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Therefore we get a basis {Qr,5(2)2! : |S| =1, [I} 2 ~1, i1,.. ., 4a 2 ~1}
in AY*(B), where
Qrs(2) = (L~ [z~

5 - CSglat a4 I =Dy
X ; : :
Z Z (.,;1 + 1)]1 L (zd. -+ 1)de1 |Z]_ ]

Ja2
Fi=max(0,~1i1) ja=max(0,—14)

We have been unable to find such an explicit formula for orthogonal
polynomials of several variables with respect to the measure (3.6). Still, the
above basis may be good enough to study the Hankel operator from the
Bergman space A%?(B) to the space Af"z(B). We will not study this here,
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Abstract. For a dynamieal system (X, T, 1), we investigate the connections between
a metric mvariant, the rank r(T), and a spectral invariant, the maximal multiplicity m(T").
We build examples of systems for which the pair (m(T), r(T')) takes values (m, m) for any
integer m > 1 or (p— 1, p) for any prime number p > 3.

Introduction. Given a measure-preserving dynamical system (X, T, i)
there is a corresponding Hilbert space automorphism, namely the action
of UpF = F oT on the space L*(X, #). The link between these so-called
metric and spectral structures is still only partially known. The spectral
structure, of course, is completely defined by the mamimal spectral type and
the multiplicity function of the operator Ur. One particular invariant that
we shall study here is the mazimal spectral multiplicity m(T) (see 1.5).

Now a metric invariant closely related to m(T) is the rank r(T), intro-
duced by Chacon [Chal], though named only in [ORW]. The first known
systems with m(T") = 1 (simple spectrum) were of rank one (this including
the well-known discrete spectrum systems). :

In general m(T") < r(T) [Cha2]. The nontrivial result of [Robl], that
there exist systems with any given value of m(T), uses systerns of finite rank.
Also, the rare examples of finite multiplicity where the maximal _spectr:?\.l
type is Lebesgne (plus a discrete or singular continuous part) fall into this
category [Age], [Lem], [MaNa], [Que]. :

The question of which values the pair (m(T), »(T)) may ta.ke? was asked
by M. Mentzen [Menl]. He conjectured that each pair (j,n), j £ n, may
be obtained. The pair (1,1) was obtained by Chacon [Chal], (1,2) by del
Junco [deld], (1,n) by Mentzen [Menl], (1,00) by Ferenczi [Ferl], (2,n) by
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Goodson and Lemariczyk {GoLe], (n,n) by Robinson [Rob2], though in fact
it is implied by [Robl], and recently (n,2n) by Mentzen [Men2]. Here we
first give new examples for the pair (n,n), which are interesting as they
give an explicit construction of n Rokhlin towers, and that was unknown
previously. Then we proceed to our main result: we construct examples
for the pairs {p — 1,p) for any prime number p > 3. The transformations
used in our constructions are Morse automorphisms over cyclic groups. This
class is convenient for investigating spectral multiplicity and rank. On the
one hand, each automorphism of this type has a shift representation [Keal],
[Mar1], which helps to estimate the rank. On the other hand, the operator
Ur has simple spectrum on each subspace of L*(X) determined by the
characters. Hence our examples contain a discrete part in their spectrum.
It would be interesting to know if they can be modified to give a weakly
mixing case.

I. Preliminaries. Let Z, ={0,1,...,n =1}, n > 2, be a cyclic group
and let {2 be the space of all_ bi-infinite sequences over Z,,.

I.1. Blocks and operations on blocks. A finite sequence B = (B[0]...
...Blk—1]), Bli] € Z, k > 1, is called a block over Z,. All blocks and
sequences considered in this paper are over a cyclic group and we will say
shortly block or sequence if no confusion can arise. The number k is called
the length of B and denoted by |B}. If w € £2 and B is a block then wli, 3],
Bli, s}, 0 < < s < k—1, denote the block (w[i]...w[s]) and (B[i]... B[s])
respectively. If C' = (C[0]...Cfm — 1]) is another block then the concate-
natton of B and € is the block

BC = (B[0]... Bk — 1]C[0]...Clm —1]).

In the same manner we can define the concatenation of a higher number of
blocks. If v : Z, — Z, is-a group automorphism, then v(B) is the block

v(B) = (2(B(0)). .. v(Bk — 1))).
By Bj, j € Z,, we will dennte the block
Bj = (Bl0] +5)... (Blk — 1] + ).
Now, we can define the product B x C of B and € as follows:
Bx C=Bgp. .. Boim-1]-

1.2, Occurrences, frequencies, tiling. The block B is said to occur at
place % in w (resp. in C' as above (k < m)) if w[i,i + |B| ~ 1] = B (resp.
Cli,i+|B| — 1] = B). By the frequency of B in C (resp. in w) we mean the

icm

Raenk and spectral multiplicity 123

numbers
fr(B,C) = |C|7*#{0< i <|C| - |B|; B occurs at place i in C},
fr(B,w) = 81_13}0 fr(B,w[0,s - 1]},

if this limit exists.

For an infinite subsequence of w, E = {w[n] ; n € J C Z}, we call the
density of E the density of the set J in Z, whenever it exists.

Let § > 0. We say that B §-occurs at place i in C (resp. in w) if

d(B,Cli,i+|B|—1]) <6 (resp. d(B,w[i,i+ |B|—1]) <6},
where

d-[(ﬂ’}]_, v 19:11)3 (91, v 1yn)] = n—l#{i y Lq ‘7'é y‘i} .
d is called the normalized Hamming distance or d-bar distance between
sequences. Denote by ¢(B,C) the number |C|™ - {the maximum number
of digjoint occurrences of B in C}, and by ¢5(B, C) the number |C|~1 - {the
maximum number of disjeint §-occurrences of B in C'}.
Further, we define

(B,w) = lizngb(B,w[O,s ~1), ¢s(B,w)= lign(bg(B,w[D, s—1]),

if these limits exist. The numbers ¢(B,w) and ¢s(B,w) are called the tiling
frequency and the §-tiling frequency of B in w (see [Fer2]). Finally, set

t(B,w) = | Bl$(B,w), ts(B,w) = |Blgs(B,w) .

1.3. The dynamical system associated with the sequence w. By o we
denote the left shift homeomorphism of 2. If w € {2 then w(n] will denote
the value of w at n € Z and ©(w) the g-orbit of w. Let {2, be the o-orbit
closure of w in £2. The topological flow (12,,0) is called minimal if there
is no proper closed and o-invariant subset of {2,. We say that (£2,,0) is
uniguely ergodic if there is a unique borelian normalized o-invariant measure
jto 00 .. (§2,,0) is said to be strictly ergodic if it is minimal and uniquely
ergodic. Suppose that w is strictly ergodic. The unique o-invariant measure
e i3 determined by the condition

fiy(B) = fr(B,w)
for each block B. Tt follows from the Ergodic Theorem that ¢(B,w) and
$5(B,w) are well defined,

1.4. Rank and related notions. We say that (2,0, i) is of rank at
most r if for any § > 0 and for every n, there exist r blocks .Bl, ey Bry
|B;| >'n, such that for all N large enough, for a set of s of density > 1 —6,
the fragment w[s, s + N — 1] of w is of the form

. ) . :
w[s, s+ N— 1] = El‘W;lElWifg L EkWiksk-}"l )



icm

124 8. Ferenczi and J. Kwiatkowski

where |e1] + ... + k] + |en+1| < 6N and the distance d between W/ and
some By, j =1,...,k, 1 < m <r,is less than §. The system ({2, 0, 1u,) is
of rank r if it is of rank at most r and not of rank at most r - 1.

Now, we define numbers F, = F,, and F* = F} as follows:

(1) F. = sup{a ; for every n there exists a block B
with |B| =2 n and t(B,w) > a},
(2) F* =sup{a ; for every § > 0 and every n
there exists a block B with |B| > n and t5(B,w) > a}.

Note that F* = 1 corresponds exactly to rank one. Of course F, < F*.
In the sequel we will need the following easy observation.

Remark 1l If F* <1/(m—1), m > 2, then the rank of (2, o, pu) is
at least m.

L.5. Spectral multiplicity. We recall that ({2, o, u,) has spectral multiplic-
ity smaller than m if, U being the operator L2(2) — L*({2), UF = Foo, the
space L2(12) is the direct orthogonal sum of at most rn spaces Hy, ..., Hp,
where each H; is the closed linear subspace generated by (U"F;, n € Z) for
some F; in H;.

We say that ({2, 0) has mazimal spectral multiplicity m if it has spectral
multiplicity smaller than m and not smaller than m — 1.

L6. Adding machines and cocycles. Let T.: (X, B, u) — (X, B, u) be
an {n;}-adic adding machine, i.e. ny|ner1, g1 = Neg1/me > 2 for ¢ >0,
Ao =ng > 2 and

o0
(3) X={E=thnt—1;0$%§)\z—1, an1=]-}
. =0

is the group of {m,}-adic numbers and Tz =z +1, T = (1,0,0,...). The
space X has the standard sequence & of T-towers, Namely,

Et = (Das" ')D;“H—l)v
where
DB:{:BEX o= ... =@t -T—-U}, TS(DB)ZDL s=1,.,.,nt—— 1.
Th.en €141 refines & and the sequence of partitions {£;} converges to the
point partition. By C(T) we denote the metric centralizer of T, i.e.
C(T}={5:X — X ; § is measure preserving and TS = §7T'} .

The centralizer C(T') can be naturally identified with X in such a way that
if zg € X then S = 5, is defined by S(z) = z + z¢. By a cocyele we mean
a measurable function ¢ : X — Zn. A cocycle ¢ defines an automorphism
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T, on (X X Zy, i) by
T(p(x,J):(TQ,jJr(p(iB)), LEEX, jeZﬂ:

where i = p x T and 7 is the Haar measure of Z,. T, is ergodic iff for
every nonzero j € Z, there is no measurable solution f: X — 8 of the
functional equation

expl2mip(a)j/n] = F(T2)/f(=), zeX [Parl.
The metric centralizer C(T,) consists of triples (5, f,v) satisfying
(4) f(Tz) ~ f(z) = p(Sz) —v(e(z)),
where § € C(T), f : X — Z, is a measurable function and v : Zp, — Zy, is
a group automorphism (see [New]).

1.7. M-cocycles. We will define a special class of cocycles called
M-cocycles (Morse cocycles). We say that ¢ : X — Z, is an M-cocycle
if for every t > 0, ¢ is constant on each level D} for i = 0,1,...,n: — 2.
Such a cocycle is defined by a sequence of blocks {4;},

Ag = A0]... Ag[ne — 2], where | D} = Ayli],
If we define
a* i = Aega [ 4 Vs ~ 1],

then A;.; is a concatenation of the blocks A, and the symbols a*t1[i] as
follows:

(5) At-{-1 = Ata”l[U]Atat“[l] . .Atat"'l {A - Q]At, A= )‘H-l .

Now, assume that °,bt, ... are finite blocks with |6t = Ay, t > 0, starting
with 0. Then we may define a one-sided sequence by

i=0,.-.,ﬂf—2.

?::O,...,)\t+1—'2,

w=b" x b x...
Such a sequence is called a generalized Morse sequence over Z, if it is not
periodic and if each of the sequences '
(8) wy=bx bt x .., t20,

contains every symbol in Z,. By grouping some of the b;'s we can assume
that each block bt contains every symbol in Z. It is known iMar2] that
(2,,0) is strictly ergodic if uy, (j) = 1/n for every j € Zn and t > 0. It is
not hard to observe that the condition

fr(j,b") 2 0> 0
for every j € Zyn, and £ =0, 1,... implies w is strictly ergodic.

A Morse sequence w allows one to define an M-cocycle ¢ = @, on X.
Let

(7) Btzbox...xbt, t>0.
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Of course | Bs| = 0y == Mg ... Ap. Define a block B, |§t' =mn — 1, by
BiJi] = By[i -+ 1] - Bild),

Now, we put A¢ = B;. The sequence of blocks {4;} satisfies (5). Thus w
defines an M-cocycle ¢ = .. It follows from [Kwi] and [Lem| that the dy-
namical systems ({2, g, o) and (X X Zn, i, T,;) are metrically isomorphic.

i=0,...,m-«2.

1.8, Continuous Morse sequencs. Now, let w be a strictly ergodic Morse

sequence over Zy, and let ¢ = ¢, be the M-cocycle defined by w. For k € Z,,
define

Hy, = {(x,§) = F(z)exp[2nikj/n] ; Fe L*(X, pu)} C L2X % Zn 1D .
The subspaces Hy, are T,-invariant and we have a decomposition
L(X X Zn, i) = €D Hy.
kEZn

It is shown in [KwSi] that T, has simple spectrum on each Hy. Let uy
be the spectral measure of T, on Hy. It follows from [Kea2] that any two of
those py are either orthogonal or equivalent. The subspace Hy is generated
by the eigenfunctions of T, corresponding to all ns-roots of unity. A Morse
sequence w is called continuous if Hy contains all eigenfunctions of Ty, or
equivalently if each measure ug, k # 0, is continuous.

1.9. First observations. Suppose that v : Zy, — Z,, s a group automor-
phism,

Remark 2. If there exists § € C(T) such that the functional equation
(4) has a solution then

(8) Hr is equivalent to fi, i)
for every k € Z,,.
Proof. The triple'(S, F,v) defines § € C(T,) by
5(z,5) = (Sz, f(®) +v(5)), ©E€X, j € Ln.
We check directly that S(Hy) = Hyx), which implies (8).

Let m., be the maximal spectral multiplicity of (12, , 1t,) and let r, be
the rank of this system. : :

Remark 3. Under the same assumptions as in Remark 2, we have
m = the length of the biggest v-trajectory of Zn,.

Remark4. r, <n.

Proof. For every t 2 0, the blocks By + j, 5 € Zy (see (7)) completely
cover the sequence w.
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II. Examples of Morse sequences with spectral mutiplicity m
and rank m. Now, suppose that A\; = ks, ks, [y > 2. Ag a consequence of
Theorem 2 of [KwRo| we obtain the following.

TusoREM 1. Let w = b° x b! x ... be o Morse sequence such that for
every t > O there exists a block d* with |d*| = I; such that

B = diu(dh) ... o5 (d)

and let § € C(T) be defined by S(z) = x + mo, where zo = Yoo lene—1. If
Y200 1/ke < co then the functional equation (4) has a solution.

Theorem 1 is valid for M-cocycles with values in a compact metric abelian
group [GKLL].

Let m > 1 be a positive integer. Now, we are in a position to construct
an example of a Morse sequence w such that r, = m, =m.

Choose & prime number n such that m|(n —1). Such an n exists by the
Dirichlet theorem. There exists an automorphism v ¢ Z, — Z, such that
the v-trajectory of each j € Z,, j # 0, has length m (see [Rob2]).

Let E be a block over Z,, |E| = q¢ = 2, E[0] = 0. Take a sequence of
positive integers {m.} such that m; > n and m; — oo. Next, set Iy = nm;.

Let j be a generator of Z,. Define a block d* by

(9) d* = EE; ... Ey,.1); -
Choose k: > 1 such that
— 1
(10) ;k—t < 00
and define
(11) bt = diu(dt). ..o ().

THEOREM 2. If w is the Morse sequence 87 x b' x ... and the blocks

B2 b, ... are defined by (9)—(11) then my =re = m.

Proof. It is easy to check that w is strictly ergodic. The blocks b?,
t > 0, satisfy the assumptions of Theorem 1. Then the choice of v and
Remark 3 imply that

(12) My, = M.
We will show that r, < m. Put Do = EE;... En-1); and
Di = v¥(Do) = v (E)wH (B) + v'(3)) .. (¥ (B) + (n = D' (3)),
t=1,...,m—1.
Fix ¢ > 0. The sequence w; (see (6)) is the concatenation of the blocks by,
h ¢ Z,. We have
(13) b = (dt + h)(o(d?) +h) ... (0N (d) +R).
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We will cover b}, by the blocks Dy, ...
concatenation of the blocks

d+h, o(d)+h, ..., 0™
Take 5, 0 < 3 < m — 1. From (9) we have
(14) (@) +h
= (@ (E)+ RY(w*(E) +0°(F) + h)...
There exist sg, 51, 0 < 8p, §1 < n — 1, such that
Bt sov’(5) =0,  h—s1’(j) =0,

because v*(7) is a generator of Z,. Let

yDpp-1. Since v™ = id, b} is a

l(dt)-i-h

(v (B} + (I — Lv*(5) + ).

= (" (BY+h)... (v {E) + (s0 — 1)v°(j) + ),
Co=(*(B)+ (e —s1 +1)0°(j) + h) ... (v"(B) + (b — 1)v° () + k).
We have
(15) IC1l <qn, |Caf <qn.
Then (14) implies v*(d*) + h=Cy D, ... D;C,.

It follows from the above, {13) and (15) that b is covered by the blocks
Dy, ..., Dny—y except for at most 2|b%|/my places.

Set D! = By.1 X D;,i=0,...,m—1. The equality w = B;_1 X w; means
that the blocks Df,..., Dt _; cover a subsequence of w of density at least
1-— 2/mt

The condition m; — co implies r, < m. Together with (12) this implies
Tw = My = m. 'The theorem is proved.

Unfortunately, our example does not have continuous spectrum, since
there are eigenvalues coming from the odometer (3). However, we can choose
the block E in such a way that these are the only ones.

PROPOSITION 1. There is a block E such that the sequence w defined by
(9)-(11) 4s a continuous Morse sequence.

Proof It follows from the above considerations that uy L uy whenever
k and k' are in different v-trajectories. In particular, uy L o if k # 0. To
guarantee that w is a continuous Morse sequence it suffices to show that for
each k € Z,,, k # 0, the sequence

(16) f xx (™ () u(dz),

ﬁa:‘PH‘H

has a limit point a) such that |ag| < 1 (see [GKLL]), where
e™(2) = p(x) + (Tz) + ...+ o(T™ z),

icm

Rank and spectrel multiplicity 129

and xx is the character of Z, defined by
xk(8) = exp[2wiks/n], s € Zy.

Using the same arguments as in {GKLL] we obtain

ka(SD'"(m))M(dw Z ZXu‘(k)(S)wt(s)

aEZn

(17)

PRI
ey ke gl

where wi(s) = fr(s, dy). Tt follows from (9) that |w(s) — fr(z, B)| < 1/q,

- which gives

() plde) = 3~ me)(s)fr(s,ﬁ)l

8EZy,

1 m 1 n
et
< Aty ke gl @
Repeating the arguments from [GKLL] (part III) we may find a probability

vector @ = (w(s), s € Zn,) such that

Z Z Xvt(k) S)

SEZ’n I=0

whenever k # 0. Now, choose g large enough and a block E, E[0] = 0,
|E| = ¢, in such a way that

<6<l

(19)

<1——6
4 ’

& 1-4
Z Z XUI{kz)(w(s) fr s,E))\ < -

ann
Then (17)-(21) imply

\fxﬂﬁmkwnmmﬂs%5+%<1,
X

(20)

13

(21)

for t large enough and k # 0. Thus the sequences (16).ff)r k # 0 have
limit points ay such that |oax| < 1. Notice that this condition implies the

ergodicity of T.

III Examples of Morse sequences w1th spectral multiplicity
p—1 and rank p. Letp >3 be a prime number an@ le‘t v Ly A*Zp
be an automorphism such that the v-trajectory of 1 coincides w1th Zy =

{1,...,p—-1}.
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Let

w =v*{1), i=0,...,p—2,
and let F' = GugOuy...0up_p. Now, define
(22) B=F...F, t=01,...

2% times
‘We have
[Fl=2p-1)=x, [|=2""(p-1)=2A.

Set
(23) ' w=b%xblx...

In this section, we prove
THEOREM 3. m, =p—1 and r, = p.
PrROPOSITION 2. The Morse sequence (23} 1s continuous and m,, = p~1.

The blocks (22) satisfy the assumptions of Theorem 1 with d* = Oug,
ki = 2*(p — 1). Theorem 1 and Remark 3 imply m, > p — 1. Of course
Ty < p (see Remark 4). The spectral measures py,.. ., lp-1 are equivalent

but pq is purely atomic. In order to show m, = p — 1 it suffices to prove
that g1 L po.

In the same way as before, we have

(24) | [ a6 @) uda) = 37 xa(s) (s, B)
X

8€Zy,

<L
Att1
It is easy to check that
-~ 1
(25) \ > " xals) fi(s, by + i

The inequalities (24) and (25) imply that

<

R Y}

. : 1
lim [ xi(p™(e)) pldz) = ———.
X . p-l
Thus 4, is a continuous measure 50 that m,, = p — 1. At the same time we
find that T, is ergodic. The proposition is proved.

In the sequel we will estimate the number F* (see 1.4). We will show
that F* < 1/(p —1). This will be proved in Proposition 3. The main tool
is Lemma 2, which allows us to know the tiling of a “long” block By x C if
we know the tiling of the shorter block C. We then proceed to estimate the
tiling of blocks of length 2 and 3 (Lemmas 3 to 5); Lemmas 6 and 7 give

then some preliminary estimates on blocks of any length, and this leads to
the proof of the proposition. ‘ '
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The main problem we meet in these computations is to check that a given
block (B; A+ j) does not occur too often outside its “natural”® position. In
fact, some block close to (B; +j) (in the sense of the Hamming distance d)
may appear in a position slightly shifted from the natural ones. But the
important fact is that, except for the occurrences just mentioned, no (B, +3)
or no d-neighbour of (B;+7) will appear under another (B; +1)} or (and this
part requires the longest computations) under a junction (By + 4)(B; + i).

We start with the following observation:

- P—5/2 _
(26) d(F,Fij{l,)\— [ — 1]) > 2(19— 0 =g

for each j,k € Zp and l=1,..., A — 1. ‘
The inequality (26) allows us to estimate the d-distance between the
blocks b* and b}bﬁa[l,l+ A ~1,1=0,...,A: — 1. We have :
(27) d@* ) =1 ifj#0,
(28) d(, pibilL 14+ A —1]) 2 0 10 (modA),
0 ifi=0=k,
l/At if 7 =0, k#0,
1—-1/A 550 k=0,
1 if7#0 k#0

(29) (bt BEBEIL L+ 2y — 1)) =

for { = 0 (mod A).

LemMA 1. If C is a block occurring in wy and |C| > 3 then
(30) S #r(55,8) < 1/3.

JE€Ly

Proof. The sequence w; is the concatenation of the blocks b,k €Zy.

T ¢ occurs in wy then C is of the form
G = bt [l M — 100k, -k, bk, [0, 12,

where u > 1, 0 < Iy, ls € A ~ 1 and ko, -, by € Zp. The couple (j7) does

not occur inside any block &%, k € Zp. It can occur in ¢ only at a junction |
bk, bk, L t=0 w1 The inequality (30) follows easily from the above
observations. _

LEMMA 2 (Main Lemma). If § < min(g, 1/8) then t5(C,wr41) =
ts(bt % C,wy). '

Proof. The inequality t(C,wit1) < ts5(b* x Cwy) follows from the
definition of t5(C,w). Assume that || =¢ 2 2 and let C=0C[0]...Clg—-1].
Suppose that bt x C §-0ccurs in w, i.e. there exists a block & = E[0]...E[q]
occurring in w4y such that

(31) (bt x €, (b x B)[I,1+Ag—1]) <8 (see Fig. 1),
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here 0 <1< )\ —1 : for 6§ < 1/8. Using (31), (33) and (36) we get ap/q < 6. If I/A¢ > 1/2 then
A ‘ the same arguments imply a;/q < 6.
b?::[o] btc'[q-1] The above considerations mean that if
bt x O '—-—-——-—-'n ———————————— .————n——-—n-——'

db* x Cowg[ide +LE+a—DM+1-1)) < §,
ieZ, 0<I< -1,

then
! B A(B X O, wilide, (i 4+ g — 1) — 1)) < 8,
bt x B N’-?: _____ " PR ‘
L LR beig-1) et or
Fig. 1 _ (87) d(bt x Cywe[(i + 1)As, (i 4+ @A —~ 1]) < 6.
We have If |C| = 1 then it is easy to see that (31} implies Co] = E[0} or C[0] =

192 E[1] so that (37) is also satisfied. The condition (37) means that
t - t t i 11 _ _
2 A G B) qt;)d(bqw bE[u}bE[u+1][ A1) ts(b? x C,wy) = t5(C,wes1),

The inequality (31) impliés that at least one component in (32) is less

because
than 6. Then (28) and § < ¢ imply [ = 0 (mod A). Using (27) and (29) we .
obtain ( ) ( ) ) ( ) d(bz x O, wt[z’)\t, ('«'a +q- 1))\1‘, it 1]) = d(C, wt+1[m,z+ q— 1]) .
(33) d(b* x C,By) = (1 - Xi-) L /\L s R ) —)—f— i In this way Lemma 2 is proved.
t/ 4 t 4 g t q
where COROLLARY L. If § < min{g,1/8) then ts(C,weq1) = ts(By x C,w).

ag=#{0<u<q—1;Clul#E[u},

Proof Applying Lemma 2 with C replaced by bt x C and t replaced
ar=#{0<u<qg—-1;Clul# Eu+1]}.

by t — 1 we have
Suppose that

(34) 1< A/2 #5(C, war1) = ts(B % Cyw) = ts(B 7 x B x Cwpa).
S At/2. ‘

Then (31), (33) and (34) imply ag < 26¢. Further, we have By induction we obtain

(35) a1 2> #{0Lu<qg—1;Cu=Efu] and Clu] # Efu+ 1)} £5(C,wppn) = ts(By X Cyw), w=wo.

>#{05u<qg—1;Eu]# Eu+1]}

Put
—#0Su<a—1;Blul #Clul} 2 (¢+ 1)) _(ik, B) a0 15 .
‘ . . ik ht(jk) ::Bzfr(jk,bZ): J,kGZp-
Applying Lemma 1 with C =E we obtain 0
a1 2 (g 37Ty Ttz
g+1 3° 3 (38)  fr(jk,ws)

The above and (35) iniply

2
(36) a1w002(§-46)q—%>0

R T ! = Qupn, k) + .-
= ht(Jk)"l":\;hH—](J — up—2, k) + At)\t+1ht+2(3 Uup-2, k)
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Proaof Take n > 1. Then we have
1
(39) e #{0<u<nry —2; wilu,u+ 1] = ik}
t

1

p—1
= MZ#{O <u<h—2 ;b uu+ 1] =gk}
’F’L/\t =0

X#{0<u<n—1; wpu] =s}

A0S u S n =2 ealiut 1] = (- s, B
Since w41 is a strictly ergodic Morse sequence,
(40) %#{05u§n—1;wt+1[u]=s}~—>% asn — oo,
for every s € Zp. If n — oo then (39) and (40) imply
e ) = Bal) + 5. £ = et B )
This implies (38) by an induction argument.

LeMMA 4. For every j, k € Zy, fr(5k,we) <2/(p(A - 1)).

Proof. Let j s k. It is not hard to notice the following properties: the
couple (jk) occurs 2¢ times in b% and 2° times in b} if j # k+up-_2; it occurs
2¢ — 1 times in b% if j = k+up_2 and it does not occur in bt whenever s # j
and s £ k. The above properties imply

fr(jk, b%) = 1/x,  fr(jk,b}) < 1/X,
fr(gk,bi)=0 ifs#jands#k.
In this way '

(41) O R(R) <

-
>
=
i~ ]
|
=

Tt is easy to check that

(42) he(jj)=0 forevery j€ Z,and ¢t > 0.
Combining (38), (41) and {42) we have

. 1 1 1
fr(ik, wy) € ———— {14+ = + —— '
(Fk, we) P 1)( + =+ + )

Mo Ak
1 11
L—0——l|l+t+—+=+...
p(p~1)(+/\t+)\%+ )
1 A 1 A 2

TRp-1) Mol p-1) A1/E Sp-1)
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If j = k then the same arguments give

fr{jd, ) < PO=T)h

which finishes the proof of the lemma.
An immediate consequence of Lemma 4 is the following.
COROLLARY 2. If 6 < 1/2 then t(jk,w) = ts(jk,w:) < 4/(p(X ~1)).
LEMMA B. If C occurs in wy, |C] = 3 and § < min(1/(2p}, ¢) then

3
Y = < 2
(3 1) = ts(Con) € =y
Proof. Since § < 1/3 we have t(C,w;} = t5(C,w;). Define
u%j) =u 4§ =v (1) +7

¢ has one of the following forms:

1=0,...,p~2 j€Zy.

(A) C’=ju§j)j for some j € Zp and 0 <1 <p—2,
(B) C = jull jen,, 0<1<p—2
(if I = p — 2 then [ + 1 means 0),
(©  O=gus, i#k,
(D) O =ulokud’,  i#k.

Case (A). C occurs in the block Fj exactly once because the elements
u(Dj ), ufﬂz are pairwise different. At the same time C does not occur in any
block Fs if j # 8 € Zp. The block C' can occur in F\ F at positions A — 2,
A—1, Morat A—1,\ A+ 1, where k,s € Zy and either k# jor s # 4. If
k # j we have '

C=julj = kui(gk_)zs.
If &5 7 then

(k) .. (8)

{(# ) ysug

j”z J=1
which gives
(44) j=ktupa, Jrvi@)=s

There exists a unique lo, 0 < lp < p — 2, such that vio(l)=p—1 Iflly
then (44) is impossible. If I = I then C occurs exactly once in FF, at
positions A — 1, \, A+ L if ‘

(45) k = 3 - u{p-—-ﬁ 1

In view of the above considerations we have the following properties:

J:3+l

sxj—-l.
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(46)  C occurs at most 2* times in b%; C' does not occur in b} if s # j; ¢
occurs exactly once in bibt, where k, s satisfy (45), whenever [ =1;.

Thus we obtain
1

1
it_x + fI'(kB, UJ¢+1)

fr(01 wt) < 2t fr(j7 wH—l) 5{; .
By Lemma 4 and (40) we get

1 1 1
—— < N
4 HOW = X 50 Dn S 50D

Now, {47) implies (43).

Case (B). The same arguments as in Case (A) lead to the properties
(46) and C occurs exactly once in bib%, where k, s satisfy (45), whenever
I = Iy — 1. Then we obtain (47). Note that if [ = Iy — 1 then C occurs
exactly once in FiF, at positions A — 2, A — 1A, i.e.

(48) C= u}j)jugf;_)]_ = lcui(f_)zs .

Case (C). If there exists s € Z,, such that C' occurs in Fssu,(f) then C
has the form as in (A) or (B). In this case (43) is satisfied. Assume that
C does not occur in any Fasug’), 8 € Zy. Then C can occur in F.F; at
positions A ~ 2, A —1, Aor A—1, A, A+ 1. The first possibility holds only
if e = j and s = k. The second case is possible only if

(49) F—1=j+upa,

The above considerations lead the following statements: C occurs exactly
once in b}, b}, at positions A — 2, A; — 1, Ay; C occurs exactly once in bibt
if j, k and e, s satisfy (49). Hence, by Lemma 4,

e=j4upa=5=b—1.

. 1 1 2 1
50)  (Cowe) < fr(jk, wep1) — + fr(es, wepr) e < ——2 . L
(50) (C,we) < fr(j wt+1)2)\t + fr(es wt+1)2)\16 oo N
and so
(51) HCyws) € — 3

O - DN S =)

Case (D). Using the same arguments as in (C) we obtain (50) and (51).
The proof of the lemma is finished.

LeMMA 6. If |C] 2 4, C occurs in F; Fy[1,20—2] and § < min(p, 1/(22)),
then

(52) - 15(0,wy) = #(C,wy) < max (%’ ;(_,\—4:_1_))
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Proof. First consider the case j = k. It is clear that ' does not occur
in . F, if 8 # j. Let |C| = 4. Then C has the form
C=0C1= jugj)ju!(i)l or C=0= fu.gj)jugi)lj.
In the same way as in the proof of Lemma 5 we verify that C; cannot cecur

in F.F, whenever e 5 j or s # j. .
However, if C' has the form Cp then C occurs in FF, exactly once if

P (1) = -1
(see (48)). Using the same arguments as in Cases (A) and (B} of Lemma 5
we obtain

e f — Up-2, g=j—1,

f.r(O,wt) S p()\ — 1) ¥

which implies

4
<K ———r .
t(ca wt) = p(/\ — 1)
Now, we show the following property:

(53)  if C occurs in FyFj[l, 2X— 91, |G| > 5, then C cannot occur in FoFs
whenever e # j or 8% §.

If |O! = 5 then C has one of the following forms:
. N6 . G
C=C= jugj)jugﬂlj or C=Ch= u%njug?lguiﬂ_z.
We check directly that if C' == ¢, and C) occurs in F Fy then eithere =7 =8
or j == u(&ja = ug,e,)_z, which contradicts v?73(1) # vP‘2(1).. . -
In a%imilar way we verify that if C = Ca thelﬂ (53) is satisfied. It is
obvious that (53) is satisfied even more easily it |C| >
Now assur(ne that 5 < |C] < A Tt follows from §53) t?lattC; occurs at
most 2¢ times in b} and € does not occur in bt if s # j and in bb; whenever

eskjors#j. Thus we have

2t 1_ 1
fr(C,wi) € *X'Z—t;—“ S

and so

1 11
t(C,w) € IC'\;; <ART

If |C| 2 A then the maximal number of disjoint -occlr{rences 'of C'd i.n f;;tl:f
at most 281, At the same time C does not occur in b if s # j and in 5.0,
whenever e .-,éj or 8 ?é j. This gives the estimate
2t—1 1 _ __L...
WO < S
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and therefore
1 1
< —_— .
0,00 < Ol =
We have proved (52) if j = k.
Now, suppose that C' occurs in F;Fy[1,2X — 2] and § # k. If there

exists s € Z, such that C' occurs in F F,[1,2X— 2] then repeating the above
reasoning we obtain (52).

If C does not occur in any FiF,{1,2A — 2], 8 € Z,, then in particular C
occurs neither in F; nor in F. Thus (' contains the pair

ull ok = FjFIa— 1,0

Choose a subblock € of C such that |C1]| = 3 and Cy contains u;“"zgk‘ Then
using the same arguments as in Cases (C) and {D) of Lemma 5 we get
2
fr{C,u) € ———.
r( ,wt) = 'p‘()\ _ 1))“

Therefore

2 __ 4
A=Dx “p(rA-1)"

t(C, Wf,) < |O|fr(C', w:) < 2)\p
Lemma 6 is proved.

" LEMMA 7. If C occurs inbib}, j. k € Zy, and § < min(g/2,1/(8(p - 1))),
en

1 241 4
54 t5{Cwe) < el I
ey o wt)‘max(z’ A ’p(Aml))
Proof. We can distinguish the following cases:
(I} C occurs in one of the blocks

FiR1,20 - 2], FF[1,20—-2], F.F[l,2x~2],

(1) C=F..F; oo C=F,...F,, 1<q<?,
g times ¢ times
(I11) C=F;..F;Fy..Fp, 1<q+qpm<2 2,
q1 q2
(IV) C=FF;...F; Fy...FiF,
n a

where Fj; = Fy[l1,A — 1], fk=Fk[0,lg], 0<h€A-1,0<l; «A~1and
G +q =1

If C has the form (I) then Lemma 6 implies (54).
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Case (1I). Assume that C f-occurs in w; at positions I',..., I
ie.

+[C| -1,

dC, el I +|C] =1y < 6.
It follows from (26) and the inequality § < ¢ that I’ = 0 (mod ). This
condition means that w,[l’, 1 +|Cl~1] is a concatenation of blocks Fy, s € Zp.
Now, it is not hard to observe that w[l’, I'+|C]—1] is contained in a fragment
€1 of wg of the following form (see Fig. 2):

. Cr = wllh — A+ DA+ A —1], where
(50) wt[l)\t, (I -+ 1))\16, - 1] = bz , h<ég.
;
t 1
| |
| |
| {
1 |
gAb : : qré
h > S | — )
d e FJ FJ Fj —
I1A | : I A
!
[3Y I+ DA —1
Fig. 2

The maximum number of disjoint 5-occurrences of C' in such a fragment is
estimated from above by

oA+ 2960 2
gA q
Since b} occurs in w; with frequency 1 /p,
2t 1 1 _1 1
— D 2 D (14 26)
O s (Zr28) g5 <5 020
Mutiplying by |C] = ¢A we get

(56) _ t5(Chun) < %(1 +26).

+26.

Cage (IIT). Assume that g1 2 . If qo < 8g1/(1 — 6) or equivalently
gz < (g1 + ¢2), then C is contained in a fragment of wi .Of the form (55).
Repeating the same computations we come to the inequality

1 ¢+ ge 1
(57) t5(Cywy) < 5(1 + Tza) < p(l + 45).
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If g2 > 8¢1/(1 — &) then C occurs in b:b}, exactly once. Thus

. 1
65(Cywe) < fr(fk, wip1) 5
2

and therefore
. 1 . .
t5(C,we) < [C|fr(jk, le)ﬂ: < E(k, wia) -
Now, Lemma 4 gives . |

<
t5(07wt) = P()\_ 1) ’

which implies (54).
Case (IV). First assume that j = k. Then C has the form
C=FF... FjF,
——
q
where F; = Fj[0,15), 0 <l < A~1, ¢ > 1. Define
C']_ = Fj .- FJ .
Ny s
¢ times
If
d(C,we[l',I' +|C| - 1)) < §
then
d(Cr, Wl + X =1, '+ X — I, + 1] — 1)) < 25.
Since § < 30, using (26) we again obtain I’ = 0 (mod A). Then C is contained
in a fragment of w; of the form (55). The maximum number of disjoint
é-occurrences of C' in such a fragment is not greater than
2PN+ 2¢6)
(g-+2)A
Repeating the same computations as in Case (II) we get (56).

If j # k then we obtain (56) or (57) in the same way as previously. By
(57) and the inequality § < 1/(8(p — 1)) we have

1 1 1 1 A+1
£5(C,w 5~1+46<—(L+—w—m)=~-%%m
In this manner (54) is proved.

Now, we can estimate ¢5(E, w) for an arbitrary block E.

PROPOSITION 3. There ezist 6y > 0 and Moy < 1/(p~ 1) such that for
every block E occurring in w we have 15(E,w) < My whenever § < &.
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Proof. Let §; = min(g/3,1/(8(p ~ 1))). If E occurs in w = wp in such
a manner that there exist j,k € Z, for which E occurs in b?b?c 1,23 —1]
then in view of Lemma 7 we have

A 4
(58) t5(F,w) < max (11) AL m) v

Suppose that E contains at least one block ¥),s € Zp. Wecan find ¢ >0
such that E is of the form

(59) E=Ey(Bi+41)...(Bi+ig) Bz,
where

Ey= (By+jo)i,ne — 1], Ba = (B4 dg)[0, 2],

0O<h<m—1,0<la<m—1,q21,

and the block € = (51 ... dg) occurs in BEFIBEYL(L, 221 — 2], 5,0 € Zp. We
have

E* = (Bt+_71)(Bt+Jq)=Bt x C
and ¢ < 2Apq1 — 2. It s evident that

wp) < %1536 (E*,wo).

ts (Ea
In view of Corollary 1, we obtain
tag(E*, wo) = tas( By x C,wo) = t35(C,wet1)

whenever § < min(g/3,1/24). Applying Lemma 7 with § < &, where
5o < min(g/6,1/(24(p — 1)), we get

ts(E,w) < I-E;TMl =\t
2
<@ﬁﬁﬂM=O+0Mf
- qny q
We have .
4 2% p=3,
My = p(A-1) 9
P A+ if p> 5.
p A
Let
4p - 1; P Z 5!
=117, p=3
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. If g > qq then

76 <1 3
2 156 ~ 2 B=2
(1+—)M1 < My =
4p -+ 1)(2p — 1 1
q (4p+1)(2p-1) p>5.

pldp — 1)(2p-2)
In this way we obtain £5(E,w) < My if ¢ 2 g.
Let ¢ < gp and let § < 1/(3¢g0). If F $-occurs in wp then E* 36-occurs

in wg. The condition 36 < 1/gp implies that E* occurs in wy. Consider the
following cases:

p—1

E
() @J%J)md and Golf—%%-a<5,
(I, (Q;IT%I“ and (—qﬁ—zl)n;w,
(I} (—q;'%'%d and (?El%;—)ﬂt" ,
(Ivy) (%‘fﬁ_ and (q—ﬁ%l)—mza,

Case (I;). We have

E
t5(E,wD) < (1 + M‘Eﬂl)t(};*’wo) < (1 " M)t(E* WD)
qne qn ’
< [1+28(g0 + 2)]¢(B", wo) -

In view of Lemmas 2 and 7 and (58)
(60) ts(E,wo) < [1+ 28(go + 2))M; .

Case (IIy). If B §-occurs in wy then the block B; x (joC) occurs in wy.
Further, :

ts(E,wo) < ik, |E1l + ||
|B: > (joC))|

< (g+ 1)ny + | By
(g + L)ny

E
_ (1 + @—L_mj_'m)t(st x (00", wo)

< (1 + M)t(Bt % (JoC), wp) .

H(Bx x (JoC), wo)

t(Bt X (390), wg)

2
Using again Lemmas 2 and 7 we obtain (60).

Case (III;). We get (60) by the same arguments. |

icm
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Case (IVy). We have the following property: whenever E of the form
(59) b-occurs in wy then the block By x (joCdg+1) occurs in wp. Thus

ts (B, wo) < t(By % (joClq41), wo) .
Lemmas 2 and 7 imply t5{E,wy) < M;. Now, choose §3 > 0 such that
. . 1
‘M;j = [1 -+ 2(53((]0 -+ 2)th < B——“I .
Next, we put &y = min(8y, 6y, 63) and Mp = max{Mp, Mz). The numbers &g
and My satisfy the conclusion of Proposition 3.
As a consequence of Proposition 3 and the definition of F* (see (1) and
(2)) we get
CoRroLLALY 3. For the Morse sequence w defined by (23) we have F* <

1/(p—1).

Now, applying Remarks 1 and 4 we have r, = p. In Proposition 2, we
have proved my, = p — 1. The proof of Theorem 3 is complete.
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Oscillatory singular integrals on weighted Hardy spaces
by

YUE HU (Beijing)

Abstract. Let ‘o
iP(x— ¥
Tf(ﬁ) = p.v. f e Ple—y) m dy:

R! -
where P is a real polynomial on R. Tt is proved that T is bounded on the weighted
H'(wdz) space with w € Ay,

1. Introduction. Let i be a Schwartz function, ¥ € S(R), Jp¥(z)dz
# 0. Set

Py(x) =t (zft), t>0, z€eR.
For each distribution f € §'(R) , define
f{z)=suwp (frie)(z)l, «eR.
>
The weighted Hardy space HL(R), with weight function w, is defined to be
the space of all f such that

1z

il

f F(zyw(z)dx < 00,
R :

If f € HL, we define [|fligy = £ s, o
fAn of)u(;rator T on the weighted Hardy space H, (R) is said to be bounded

if there exists a constant C such that for each f € .
\Tf |l s, < ClFilary, - |
Let P(z) be a real polynomial on R. Consider the oscillatory singular

integral

iP(z— f() '
(1) Tf(z) = p.v- Rfef’( v)m_yydy.

i j fication: 42B20, 42B30. o
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