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A weighted Plancherel formula II. The case of the ball
. o .

GENKAI ZHANG (Stockholm)

Abstract. The group SU(L, d) acts naturally on the Hilbert space L2.(B, «21!;?) {o >
—1), where B is the unit ball of C® and duo the weighted measure (1= ]=%) dt.im(zt)é
It is proved that the irreducible decomposition of the space has finitely many mcrzl
parts and a continmous part. Each discrete part corresponds t.o_ a zero of the gen-.zi ,:1
ized Harish-Chandra e-function in the lower half plane. The discrete p_arts are gtudie
via invariant Cauchy-Riemann operators. The representations on the discrete parts are
eqriivalent to actions on some holomorphic tensor fields.

0. Introduction. A weighted Plancherel forr.nu.la in the case of the dj?k
of the complex plane was obtained in [9], wherze it is proved that. a Illlaturz.ii
unitary group action of the MObius group on L3(D, pa), Wh_ei'rg D fxst Itl e uni
disk and dpg(2) = (1-]2|?)* dx dy, gives rise to a decqmpos1tlon of the space
into continuous and discrete parts. The representat'mns of the contx'nuoEs
part are in the principal series, while those of ?he discrete parts are H;} zhe
discrete holomorphic series. Note that, in partlculaF, thze first space of the
discrete parts is the usual weighted Bergman space in L*(D, ?a). -

In the present paper, we give the corresponding Plt_mcherel o'rimcail in : ]
case of the ball in C%. We use the general approach via the Harish- o ar; dra
o-function. Tt turns out that in our case (the analogue of) the c-function

‘has zeros in the Jower half plane, pach zero giving one discrete part in the

decomposition. When o = —d — 1, the weighted measure is just t.he imcria'mci
ant measure on the unit ball; in this case "f,he Blancherel forml}la is stu 1er
in [7). The discrete parts are studiec'i via invariant Cauchy-—Rlem.ann ggii -
ators. That is, we identify them wm.h so-me componentg in ap incre _torg;
sequence of kerne] spaces of iterated invariant Oai}chy—Rmmanp opera :_
The representations on the discrete spaces are eq.ulvalent to a,ctlofns (1?11: sgi -
able holomorphic tensor fields. Finally, we describe some bases c,ra‘1 ‘E is
crete spaces. However, we have not been able to find an orthogonal basis.

. . . . 90. .
tics Subject Clussification: 43A85, 43A! - '
i?j; tﬁ:;’:"—;ﬁ; ?}fmse: : Plancherel formula, Harish-Chandra e-function, reproducing

kernel, orthogonal polynomial, invariant Cauchy-Riemann operator.
]



104 G. Zhang

This problem involves orthogonal polynomials related to the ones studied
by Appell and Kampé de Fériet [1].
In §1 we fix some notations and present our main theorems. The proofs

are given in §2. In §3 we study the discrete parts and give some bases in
these spaces.

Acknowledgement. The author is indebted to Professor Jaak Peetre
for his constant encouragement and valuable discussions.

1. The Plancherel formula. Let B be the unit ball in C? with dm
the Lebesgue measure on it, and let S = 88 be the unit sphere with do the
normalized area measure. For @ > —1, we consider the weighted measure
dpa(z) = (1—|2|*)* dm(z). The group SU(1, d) consists of all block matrices

of the form
(A B
Q‘ - C D 1

where D € C, A, B,Caredxd, dx1,1xd matrices, respectively with
complex entries, such that g is unitary with respect to the indefinite metric

212 + 12 [? + .. % |24]? — [2442 |2 on €41 and det g = 1. Tt acts on the unit
ball via the formula

9z = (Az+ B)(Cz+ D)™*.
We define an action of SU(1,d) on L2(B, ua) by
Tof(z) = f(g2)(det /()7

where v = a+d+1, and ¢'(2) is the complex Jacobian. Then T is &, unitary
representation of SU(1,d) (with the same convention as in [9] concerning
the ambiguity of the definition of the power). The corresponding invariant
Laplacian was found in [9]. It is of the form

NESU- .
(3 = (1 — |z| )(qum—uﬂ),
P Bt e

where R = Z?:a %;0/0z;. We will find eigenfunctions of the invariant Lapla-
cian.

LemMa 1.1, The functions
ol ol o . Y

o 12 2 1
0 et = (7 ) = Gop: Y5

are etgenfunctions of [, with eigenvalues —((o +1)2 +'A2).

Proof. We follow the method in Helgason (8], pp. 402-403 (see also
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[10], Theorem 4.2.4). Put
oy (LI )d
(2, w) = W )

the invariant Poisson kernel, and
K(zw)=(1-{(zw)™",
the Bergman reproducing kernel. In this notation, we have
exw(2) = P(z,w) ™5 K(z,0).
If g € SU(L,d), by Theorem 3.3.5 in [10], we have
P(gz,gw) = P(z,w)P(g0, gw) .
It is also known that
K (g2, gw) = (det g'(2))7% (det g'(2)) T K (2,w) -
From this it follows that _
e (g2)(det g'(2))FT = ey, g-1,(z)(det g'(0)) ¥ ey ,(90).
Since [J, commutes with the group action Ty, we get
(en e (gz)(det g () = Ouey g1.(2)(det g'(0))T¥ ey, (g0) .
Putting z = 0, we see that
Chexw(g0) = Dheng-10(0)exw(g0).

That is, the e, are eigenfunctions of E!l,,. The‘eizgenvzlue [, exw(0) can
be calculated directly and we find it is —3((@+ 1)+ 2%). m

The functions
(1.2) ¢alz) = f eaw(2) do(w)
s

i i i alues.
then radial eigenfunctions of [, with the same eigenv
areLetenI;:(B) be %:he space of C°°-functions on B with compact ﬁupports
and let DI{(B) be the space of radial functions in D(B). For f €D (B), we
define the spherical transform as follows:

(1.3) O = [ F(2)¢-r(2) dual2)
B

and extend it to an entire function of A. For f € D(B), we define the

generalized Fourier transform by

Fovw) = [ f@e-rw(2)dbalz), AER,wES,
B . ‘

and likewise extend it to an entire function of A.
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In what follows we will only consider the case when o is not an integer
and we then define

(1.4) k=[la+1)/2].
The following Plancherel-type theorems will be proved in this paper.

THEOREM 1. Let & > —1 and not an integer. For f € D'(B) we have

(i) the inversion formula

£ = g [ Fomrter- Yrt 3 erflifo+1-20),
=0
where
(15) Pd+0rk+1-HMa+1+d)(a+1-20)
wiD(d) (o + 2 — D(~1) [T gy — D
(16) 9~ +a=iA P((3A)

CO)ZP “vrd i) (v EdENY
2 2

and (ii) the Plancherel formula

(1.7) f |£(2)]? dpa(2) = 2.,_,.2 d+1 f |F)Ple(A) 2 dx

+th|f

THEOREM 2. Let a > ~1 and not an integer. If f € D(B), we have
(i) the inversion formula

f(;):=5;§§§%¢T j‘ j'ftA,w)eAM(zHc(Aﬂ"zdAda(w)

+ Z € f I (
and (ii) the Plancherel formula

J 1P et = zafz(jlﬂ J SR ardete)
R

+Xk:c1 f

1=0 g

i(a+1—2).

0+ 1~ 20), whe—i(api—a) () do (@),

i +1—20),w)fli(e + 1 — 20),w) do(w) .

icm
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Moreover, the quadratic forms

¢ f Fl—i(a+1- 20), w) flio+ 1 — 21), w) do(w)
g
are positive definite. Let Py be the operators defined by

(1-8) Pff(z) = 0 f f(""i(a +1- ZE);W)e_i(a+1_gg)’w(z) dcr(w) .
g

Then Py can be extended to pairwise orthogorml projections on L*(B, o).
Define A“’ (B) = P.L*(B, pta). The map f  f then extends to an isometry

from
k
IA(B,ua) 0 Y A (B)
=0

into
I'(d -
L2 (]R X S,W%H‘C()\)l Qd)\dcr) .

2. The c-function and the proof of the Plancherel theorem. We
gtart with the following
2'\;d; Izlz) ’

LemMA 2.1, The function ¢y, is given by

(2.1)  dafz) = (1~ [z!2):~"—*§*ﬂp(y"“;‘ i)\’ —y +;_

where F' is the hypergeomnetric funclion.

Proof. By definition (1.2) we have

) 1~ [ap wppdedd ) )
bae)= ] (Fm) | agare®
s it 4 1 1 :
(1 - izl ..m:!:,w.. f |1 _ (z w>|—viu—m 1 M( )) da(w)
-ubg»ip\ 1 _ 1 .
=Gl f = el = G- e )

= (1~ IZ!Z);—_H:Q:&L:H. E (-—u-:zj—u) (w:i-u)

n,mza(
x [ ((zw))"({w, )™ dor(w) -
E)
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By Rudin [10], p. 18,

Wl 2w = 4 O fn#m,
I ot o) = { |,

ifn=m.
Here we have used the Pochhammer symbol
(d)r =d(d+1)...(d+n—1).
Writing (2) = (—1)"(—s)n/nl, we get
i) +d— 1A ~v A+ d—iA 1
boa(2) = (1~ o)== ( ) ( o
e I N el e e e

— e d—iA v+d-—id ~v+d—iA
=(1—|2*)" = F( 5 . Y 5 : ;d;]zIQ).

It follows from the known property of the hypergeometric function (Erdé-
lyi [3], Vol. 1, p. 64) that ¢,(2) = ¢_(2). The lemma is proved. w
COROLLARY 2.2. If Re(iA) > 0, then the limit

: r(—wtd—iA) _
Jim ¢a{tanhr)e = c(A)

=0

exists and we have

(2.2) () = 2wk~ DAY P(iA)

F(_my+d+iA>F(v+d+z‘A) |
2 2
Proof. If Re(é)) > 0, then by Erdélyi [3], Vol. 1, p. 61,
. v4+d—iA —v+d-—iX
lim F sdy |22
jz|—1 ( 2 ’ 2 ’d,IZI )

zF(V+d—7l)\,mu+d—i)\
2 2

;d;l> = F(V+;fgi)§fz):;+c;+i)\) '

Now if z = tanhr, then e27(1 — |2|?) — 2% as r — 0o. From the above and
(2.1), the corollary follows easily. m

Remark. If we formally let v+ = 0, that is, o = —(d + 1)}, and dp,

the invariant measure, our c-function turns out to be the Harish-Chandra
c-function (Helgason [7]). '

If We use geodesic polar coordinates, writing z = (tanh ™w, w € S, then
the r.a,dlal eigenfunctions ¢ (2) = ¢ (tanhr) of O, satisfy

(2.3) L& = —3((~v+d)? + 30
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where

1d* 1 v d  (d 1 d
L=1% (LY 4 (d_1 d

age T (4 2) tanh'r'dr+ (2 4) cothrdT

is the radial part of [J,. We omit the calculation.
Next we proceed as in Helgason [7] to find two linearly independent
solutions of (2.3). Let .
(24) Ba(r) =3 €72, (NelPmdtr,
n=0

Substituting

o0 o0
tanhy = ~1 + 2 Z(wl)”e“zw, cothy = 1+ 22 g—inr
n=0 n=0
into (2.3), and comparing the coefficients of e~2"", we arrive at the following
recursion formula for IN,(A), » > O:
(2.5)  n{n—1)In(})
n-1
= (iIA—d+v = 2k)[(~d+ 5) + (1" - DI
k=0
Take Iy = 1. If i\ @ Z7T, then (2.5) defines I, (A) uniquely. Moreover,
they are rational functions of A, Using the same method as in Helgason [8],
p. 63, we can prove the following estimate: For any h > 0, there exists a
constant K such that

(2.6) ITa(N)] < Ky pe™.

Since h can be arbitrarily small, we see that (2.4) defines a solution of
(2.3) on (0,00). However, if —iA € Z", $_, is another solution, and it is
easy to see that ¥y, $_ are linearly independent if i) ¢ Z. Hence ¢y =
s1(\By + s2(\)P_y for some constanis 81(A) and sg(}). Multiplying this
equation by el "*+¥-1A)" and taking the limit as r — oo, we get s1(A) = c(A)
if Re(iA) > 0, i) & Z. From the proof of Lemma 2.1 we know that ¢ = @x.
Therefore 53()) = e(—A). That is, we have
(2.7 dx = (NP +e(~NF_», Re(id)>0,iAgZ.
By analytic continuation, this holds for all A. From the known properties
of the gamma function we see that c(A)™" has poles at those A for which

__1/+d—|-'1])\ e 7+ or‘ 3 —v+d+i czt.

.2 2

This is equivalent to

€ (26T —i{e+ 1)) U (AT +i(a+2d+1)).



110 G. Zhang
In particular, since ¢ is not an integer, we see that c(A)~! has poles in the
lower half plane at
A= —i{la+1-2), 1=01,...,k,

where k is defined by (1.4).

LeMMA 2.3. The c-function satisfies

Cy + Co|Ajltd+1/2
[Tio A +i(e + 1 — 20)
where Cy, Cy are certain constanis,

le(N)~* <

. Re(iA) >0,

Proof. Substituting the duplication formula (Erdélyi {3], Vol. 1, p. 5),

T(i)\) = 223~ 1x=/2 (@) r (M + 1)

2 2
into (2.2), we get

F(—u+26l+zA)F(u+d+iA)
c(A) 7t =22 2

2 iA+1
T (dyr—1/2 E.H
axrr(3)r(%57)
Recall that v =a +d+1, so '
. 3
—v+d+iA l—v4+d+iA
s (LAY ]lrsded

I=0

Now if Re(iA) > 0, then

a+l a+l i

Re([—2—]+1»—ﬂ_—+z——)>0, Re(v+d—1iX) > 0.

Using the Binet expression ([3], Vol. 1, p. 22), we get

F(u+c;+i)\)

2kt gL
Tr(EE) FeremT

I

2

a-+1 a-+1 1A
rf|&==+1-22=422
(55 -20+3

“(7)

) < Oy + Cylin|SF -2

A weighted Plancherel formula 111

Substituting (2.8) into c(X\)~* and using the above inequalities, we get the
lemma. =

LEMMA 2.4. The I, satisfy
ITa(N)] € (L4091 + A9,
for sustable constants ¢, d, and e.
Proof. See the proof of Lemma 4.11 in Helgason [8]. =

LEMMA 2.5. Let F' be an even entire function of emponential type R.
Then the function

Fey= [ FNgal=)le()[ " dA

R

k
2°+21rd+1 . .
+ ; et 1= 20)0an-an ()

satisfies
f(z)=0 #fd{0,2) > R,
where d(0,z) is the hyperbolic distance, and e; are the constants in Theo-
rem 1.
Proof. From (2.2) we see that if A € R or éA € R, then
le(M = e(Aje(-A).
Using (2.4) and (2.7), we find

[ F(\)ga(tanhir)ie(A)]~2dA
R

— j‘ F(A) i(Fn(A)e(i)\——d+v)re—2nrc(_)\)—1
hied n==0

+ Fn(_A)e(—i.\—d+u)re—2nrc()\)«1) dX.

T.eramas 2.3 and 2.4 then guarantee that we can change the order of inte-
gration and summation. The above becomes

2y [ FOOT(-N)el =273 e(n) ™ d.
n=0 R '

We now compute the nth term. As we noted before, c(A)™! is a meromorphic
function with simple poles in the lower half plane at —i(a+ 1 — 21), where
1=0,1,...,k while I»(—X)} is holomorphic in the lower half plane (it has
poles at A € iZ1). By Lemma 2.3 and the assumption on F', using Cauchy’s



icm

112 G. Zhang

theorem for < 0 and || large enough we now obtain

(29) 2 [ F)L(~Ne e 2 e(X) ™" dA
R

—2 [ PO (=Ne e ()71 dA
R—+in

%
S 1}: GF(i{a+1—20) 0 (—i(a + 1 — 21))ePre=2
where 0
o= m22eAD-AUP(p 41— DN(a+1+d-1)
r@r(e+1 =2 g ul 1)
Furthermore, the second integral in (2.9) can be dominated by
Celllgnm — celr—Ein

So if r > R, letting || — —oo, we see that this integral is 0.
Summing (2.9) over n, we get

(210) [ F(M\)éa(tanhr)je(A)| =2 dA
R

k =]
=—¢ Y F(~i(a+1-21) > Da(i{ar+ 1~ 20))e2ire=2mr
=0 n=0

On the other hand, by analytic continuation,

c(~i{a+1-2))=0, clifa+1-2))= F(d)zm(;tz;fg_ 2 —2I); ,

so by (2.7) we have

(o 4]
Pi(atr—2n (tenhr) = c(i(a+1-2D)) D Du(i(o+1 - 21))e? e
n=0

Substituting this to (2.10), we get for r > R,
[ F(\)sa(tanhr)|e(A)} 2 dx
R

k
=- ?_: che(i(c+1 — W) F(i(a + 1 — 20))pses 1 auy (tanh 7).

As ¢; = cje(i(a+ 1 — 20)), this is just the lemﬁla. "

- Now we can prove the following inversion formula.

A weighted Plancherel formula 113

THEOREM. Assume that o > —1 and not an infeger. Then for f € D B)
we have
2a+27rr:l+1

k
fO) = [ FNeN) 2+ e f(—i(a+ 1 — 21),
E_{[ c > gy et 1= 20)

where the constants ¢ = 2¢T2x%1/1(d), k and c; are the same as in Theo-
rem 1.

Proof. Choose a function 8 € C§°(R), supp § < {—1,1], such that
P\ = [ B(rle™"dr
R

satisfies
¥ iseven, =0, ®0)=1.
Define the linear functional T : D(B) — C by

k
T(f) = [ FOVeW|2dr+ eiff(—i(a+1-2D)

R =0
where
)= [ f(U2)dU,
U(d)
and U(d) is the unitary group on €% and dU the normalized Haar measure

on. it.

Below we prove that T is a constant multiple of the delta function. First
we notice that f#(A) is the (Euclidean) Fourier transform of the average of f
over some hypersurfaces (horocycles) with respect to some weight functions
{we omit the details here). So the integral in the definition of T is absolutely
convergent and T is a distribution. Therefore we have

T(f) = lim [ $E)FNR) ™ dr
R

k
o+ g%z:cnb(—-ia(a 41— 2 (=i +1-20))
i=0

= tm [ ([ £()62(2) dual) jHEN NI dA

R B

k
+ lim Yo [ f(#)diarr-a() dpa(2) W{—icfa+1—20))
1=0 B .

= EI:I_IR) _'!‘ f(z)Ts(z) dpa(2),
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where

Toz) = [ w(eN)galz)le()| 2 dA
R

k
+ Y Cpiasr—an(2)w(—is(a + 1 - 21)).

=0

By the Paley—Wiener theorem, we know that ¢(g)) is an entire function
of exponential type £. Hence by Lemma 2.5, T;(z) has compact support
(tanhe)B. Moreover, T:{z) has uniformly bounded L*(dyue)-norm. In fact,

I Telly = [ Te(2)| dialz) < pral(tanh 6) B)|Te]|oo -
B

From (1.2) it is not difficult to see that |¢5(z)| < C, for A € RU{i(a+1-21):
1=0,1,...,k} and #z € (tanhe)B. Therefore

R
1Telloo < € [ w(eN)|e(A)] 72 dA + C>  |p(—iz(a + 1 - 21))|
R

=0

k
<O [ pN)e(Va)?dA+CY . [ 1(r)|es 1 gy,
R 1=0 R
By Lemma 2.3, the first term can be dominated by Ce~1e—2(d~1/2) — 0g—24,
The second term can be dominated by a constant. Hence [T} |00 < Ce™24,
Since piq(tanh eB) = e72¢, we get

[Telr = C.

So finally T is a distribution of support {0} and is alse L®-continuous.
Hence T(f) = ¢f(0) for some constant ¢. We select a sequence in DY(B)
that approaches the constant function 1 in L?(B,du,) and calculate both
sides in the inversion formula. We find then ¢ = 2%+2xre+1/"(d). This
proves the theorem. m

The rest of the proof of Theorems 1 and 2 in §1 is the same as in 19,
provided the following is proved.

LeEMMA 2.6. For A € C, and g € SU(L,d), we hove
(97" 2) = {det g (0)} P {det(97™)'(2)} 7 [ ex 0 (2)e2,2(30) dor(w).
g

Proof. We follow the proof of Lemnma 1.1 and the notations given there.
By definition '

palg™2) = f P(g7a,w) ™50 K(g~'z,w)do(w).

icm
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Changing variables w + g~ lw, and noticing that the Poisson kernel P(g0,w)
is the Jacobian of the transformation, we get
—ptdfi) _ _
¢x(g7te) = [ P(g7 e, g7 'w) 50 K(g7 2,97 w)P(g0,w) do(w).
5

Using the transformation formula in Lemma 1.1, we get
oa(s7 ) = [ Plz,w) 5 K (z,w)P(g0,0) "5
g
x P(g0,w) {det(s™) ()}~ T (detlg 1) (@)} = do(w)
= {det(s7") (=)} [ exw(2)e-20(d0)
5}
x K (g0,90) " K (g0, w){det(g™") (w)} " # do(w)

= {detg'(0)} 77 {det(s™1) ()} T [ eru(2)e-r(90) do(w)
5

= {det(g™)(0)} 7 {det(97")'(2)} " #F [ exul#)e—sa(90) do(w).
8

This proves the lemma. =

3. The discrete parts. In this section we will study the discrete parts
via invariant Canchy-Riemann operators. ‘

By the definition of the projection P; (see Theorem 2 in Sec. 1) and (1.8),
we have

Pf(z) =& [ Fl=i(o+1-2D),w)e_sat1-amw() do(w)

5
= ¢ ff(w) fei(n-{—l—zl),rﬂ(m)e*i(a+1—-2l),u(z)da(“’) dpralw) .
B g

Therefore
K;(z,w) =¢ f 6i(a+1—zz),a(W)eﬂi(wl—m),u}(z) dcr(w)
s

is the reproducing kernel of the space Af"’z(B). Putting w = 0 in the above
equality and using Lemma 2.1, we find

kil
K(2,0) =¢;F(-l,i_“ a_l;d;—l_:W :

Moreover, we have

K¢z, dw) = {det ¢/ (=)} 71 {det ¢ (w) } ¥ K (2, w) .
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From this we get the formula for Kj,
1 |u(2)?
—lLl-a-1id——7—=5
(L- (%M)““*"’F( e 1 — [¢h (2)|?

where 1., is an automorphism in SU(1, d) sending 0 to w. We can also write
this as

K;(z,w) =

—{z,w 2
Ki(zw) = 6 e s )

A= ey’ (“l’l”“‘“d; AR - )

Tf | = 0, this is the Bergman kernel. So A?(B) is the weighted Bergman
space A*?(B). The reproducing kernel K (z,w) can be further written out

explicitly,
11— {z,w)[?
(1~ (z,w))xtit+d (- [=?)(1 —~ ]w|2))
e 1 (d+a__9i |1 — (z,w)|? )
L= L{zwpetite d Q- ]P)A-|wf)/) "
The spaces in question can be constructed from invariant Cauchy-Rie-
mann operators. Define the operator ﬁj

Ki(z,w)=¢; 1

F(—-l,—a;d;l—

(3.1) Ejf(z) — Z O;(w) B(f o ) (w)

B’UJ;,, Bwk

b

ES w=0

where % is an element in SU(1,d) such that #0 = z. This operator is
calculated in [9]; one finds

7 f(z) =(l—|z§2)(%—zjﬁf), ji=1,...,d.

From the definition we see that the operators have the following intertwining
relations with the group action:

B (w29 )78 = 3 LB ) o 55

k=0
This is why we say that they are invariant. Define

PR
Bzzz( N Keqrﬁlu.fﬁn)nlﬁcg,uay
J1s-eadr=1
By the intertwining property we see that the B are invariant subspaces of
L?(B, u,) under the group action. Let

A =By 08, 1=0,1,...,

where we let By = 0.
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Next we prove that 4; = Af"z. We note that from the reproducing

property it is easy to see that Af"‘? is an irreducible component of the group
action. If f € Ao, then

- (5E

Multiplying by 7’ and summing up, we get Bf = 0. Therefore the equatlons
become 8f/8%; = 0, that is, f € AT*(B). It is also obvious that Ay’ *B) c
Ap. So Ag = Ag’z(B).

Now if f € By, then

D=0, 4j=1,...,d.

—zjfe,f) =0, j§=0,1,...,d.

By the above calculation, we know that D' f = g;, for some analytic func-
tions g;, that is,

(32) (- 1) (55~ #E) £ = o

Multiplying by 7' and summing, we get

d
= 1
Rf=o——0 Z Zigi -
A= [2P) &
Hence the above equations become

of _ s
ozt 1~lz|2

|z|2)2 ZngJ

This can be solved by

/= Z

where gg is an arbitrary ana.lytlc function.
By induction, we can prove that if f € By, then f has the form

B9 f=3 g )zgf»t- 2 Gs

(= I
where we write I = (i1,...,a), 2’ = AL E, II| =14; +...+ 14, all the i’s
are nonnegative integers and all the gr are ana.ly‘tlc functions. Therefore if
feA =823 31_1, then

f= Z(l ]z|2)191+h

=t

|Z|2 o2 97 + gD )

= G g -+ g0



118 ’ G. Zhang

where A is a function in B;_; uniquely {linearly) determined by {gr : |I| =
1}. Since A, is a closed subspace of L*?(B), and gr is uniquely determined
by f € A;, we see that (by the Banach theorem) g; € Ae=20L2(B). From the
intertwining property we see that the group action on .4; induces an action
on the tensor fields gr: if ¢ = (é g) € SU(1,d), A = (ai)axa, B = (bi)ax1,
then

et
g1 = 2 (ahjl + bi1zj1) se (Eizjz + bilzjz)gf(¢z){det (b’(z)}?l“-ﬁ :
|Ii=1

Using similar arguments to Lemma 13.1.2 in Rudin [10], it is not difficult to
see that A; constitutes an irreducible component.

Now if f & Af"z (B), let us show that f € A;. Without loss of generality,
we may assume that f € F;D(B), so that by Theorem 2 in Sec. 1,

(34) f&) = [ hweoiari-mwlz) do(w).
g

However, by (1.1)
11— (z,w)[* 1
A= 2P (1= {zw))”
1 VIV .
- R 5 ) Y T P2

Ij=§

E_j{ar1—20)w(Z) =

and by the binomial theorem we have
i1 I—j |22 |#|20—9)
om0 a e
for every 7 < I. Using this we see that f has the form (3.3). Hence f € B;.
That is, A*?(B) C Bi. An induction argument now reveals that indeed

AM?(B) € A;. Since AM?(B) is irreducible we have A?(B) = .4;. This
proves our claim. =

From this characterization we can find a basis for the space A?’Z(B).
The space B; is generated by the functions

s

£ I
aoppere e =0kt
Writing
z’ T

=PV T A=yt
we observe that if I" 7 I then the two functions 127227 /{1 — |2)2)Y and
|27(227" /(1 — ||%)/Y] are orthogonal. So it is a question of orthogonalizing

icm
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the following system of functions in L?(B, pa):

212 T2
O N e )
— 2] 1Ji=1 (1 - 2% 17|=1

where I = (i1,...,1q4) Is fixed, i1,...,ig > —I are integers and Il > —I. For
the negative indices, say 4; < 0, we have to remove functions in the above
list that are not in L*(B, i), ie., the terms |27|227 /(1 — |2]*)17] for which
§1 < 1. Changing variables

212
-1z’
we are faced with the problem of orthogonalizing the system
(35) ts, SZ(Sl,V..,Sd), |Sl§k,

on RE with respect to the measure

d
(3.6) E(14Y tm
' m=1

where dm(¢) is the Lebesgue measure on R%. For multi-indices I and J, we
set Il =i1!...4a,, (D) = (81)4, . - (8a)j5- We define polynomials Pr g by a
Rodrigues type formula :

I

d
|
L
Prs() = gyt (H- E_ltm

() e )L

m=1

t; = i=1...,d,

—{({Il+oa+d+1)
) dmi(2),

) [Ij+atd-+1

where (9/0t)° is interpreted in the obvious way, that is, (8/8t)° =
(8/8t1)% ... (8/84)%¢. Tt is easy to check that if |S] # 18’1, then Pr,g and
Py g are orthogonal. But in general they are not orthogonal if 18] = |5
(see Erdélyi [3], Vol. 2, p. 270). Direct calculation gives for |S] =1

o (S (e+1+d+ -1 d 1-1J]
Prs®=3_ ... ( (@Bioi)jl...(id+1)de!mtJ(1+ Ztm) .

j1=0 Fa=0 - m=1
This formula is only valid when the indices %1,. .- ,iq are nonnegative. For
general I, |I| = —I, the above formula should read
a1 8d

(“S)J(O:’+1+d+|.[| _Z)EJ|
(31 + 1)j, - -~ (Ba + 1)j. !

x 7 (1+ ‘j: -tm)l_m .

me=1

- Prg(t)= z

jr=max(0,—i1)  je=mex{0,~ia)
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Therefore we get a basis {Qr,5(2)2! : |S| =1, [I} 2 ~1, i1,.. ., 4a 2 ~1}
in AY*(B), where
Qrs(2) = (L~ [z~

5 - CSglat a4 I =Dy
X ; : :
Z Z (.,;1 + 1)]1 L (zd. -+ 1)de1 |Z]_ ]

Ja2
Fi=max(0,~1i1) ja=max(0,—14)

We have been unable to find such an explicit formula for orthogonal
polynomials of several variables with respect to the measure (3.6). Still, the
above basis may be good enough to study the Hankel operator from the
Bergman space A%?(B) to the space Af"z(B). We will not study this here,
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Rank and spectral multiplicity
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and JAN KWIATKQOWSKI (Torud)

Abstract. For a dynamieal system (X, T, 1), we investigate the connections between
a metric mvariant, the rank r(T), and a spectral invariant, the maximal multiplicity m(T").
We build examples of systems for which the pair (m(T), r(T')) takes values (m, m) for any
integer m > 1 or (p— 1, p) for any prime number p > 3.

Introduction. Given a measure-preserving dynamical system (X, T, i)
there is a corresponding Hilbert space automorphism, namely the action
of UpF = F oT on the space L*(X, #). The link between these so-called
metric and spectral structures is still only partially known. The spectral
structure, of course, is completely defined by the mamimal spectral type and
the multiplicity function of the operator Ur. One particular invariant that
we shall study here is the mazimal spectral multiplicity m(T) (see 1.5).

Now a metric invariant closely related to m(T) is the rank r(T), intro-
duced by Chacon [Chal], though named only in [ORW]. The first known
systems with m(T") = 1 (simple spectrum) were of rank one (this including
the well-known discrete spectrum systems). :

In general m(T") < r(T) [Cha2]. The nontrivial result of [Robl], that
there exist systems with any given value of m(T), uses systerns of finite rank.
Also, the rare examples of finite multiplicity where the maximal _spectr:?\.l
type is Lebesgne (plus a discrete or singular continuous part) fall into this
category [Age], [Lem], [MaNa], [Que]. :

The question of which values the pair (m(T), »(T)) may ta.ke? was asked
by M. Mentzen [Menl]. He conjectured that each pair (j,n), j £ n, may
be obtained. The pair (1,1) was obtained by Chacon [Chal], (1,2) by del
Junco [deld], (1,n) by Mentzen [Menl], (1,00) by Ferenczi [Ferl], (2,n) by
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