)| <
wf{|Fle)|"* + F & O™, |I|fll] € €} for each o € ZF. Thus, using
Lemma 5.4 we see that the family A = {A(a)} must satisfy (#+). Finally,
A defines by () a continuous linear functional on LNp(U™) < LF,(U"),
which coincides with T on O(U") (the Taylor series of each f € O(U") is
convergent in LNy(U™)). However, O(U") is dense in LNy(U™), so T'f =
Ty f for each f € LNo(U™). The proof is finished.

Theorem 5.3 and Proposition 5.2 immediately imply the following corol-
lary.

COROLLARY 5.5. LF, (U") ds the Fréchet envelope of LNo(U™).

6. The Fréchet envelope of LN, (U). In this section we prove the
main result of the paper.

TuEOREM 6.1, (a) The polydisc algebra A(U™) is weakly (= Mackey)
dense in LN(U™).

(b} Bach continuous linear functional on LN,(U™) is the restriction of
o unique continuous linear functional on LF.(U™). Consequently, Theo-
rem 5.3 deseribes all continuous linear functionals on LN,(U™).

(¢) LF,(U") is the Fréchet envelope of LN.(U™). -
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For the proof of this theorem we need a few lemmasg,
LEMMA 6.2. Let 4 = p, be the Mackey topology of LN, (U™).

(a) (LN.(U™), n) is a topological algebro.
~ (b) If G s a bounded subset of LN, (U"™), then the family M of multipli-
cation operators My : LN,(U") — LN, (U™), g € G, defined by Myf = fg is
Jh-equicontinuous. '

(¢) Define (i(2) = &, forz = (Z,z,) e UM xU=TU" k = 1,2,..,
Then the sequence {(k - 1)(x} is p-convergent to zero.

Proof. (a) From the inequality log(1 + #s) < log(1 + ¢) + log(1 + ),
t,s > 0, it follows that V- V. C Vae, where Ve = {f : [lIf]|| < €} i the e-ball
in LN,(U"), & > 0. Consequently, {conv V;) - (convV;) C conv Vi, and so
the multiplication operation is p(= v¢)-continuous.

(b) Fix an € > 0. Since G is bounded, we can find a ¢t > 0 such that
llltglll < /2 for all g € G. Using the inequality log(1 + |fg|) < log(1 +
|F/]) + log(L + [tg|) we see that {[|M,f]|| < € for all f € LN, (U™} with
[[£/tl]] < &/2 and all g € G, and so M is v-equicontinuous. Obviously,
M remains equicontinuous if we equip LN, (U™) with the strongest locally
convex topology which is weaker than v, i.e., with v%= .

(c) Obviously, {¢x} C LNo(U™) < LF,(U*). It is easily seen that
the sequence {(k + 1){x} tends to zero in the topology induced on LN
by LF.. This topolegy coincides with the Mackey topology of LNy (see
Corollary 5.5). However, the Mackey topology of a subspace is always

stronger than the Mackey topology of the entire space. Hence {(k + 1)¢x}
18 p-convergent to zero.

LEMMA 6.3. H*°(U") 45 contained in the pn-closure of A(U™),

Proof. We will prove the lemma by induction. If n = 1 then it is
well known that A(U) is r-dense in LN,(U) = N,. Suppose now that

n > 1, H2(UY) ¢ AU and fix f € H(U™). We will show that

f € A(T™)™. Of course, we may assume that 1 lloo (= (| Fll mroequm)) < 1.
For each 2/ € U1, 2z, € U and § € Z, define

Hi{z') = Z F(8,7)2'% and (7, ) = 4 H; (') .
pezn '

For z' ¢ Un—1 the function f(#,) is holomorphic in U. It is easy to check
t'hat H;() = f(z_’,j) for each 2’ € U1 and j € Z,., where f(z’,j) is the
Jjth Taylor coefficient of f(2/,-). Obviously, || (2, ey € [ Fllee <1 for
each 2" € U"™. Consequently, |f(#/, )| < 1 for each j € Zy and 2 € Ur—1,
50 '

(%) H; € H2(U™Y) and [|Hjllo €1 for j=0,1,2,...
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Let 7 : LN, (U1} — LN..(U™) be the mapping defined by (J £)(#, z,) =
f(#) for 2 € U"! and 2, € U. It is clear that J is linear, (vn—1,vn)-
continuous, and J(A(U™Y)) ¢ A(U™). Consequently, J is (tn—1, fn)-
continuous and, by the induction hypothesis, we obtain

() J(EU) € JADFD) € TAT)" < AT

Let ¢; be defined as in Lemma 6.2(¢). Then h; = (JH;) - {;, 50, by (*),
(##), and Lemma 6.2(a), by € A(U")" for j =0,1,2,...
Define

ge=f~> hy fork=1.2,...
Je<k
The proof of the lemma will be finished if we show that the sequence {gz}
tends to zero in the Mackey topology u = py, of LN.(U™).
We know that |[h;]l < 1 for each j € Zy. and that ||fllo < 1, hence
lgpllos S &+ 1, k= 1,2,... Define

()= Y S fiB6) P

pezntizk

for 2/ € Un~1, 2z, € U, k = 1,2,... Then gi(#',2,) = (2, 2n)2E, 50, by
the maximum modulus principle, |Yellee < 5+ 1, b = 1,2,... Set [} =
vo/(k+1) and ¢ = {I% : k = 1,2,...}. G being bounded in H>(U") is
bounded in LN,(U™). Therefore, the family M of operators My : h —
AT}, is pun-equicontinuous (see Lerama 6.2(b)). Moreover, by Lemma 6.2(c),
(k4 1)¢k — 0 {tn), 50 gi = My((k + 1)¢x) — O in the Mackey topology of
LN,(U™). The proof is complete.

Proof of Theorem 6.1. (a) Fix f € LN,(U"). By Theorem 3.1,
# can be written in the form f = hed, where h € H(U"), g € H(U"),
w=Reg > 1, &/ € LN, (U"). Let & be the space of all 7 € LN.(U") such
that plithy .. v = v (a8 usual, v.(2) = 7(rz)). G is p-closed. Indeed, it
suffices to note that the base V of neighbourhoods of zero for u conasisting
of the sets U, = conv Vs, & > 0, where V; is the e-ball in LN, (U"), has the
following property: if v € Ue and r € (0,1), then v € U, It is obvious that
A(U™) C &, so Lemma 6.3 tells us that H®(U™) C G. Therefore, using
Lemma 6.2(a) and Lemma 6.3 once again we see that for the proof of our
assertion it is enough to show that e? € G,

Let I' = e and A, = e, for r € (0,1). Then the family § =
{4, + r € (0,1)} is »bounded in LN,(U") (see Proposition 2.2(a) and
(b)). By Lemma 6.2(b) the family of multiplication operators defined by G
is p-equicontinuous. Moreover, I' i holomorphic and {IN=e"*<e™?, 50
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I' € H*(U") ¢ G. Finally,
e’ — (eg)r =A7"(F’."‘—F) -0 (p‘)

and so ef € . The proof of (a) is finished.
(b} and (c) follow immediately from (a) and Theorem 5.3.

as r = l—

COROLLARY 6.4. LNo(U™) s a proper closed weakly dense Mébius in-
variant subalgebra of LN, (U").

7. Applications. In this section we present a few consequences of
Theorem 6.1.

As was observed in Section 5, LF, (U") is isomorphic to the nuclear power
series space B, = A;(51/%" 1 j € Z;). Using [3], Proposition 3, we see that
E, is not isomorphic to E,, if n # m. The Fréchet envelopes of isomorphic
spaces are isomorphic, so we obtain the following result.

ProrosITiON 7.1. If n # m then LN,(U™) is not isomorphic to
LN, (U™).

It is easy to prove that the sequence {z“}ﬂem is a Schauder basis of

LF,(U"). This, Theorem 6.1, and Proposition 4.1 imply the following patho-
logical property of LN, (U™).

PrOPOSITION 7.2. The Toylor series Zf(u)z‘” of each function f €
LN, (U") is p-convergent. Conseguently, the sequence {z""}aem 1¢ o Schou-

der basis of (LN.(U™), u}, and so LN, (U"™) is weakly separable but nonsep-
arable in its own topolegy v.

PROPOSITION 7.3, No infinite-dimensional locally bounded subspace of
LN, (U") i5 complemented.

Proof. Suppose that X is a locally bounded complemented subspace
of LN,(U™). Then the Mackey topology of X coincides with the topol-
ogy induced om it by the Mackey topology of the entire space LN,.(IU"").
By Theorem 6.1 the closure of X in LF,.(U™) is a locally bounded sub-

space of LF,(U”). However, every locally bounded muclear space is finite-
dimensional.

‘ We recall that a topological vector space X has the Orlicz-Pettis property

if every weakly subseries convergent series in X (i.e., a series ¥ @, in X
+ ” N ;

such t‘hgt v?reauk-ln_nﬂ_.E>o 2oiw1 Thy exists for each increasing sequence {k;}

of positive integers) is convergent in X.

PropoSITION 7.4. Ifn > 1 then LN..(U™) does not have the Orlicz-Pettis
property. :

icm
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Proof Let {fi} be asequence of homogeneous polynomials constructed
in Proposition 4.1, For every sequence {e,} C {0,1} the series (*) > epf
is K-convergent to a function f, € LN,(U™). The series () is just a block
series of the Taylor series of f¢, so it is p-convergent (see Proposition 7.2).
Finally, the series 3 fi is both Mackey and weakly subseries convergent
but, by Proposition 4.1(b), it is not convergent in the original topology of
LN, (U™). The proof is complete.
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