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Oscillatory singular integrals on weighted Hardy spaces
by

YUE HU (Beijing)

Abstract. Let ‘o
iP(x— ¥
Tf(ﬁ) = p.v. f e Ple—y) m dy:

R! -
where P is a real polynomial on R. Tt is proved that T is bounded on the weighted
H'(wdz) space with w € Ay,

1. Introduction. Let i be a Schwartz function, ¥ € S(R), Jp¥(z)dz
# 0. Set

Py(x) =t (zft), t>0, z€eR.
For each distribution f € §'(R) , define
f{z)=suwp (frie)(z)l, «eR.
>
The weighted Hardy space HL(R), with weight function w, is defined to be
the space of all f such that

1z

il

f F(zyw(z)dx < 00,
R :

If f € HL, we define [|fligy = £ s, o
fAn of)u(;rator T on the weighted Hardy space H, (R) is said to be bounded

if there exists a constant C such that for each f € .
\Tf |l s, < ClFilary, - |
Let P(z) be a real polynomial on R. Consider the oscillatory singular

integral

iP(z— f() '
(1) Tf(z) = p.v- Rfef’( v)m_yydy.

i j fication: 42B20, 42B30. o
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Operators of this type arose in the study of singular integrals on lower
dimensional varieties. Their properties have been used in several kinds of
problems ([6], [7], [9], [11]). By the theory of singular integrals, these oper-
ators are well defined for almost every € R provided f € I?, 1 < p < o0,
({1], [8]). Their I? {1 < p < oc) and weak (1,1) boundedness have been
established by F. Ricci, E. M. Stein, S. Chanillo, M. Christ and others ([1],
[7], [9]). For an operator T' defined by (1), a pointwise estimate for the
sharp function of Tf was obtained ([4]), and as a consequence the weighted
LP (1 < p < c0) inequality for T followed. For general oscillatory integrals
the weighted L” estimates were obtained in [5]. The purpose of this paper is
to show that T is bounded on the weighted Hardy space H., with w € 4.

For a positive locally integrable function w, we say that w satisfies the
Ay condition if there exists a constant A,, such that for all intervals I CR,

(2) &—1 f w(z)dr < Aw(esmsé?fw(m))
I

where |I| denotes the Lebesgue measure of /. When (2) holds, we write
w € Ay, and call A, the Ay constant of w.
The main results of this paper are as follows:

THEOREM 1. Let P(x) be a real polynomial of degree k, and let Tf (z) be
defined by (1). If P'(0) = 0 and w € Ay, then there exists a constant Cj
such that for each f € HY, we have Tf € LL and

(3) [Tfllzs, < Crllf|m,

where Cy depends only on k and the Ay constant Ay, but not on J ond the
toefficients of P{z).

Since the operator we study here is a convolution operator, the charac-

terization of Hy, in terms of singular integral operators enables us to get the
following stronger result.

THEOREM 2. Let T be defined by (1), P'(0) = 0,w € A;. Then fe H&,
implies Tf € HL, and there exists o constant Cy, depending only on A, and
the degree k of P, such that

(4) ITf Nz, < CrllFlia,
for all f € HY.

Remark. The condition P'(0) = 0 is necessary for these theorems. To
see this, assume P(z) = az, a # 0. Then Tf(z) = 7e**H(F)(x), where H
is Hilbert transform and F(y) = e~ f(y). Take w = 1, f € H*. Then
F € L'. If the theorems were true in this case, then H(F){(z) € L or H.
This would imply '

Fy) = e~ f(y) e H'

icm
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for any a € R, f € H'. But this is obviously not right. For polynomials
P(z) with degree higher than one and P'(0) # 0, the theorems still cannot
hold. This will be clear from the proofs.

2. Preliminaries. Weighted Hardy spaces HP, have been extensively
studied in [12]. The proof of the following theorem can be found there.

Let w & A1. A real-valued function b is called an Hy, atom if
(1) b(z) is supported in an interval I

(2) J blw)de =05

(3) [1Bllos < w(X)™*, where w(I) = [ w(z) dx.

TuEOREM A. For each f € HY, there exist atoms {b;} and coefficients
{A;} such that

(5) Flzy =" Xbi(2)
Fe==1

in () is
and 370 (\) < Clif ey, where © depends onlly on Ay. The sum in (5)
both in the sense of distributions and in the Hy, norm.

TuroreM B. If 1 < p < 0o andw € Ay, then ||Tfl|;§u < Crlifile,, where
C, depends only on the Ay constant Ay of w and the degree k of P(z).

This result was proved in [4]. Details about the A, condition can be

found in [2], [3] and [13].
The next theorem will play a key role in the proo'f of Thegrem 2. It va-ra;
proved in [12] in the general case. We restate it here in a special form whic

is sufficient for our use.

TuroreM C. Let H be the Hilbert transform:

Hf(z)=pv. [ ﬂ%dy-
R

If fe HY andwe Ay, then
(1) Hf € B and [Hfllm < Cull flas;
(2) 1f ey, < CollH ANy, + 1 lzss
where Cy, = 1,2, depend only on the Ay constant 4w of w.
The following fact, useful for us, is a direct consequence of Fhe deﬁnit‘ion

of the 41 condition.
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THEOREM D. Let I be an interval with centre ot the origin, w € Ay and
a € LMR). If o is symmetric, nonnegative, and decreasing on (0, 00), then
there exists a constant C, independent of ¢, such that

(6) [ el - y)dy < Cllal|z essinfwiz —y).
lvl>111/2

3. Some lemmas. We begin by proving the following lemma.

LemMA 1. Suppose P(x) is o real polynomial of degree k with P'(0) =0,
T is defined by (1), end w € Ay. Then for each HY atom b, there exists a
constant C, depending only on the A, constant A, and on the degree k of
P(x), such that

(7) [ ITb(a)|w(z)de < C.

Proof. It is easily seen that if w € A;, then for each fixed ¢ € R
and ¢ > 0, the functions w(t + a) and w(tz) are still in the weight class
Ay with the same A; constant as w. Furthermore, if b is an H} atom
with weight w(z) then b(z +a) and (1/¢)b(x/t) are also atoms with weights
w(z +a) and w(z/t) respectively. These facts enable us to use transla-
tion and dilation on the operator T to change the coefficient of the highest
order term of P(z) and the location of the support of the atom b. There-
fore, we may assume that P(z) = 2* + Q(z), with Q(z) being a (k — 1)th
degree polynomial, and the centre of the support I of b is at the origin.
We denote the length of I by § = |I], let w(I} = [, w(z)dz, and use
Al (A > 0} to represent the interval with the same centre as I but )\ times
as long. _

The proof of (7) is by induction on the degres k of P(z). Since P’ (0) =0,
we begin with k = 2, that is, P(z) = 22, Rewrite the integral on the left
hand side of (7) as '

[ 1T8(2) |w(z) do = [ 1Tb(z)|w(z) de + [ 1Tb() w(z) da.
R 2r R\27

Since Ay C Aj, by Theorem B, the first term on the right hand side is
dominated by

w2 ( [ 1)) )" < w2 ( [ e u(e) o)
2r : 21

< Cu(I)Puw(l) w2 = C.

Here we have used the fact that w satisfies the “doubling condition”; w(21)

@
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< Cw(I). For the second term, if § < 1, then

eip(:n""y)

[ 1mb@hu(@yde = [ [ bl dyjwiz)do
w27 m\2r I |
= ( f + -[ ) f elj(j":) b(y) dy'w(m) de =1+ 1.
b<lel <=t 6 gl T

Observe that [ b(y)dy = 0. It follows that
an’(m—y)2 _ ea’m“
L < f f e

s<iolcet L
f ( ....1
e z—y

+
s<|m|<6™?

<c [ & [ bwldywiz)de+C

belp|<s™r T

Since [, [b(y)|dy < O|Tjw(I)~*, by Theorem D it follows that

b(y) dylw(x) dz

w(z) dz

- é) b(y) dy

I el e
s<laj<s=r T

I £ C’iI|w(I)‘1esinnfw <C,

where C depends only on the Aj constant Ay of w. . .
Since w € Az, by a “reverse Holder inequality” there exists p > 1 suc

that w? € 4, ([2], (3], [13]). Thus
J l J ei(x_y)a( b - l) b(y) dy
t—y =«
m|>6" -
1
+¢ [ =
i
|2|>8

<C f mé—-w(m)dm f b(y)| dy
- Jo? ;
J|>6*

+c’( { Mdm)”p(
> 67

|}P
< OIlw(I) ™" essinfw + CEP=0/Py(1)H(

d
Iy w(z) dz

7aN

f i@’ b(y) dy’w(m) dz
F{

q 1/q
| e )
x| >672 . .
esinnf w)f’? < C,

where we have nsed Theorem D and the boundedness of the Fourier trans-
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form. If § > 1, then

IS

R\2D' T

eila—v)* gila—v)"

r—y

()‘ (@de< |

1< ]

i

by dy‘ (2)do.
I

The method used for I» can be applied to this integral, and it yields that
the integral is dominated by a constant €' depending only on A,,. The proof
for k = 2 is then complete,

Now supposing that Lemma 1 holds for all polynomials of degree < k
(k > 2), we shall prove that it still holds for a polynomial of degree &.

Assume P(z) = zF + Q(z), where Q(z) is a polynomial of degree k — 1.
Let 6 = max{§~/(~1) §}. We have

[ me@lw@de={ [ = [ + [)iTb)h()ds
R 2I S<lz|<d  b<|x]
e Dy + Do+ Dy

If § > 1, Dy will disappear. D; can be treated in the same way as in the
case k= 2. When § < 1,

Dy = f

s<igj<s™/(=1)

§ o b

i(z—y)" 1
feiQ(m—y)(e( Ve

I -y
+
§<|z| <6t

feiQ(m_y)——wb(y) dy‘w(w) dz
I Loy

By the induction hypothesis, the second term is bounded by a constant C.
The first term is dominated by

C f .
<[] <51 (=1

< 056~ (k—2)/ (k-1 f

P ALY

(f|b(y)idy)lm]k“2éw(x)cim

w(z)dew(l)~LT| < C.

Therefore, Dy < C.

We now deal with Dj. Let ¢ € C§°, suppo C {o:1/4 < |z| < 1}, and
i @i(x) =1 for || > 1/2, where ¢;(z) = ¢(x/27). Set

f P (a~y) ¢ (..'L‘ y) (y)

Then Th(z) = Z;‘io T;b(z).

Tjb(s) =

Let I' = {|z| > 1 : |P”(m)[ < (|z|/2)*-%}.
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It is easy to see that there exist at most 3(k — 2) functions ¢; such that
supp ¢; N I # §. In fact, suppose that #1,..., 2k are the roots of P"(z),
and ¥ < |z < 20 (i=1,...,k - 2). Then & — 2| > |z|/2 if |z] < 29T
or |z > 032, o, if |f - il > 3 for 1 <i< k-2, then suppo; NI = 0.
Let

og={je L™ suppé; NI =0}.

Then thete ave at most 3(k ~ 2) elements in ZT \ ¢. On the other hand, for
each j = 0 we have

[ | Th(@)e(e)de < C.

4]

In fact, if 27 > 35, then

[ Imp@lw@desc  f W”J‘S) de [ |by)dy < C.
b« x| 2 16 || <3-27 I
If % < 36, then
f |7y b(z)|w(z) de £ C f

bl b<|u| <78

w(z)

delb(y

Therefore,
S [ iTb@)w(E)dz < C.
FELT\G fia

To estimate [,z 2o5e0 Tib(2 (z)|w(z) dz, we need the following lem-
ma:

LeMMaA 2. Define

=30 [ e g e —y)a - I () dy
il
Then
ITpf gt aay S CllS M (zr, aa)
where 1 < p € 2, 1/p+ 1/p' = 1, and C is independent of the coefficients

_ofP

This lemma was proved in [4]. . We shall give a proof at the end of this
section for cotvenience.

Let us continue the proof of Lemma 1. Let s = (k- 2)(;p-~ 1)/p.
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Since

f I Z ij(z)lw(m) dr

|z}>8 JE

-

iz|>6

f iP(z—y) anj (2 —-y)(z—-y)°

j€o

X [(m -?U)“'l - mil_l]b(y) dy‘w(m) dz

+ f_m—lﬁﬁ-\ J €70 S 650 — y)(m — y)"b(y) dy|u(z) do

lz|>8 igo
=Fy+ Fy.
Obviously, Ey is dominated by
&
f v ds J bphdy < c.
jo>8
Since there exists p > 1 such that w? € A, from Lemma 2 it follows that

rx( S (E) )

|lzi>6

x ( f ’ f eiP(w—y)Z¢j(w — )(m ~ ¥)*by) dy|1’" dm)l/p:

j€o

) o~ 1/p
< Ofessinfw) (D02 ([ oy)e dy)
< Clessinf w)8* /78 Py(N)™ < €.
The proof of Lemma 1 is complete.

Proof of Lemma 2. We introduce an auxiliary .operator
A:(f)@) = [ TN T 6i(z — y)(o - y)* £y) dy
J€o
with a complex parameter z = s+it, 0 < s < (k—2)/2. Observe that {4,}

is an analytic family of linear operators in the sense of [10]. It is clear that
if s =0, then

(8) A (F)llzo, aay < ClIFllezt, aa) -
Now consider s = (k — 2}/2. We are going to show that
4G —2) 72462 (F 22, amy < CL+ 1D F )25, dz)

icm
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with C independent of the coefficients of P. After this is done, Lemma 2
follows by interpolation of the analytic family of operators {A4,} ({10]).

To prove (8), using the Fourier transform we only have to show that for
alneR

(9) ' f ai(.umg-w’(m)) Z d)j (m)m(k~2)/2+it dz < G(l + |t]) ]
Jéa

For each fixed n € R, let Pi(z) be the derivative of the phase function:
Py(z) = ~in + il (x}). We rewrite it ag

Py() = ik(z — uy). .. (& — ug-1),

where {u;} are the roots of Py. Let 8; denote the real part of u;. Then for
each B, |81l = 1/2, there exists an integer j; > —1 satisfying 2 < |8| <

oft+4 Divide the index set ¢ into two subsets: ¢ = o1 U 03, where

or={j&o:|j— il <1 for some ji}

and o2 = o \ o1. So, the real parts of all roots of P, keep some “proper dis-
tance” from | i @ay SUPP ¢;, and oy is a finite set whose number of elements
depends only on k. The left hand side of (9) is dominated by

21 f ei(mnm-p-}ﬁ(;n))(bj(m)m(kw2)/2+it dm’

JEoy .
I i(~nat Pw) éi() plb=2) 2+t gt — B4
| J e (3 ) |

We deal with E first. By rescaling
E = Z igj(k/?m}-v‘,t) f =2 kP ) ¢j(m)x(k~2)/2+r‘.t d:c‘.
Jj€oy

Observe that by the definition of ¢, the second derivative of the phase func-
tion satisfies ‘
149 P21 )| 2 C¥* for = € supp .
Applying the van der Corput lemma. ([14, p. 197]), we obtain
E<CY. ok/2gmiki2(1 4 |t]) < C(L+[t]).
JEe

We now estimate F. By the definition of oa, if @ € supp(Y ey, ¢4 (z))
then the first derivative of the phase function satisfies

IPy(@)| = |(~7iz + P@))] 2 Clal*™.
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Integrating by parts, we have

, k2) /240t N
F<M S ei<—nw+P(m))(¢:(____“’)m( : ) d

jEes Pll(w)
< 3 C(1 + ezt gi(sk/2-2)
JjEog
= C(1+t)) Y 272 = o1+ 1t)).

JETy
This completes the proof of (9); then Lemma 2 follows.

4. Proof of Theorem 1. Let € > 0, &, € C§°, and let $.(z) = 1 if
£ < |x] < 1/e, and =0 if |z| < £/2 and |z| > 2/e. Set

T.f(z)= f Pz — y)eiP(m*y)—a;f;Eh% dy, e>0.
Checking the proof of Lemma 1, we will see that if the operator T is replaced
by T inequality (7) still holds with C' independent of £. Let f be an arbitrary
HY function. By Theorem A, it has an atomic decomposition

Flay ="y Asb(a).
j=0
Since for each £ > 0, 6. (z)eF*)(1/2) € C$°(R), it follows that
T f(z) =) A\Tebj(x).
=0

Therefore,

[s.e] o0
J 1Tes@)lweyan < 30| [ [Tbs@lulz) dz < 0 n] = Clflay,
j=0 F=0
where C' is independent of e. Note that lim-.o 7. f(z) = Tf(z) ae. An
application of Fatou’s lemma implies that
17fllzz, < Cll Flle, ,
which completes the proof of Theorem 1.

5. Proof of Theorem 2. Let f € H1. We prove first that for each
£>0,T.f € H,. In fact, taking ¥ € CF, [¥(z)dx # 0, ; = (1/8)( /1),

we have .

(9 * Taf)(m) = ((¢t * f)* fps(')e_j:"%z) (z).
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Let Fuo(z) = Po(x)e”®)/|z|, and observe that [|Fi(z — y)|lw(y)dy <
C.w(z), which is a consequence of Theorem D. We get
[ @D @@ ds s [ ([ FE)IFe-v)idy)ue)ds
<G [ £ (o) do = ol flay

This implies Tef € HY, for £ > 0. We can now apply Theorem C and
Theorem 1 to Ty f. It follows that

ITefllary, & CIRTe Ny, + 1 Teflley, = CliTe(H A2y, + 1T fil 2,
SOHS N py + 1 Tefliey, S ClFlmy
where the constant C ls independent of 2. Obviously, for each ¢ > 0,

i (e T2 £)(e) = (b + TH(#)

Since T'f € L}, by the theory of maximal functions sup,,o(vs * Tf)(2) is
finite almost everywhere. It follows that for each § > 0, and almost every
z € R, there exigty t(z) > 0 such that

sup (4« TF)(#)] € |ty # TH)(a)| + 6 =l (g To ) (o)) + 6.
>l

So, for each a > 0, applying Fatou’s lemma and ||Tefllxy < Clifllay, we
get

[ (@ @hote) do

jo| <

< [ o |+ TP @lw(@) de +8 [ w(z)de

[r] <o o<

S lim inf [ 1@y * Te @) w(@) dw + 8 [ w(z)da
o jm| <o

51imi‘1::’1f I(Tgf)*(m)w(m)dm%—é fw(m)dm
= |al<ar

< O filny +8 [ wiz)ds.
o <ex
Letting § — 0, and then o — oo, we thus obtain
|Tf ez, S CNFllerg, -
This completes the proof.
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On the multiplicity fanction of ergodic
group extensions of rotations

Ty
G M GOODSONT (Towson, Md.), J. KWIATKOWSKI] (Toruni),
M. LEMANCZYXK](Tormt) and P. LIARDET§ (Marseille)

Abgtract. For an arbitrary set A C N satisfying 1 € A and lcm(ml,mg_) €A
whenaver #y,mgz € A, au ergodic abelian group extension of a rotation for which the

yange of the multiplicity function equals A is constructed,

Introduction. In this paper we study the set My of all essential spec-
tral multiplicities of an ergodic measure preserving the transformation T' of
a Lebesgue space (X, B, ). My is defined as the essential range of the 'mulm
tiplicity function with respect to the maximal spectral type of the associated
unitary operator _

Up: L2(X,u) - LA(X,p), (Urf)x)=f(Tz), zekX.

Thus Mo is a subset of the set N of all positive integers apd infinity.
Many examples in ergodic theory have Mp = {1} (e.g. irrational rota-
tions), My = {ce} (e.g. Kolmogorov automorphisms), Mp = {1,00} (e.g.
affine transformations). Trangformations with My = {1', k} have been con-
structed ([16]), for each positive integer k, and also with My = {1,2k},
where 2k corresponds to the multiplicity of the Lebesgue component ({1,
(9], [12]). . _ ”

The problem of whether for an arbitrary nonempty set A C N there exists
an ergodic transformation T with My = A seems to be open. Toward t.hfe
full solution. of this ¢uestion, Robingon in [18] has proved that for each finite
et A of positive integers satislying:

i)1eA4,
(ii) lem(my, ma) € A whenever my,mg € A,
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