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Approximation of continuous
convex-cone-valued functions
by monotone operators

by

JOAO B. PROLLA (Campinas)

Abstract. In this paper we study the approximation of continuous functions F,
defined on a compact Hausdorff space S, whose values F'(t), for each ¢ in 5, are convex
aubsets of a normed space K. Both quantitative esbimates (in the Hausdorff semiretric)
and Bohman Korovkin type approximation theorems for sequences of monotone operators
are ohtained,

0. Introduction. If is the purpose of this paper to discuss convergence
results and quantitative estimates for the approximation by monotone op-
erators of contipuons functions F defined on a compact Hausdorff space S,
such that the value F(t), for each ¢ € 9, ¢ an element of some convex cone
C endowed with a semimetric dg. In many applications C is a convex sub-
cone of the convex cone C(E) of all convex nonempty bounded subsets of
a normed space E over the reals, the semimetric dy being the Hausdorff
semimetric

dy(K, L) = inf{A > 0; K ¢ L+ B, L C K +AB},

where B is the closed unit ball of E. ‘ -
After giving the necossary definitions in §1 and §2, we congider in §3
the problem of quantitative estimates for the approximation by sequences
{Th}n>1 of monotone R -lincar operators on €(9;C), and show how to
extend to thix contaxt some of the local estimates of Shisha and Mond [5].
In §4 and §5 we give examples of monotone R-linear 'opera,tors on
C(5;C). In §4 we Lreat the case of operators of interpqlatlon type and
in §5 we consider two such operators, namely the Bernstein operato-rs By,
defined in C(0,1];C) or in C(SmiC), where S, is the standard simplex
in R™, and the Hermite-Fejér operators Hy, defined in O([_.l’ 1};¢). Our
Theorem 3 gives the estimates for the degree of approximation. by B, on
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176 J. B. Prolla

C(Sm;C). We show that all the classical estimates from O(Sm;R) remain
true. Our Theorem 3 extends and generalizes Theorem 1 of R. A. Vitale
(6], where E = R? and m == 1. When the space £ is infinite-dimensional,
then the representation theory used in [6] and [4] is not applicable, since the
surface of the unit ball of ¥ is not compact.

In §6 we begin to develop the theory of Korovkin systems in C(9;C),
where C is an arbitrary Hausdorff convex cone, equipped with its Hausdorff
semimetric dy. We were able to extend several of the Bohman-Korovkin
type theorems from the linear space C(S;R) to our convexr cone C(S;C), in
the case of monotone R -linear operators on C'(S;C) that are regular, i.e.,
that map functions of type fK to functions of the same type. Qur Corol-
lary 9 and our Theorem 6 should be compared, respectively, with Theorem
2 of Vitale [6] and Theorem 3.1 of Keimel and Roth [4]. In our results we
can take C = C(E), the set of all convex nonempty bounded subsets of an
infinite-dimensional Banach space E:. Notice that the operators of interpo-
lation type given in §4 and §5 are regular. Our Theorem 10 is the extension
of Theorem 1 of Grossman [3] to our context.

1. Hausdorff convex cones.
properties of convex cones.

We start by reviewing some of the

DerFiNtTiON 1. An (abstract) conver cone is a nonempty set ¢ such
that to every K, L €.C there corresponds an element K + L, called the sum
of K and L, in such a way that addition is commutative and associative,
and there exists in C a unique element 0, called the vertex of C, such that
K +0= K, for every K € C. Moreover, to every pair, A and K, where A > 0
is a nonnegative real number and K & C, there corresponds an element
AK, called the product of A and K, in such a way that multiplication is
assoclative: A(pK) = (A)K; 1-K = K and 0K =0 for every K € C; the
distributive laws are satisfied: A(K + L) = AK + AL, (A+ ) K = \K + uK,
foral K, LeCand A >0, u>0.

It follows that A-0 =0, for every A > 0.

DEFINITION 2. An ordered conver cone is a pair (C, <), where C is an
(abstract) convex cone and < is an ordering of its elements, ie., < is a
reflexive, transitive and antisymmetric relation on € such that

(2.1) K < Limplies K + M < L + M,

(2.2) K < L, x> 0 implies AK < AL,

(2.3) K< K + L, for every L > 0.

It follows that A < u implies AK < pK, for every K > 0.

DEFINITION 3. A nonempty subset K of an (abstract) convex cone C
is called a conver subcone if K, I, € K and A > 0 imply K + L € K and
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AK € K. When equipped with the induced operations, a convex subcone
K C C becomes a convex cone (resp. an ordered convex cone if (C, <) is an
ordered convex cone).

ExaMPLE 1. Let E be a vector space over the reals. Let C = Conv(E)
be the set of all convex nonempty subsets of B, If K,L € Conv(E) and
A > 0, define

: K+L={ut+viueKwvel},

AK = {lu;u€ K},

0= {f}, where @ is the origin of E,
K<L ifandonlyif KcL.

With this definition, (Conv(E), €) ig an ordered convex cone.

ExampLe 2. I R is equipped with the usual operations and ordering,
it becomes an ordered convex cone, with {0}, R, R} and R_ as convex
subcones,

ExaMprLE 3. Let § be a nonempty set and let (C, <) be an ordered
convex cone. The set F(5;C) of all mappings F' : § — C, with pointwise
operations and ordering, is an ordered convex cone.

Before stating our next definition let us recall that a function d satisfying
all the usual requirements for a metric, except that d(z, y) = O may happen
with = 5 y, I8 called a semimetric.

DEFINITION 4. Let (C, <) be an ordered convex cone and let dy be a
semimetric on . We say that dg is a Hausdorff semimetric on C if there
exists B > 0 in C such that

(a) for all K, L € C and A > 0, the following is true: du(K,L) £ A if
and only if K < L+ AB and I € K+ AB,

(b) AB < uB implies A < .

I dyr i Hausdorfl semitmetric on €, we say that (C,dg), or C, is a
Hausdorff conver cone.

ExaMmpLE 4. If C = R, with the usual operations and ordering, tk{en
the usual distance dg(a,y) = |2 — y| s a Hausdorff metric on Ry, with
B = 1, Notice that we can also take C = R, and the usual distance ig still a
Hausdorff metric on R, '

EXAMPLE 5. Let E be a normed space over the reals. Let C(E) be the
convex subcone of Conv(E), consisting of those elements of Conw(FE) that
are bounded sets, and let B be the closed unit ball of F. Define on C(E} the
usual Hausdorff semimetric

d (], L) = inf{} > 0; K ¢ L+ \B,L C K+ AB}
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for all K,L € C(E). Then dg satisfies properties (a) and (b) of Defini-
tion 4. Hence, C(FE) is a Hausdorff convex cone when equipped with the
usual Hausdorff semimetric. '

EXAMPLE 6. If K = K(E), the set of all compact and convex nonempty
subsets of E, then K is a convex subcone of C(E), and since the elements of
K are closed sets, (K, dy) is a metric space.

DEFINITION 5. Let C; and Ca be two convex cones. An operator T :
Cy — Cp is called R..-linear if

T(F+G)=TF+TG,
forall ;G e Cyand A > 0.

DEFINITION 6. Let Cy and C; be two ordered convex cones. An operator
T :Cy —» Cy is called monotone if F < GimpliesTF < TG, forall F, G € ;.

T(AF) = ATF,

2. Spaces of continuous functions. Let S be a compact Hausdorff
space. Let (C,dy) be a Hausdorff convex cone. We introduce in F(S;C) the
following notion of convergence: given a sequence {Fr}npy in F(S;C) and
an element F' €vF(5;C), then F, — F if and only if dy(Fy(s), F(s)) - 0,
uniformly in s € §. : \

We denote by C(S;C) the convex subcone of F(.5;() consisting of all
continuous mappings F' : § — C. In C(8;C) we consider the topology of
uniform convergence over S, determined by the semimetric defined by

d(F, G) = sup{du (F(s),G(s)); s € 8}
for all F, G € C(5;C). Hence F,, ~ F in C(S;C) if and only if d(F,, F) — 0.
If £ C C is a convex subcone such that dg is a metric on K, then on the
convex subcone C'(5; K) of C(S;C) the semimetric d(F,G) defined above is
a metric.

Denote by C(S) the real Banach space of all continuous real-valued func-
tions f : .5 — R, equipped wih the sup-norm

I£1] = sup{|f{s}]; s € 5}.

If we write C4.(S) = {f € C(8); f > 0}, then CL(8) = C(S;R4).
Notice that, when f € CL.(8) and K € C, the function F defined on by
8 = f(s) K belangs to C(S;C). The set C(S)K of all such functions, when
K e (C is fixed, is a convex subcone of C(S;C).

Notice that C being a semimetric space and being compact, every
F € C(8;C) is in fact uniformly continuous. In the particular case that 5 is
a compact metric space, say with metric d, this means that for every ¢ > 0,
there exists a 6 > 0 such that t,z € S, d(t,2) < § implies dg{F(t), F(z)) <
€. The modulus of continuity of F € C(S;C) is then defined as

w(F;6) = sup{dg(F(s), F(t)); s,t € S, d(s,t) < 6}
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for every 6 > 0. By uniform continuity of F, we have w(F;8) — 0 as § - 0.
Notice also that w(F;6) is monotonically increasing, i.e., § < 6 implies
w(F; 51) < w(F; 52).

ProprosiTION 1. Let S be & compact and conver subset of o normed space
E. Then

W(F;A8) £ (1+ Nw(F;6)

Jor every F' € C'(8;C) and A > 0.

Proof. The proof is standard and hence not given here. m

DerintTIoN 7. For each K € C, we define K™ € C(S5;C) by K*(t) = K,
for allt € §.

LeMMA 1. Let K be o conver subcone of a Housdorff convez cone (C, dg).
Let {Ty}n>1 be a sequence of monotone R..-linear operators on the convex
cone C(8;C) such that T, K* — K*, for every K € KU{B}. If F € C(S;K),
then (T, [F(2)*], 2) — F(z), uniformly in 2 € S.

Proof Let 0 < £ < 1 be given. By compactness, there exists a finite
set {Zy1,...,Zm} C S such that, given z € § there is i = 1,...,m such that
r € N(z;), where for cach t € §, N(t) = {s € §;du(F(t),F(s)) < e}.
Choose ng 80 that n > ng implies

du ((Tn[F{2:)"]:1), Flz4)) <e,

forallte Sandalli=1,...,m.
Now let x € §. Choose i = 1,...,™m so that z € N (@4). Then for all
1 > ng we have

-F(w)éF(mi)+€B1

du((T,B* 1),B) <e,

F(z) < F(z)+eB.
Hence
(Tn{F(2)*), %) < (Tu[F(2:)"];2) + €(TnB", z)
< Flay)+eB+e(B+eB) < F(z) +4¢B.

Similarly, F(z) € (To[F(2)*),2) + 4eB. Hence dg((Tn[F ()", ), F(z)) £
e foralw € 9. w

DEFINITION 8. An Ry-linear operator I': C(S;C) — C(8;C) is said to
preaerve the constants if TK* = K™, for every K € C.

DEFINITION 9. Let K be a convex subcone of a Hausdorff convex cone

(C,dg). Let T': C(8;C) — C(8;C) be a monotone R,-linear operator. We
say that T' is regular over K if there exists a monotone R.-linear operator

T : Cp(9) — C4(8) such that
() T(fK) =T(f)K, forallfeC (S)and K K.
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_ This is equivalent to saying that there exists a positive linear operator
T:0(S;R) — C(S;R) such that (*) holds.
When X = C and T is regular over X, we say simply that T is regular.

3. Quantitative estimates for monotone operators. Throughout
this section § is a compact and convex subset of a normed space E, and
(C,dy) is some Hausdorff convex cone. Hence w(F;§) is defined for each
F ¢ C(5;C), and Proposition 1 is true.

We follow the argument of Shisha and Mond [5], extending some of their
results from the linear structure to the convex cone structure.

LEMMA 2. Let F' € C(S;C) and § > 0 be given. Then
d(P(E), F()) < [+ [t = 3/l 0)
forallt,z e S.
Proof. If |t — | = §, then
da(F(t), F(z)) < w(F; [t ~ zi])
< (1+ |t = all /B (F; ) <
If |t — =|} <4, then
 da(F (), F(@) < o(F;6) < w(Fs8)[L+ - 2l?/64. w

(14 |it — z||*/6%)w(F; 6).

DerFINITION 10. Let {T,}.>1 be a sequence of R, -linear operators on
the convex cone C(S;C). Define

Ap(z) = (T, Pp,z), foralzes,
where P, (1) = ||t — 2||?B, for all t € §. We write
Ap(z) = O(n™),

if there is some constant k > 0 such that nd,(z) < kB, n = 1,2,..., for
every x & 5. '

uniformly in z € §,

THEOREM 1. Let K be o convex subcone of a Hausdorff conves cone

(C.dg). Let {Tp}ax1 be a sequence of monotone Ry -linear operators on
C(S;C). Assume that

(1) TnK* — K*, for every K € KU {B},

(2) An(z) = O(n™1), uniformly inz € 5.
Then TnF — F, for every F € C(5;K). _

Proof. Let F € C(S;K) and £ > 0 be given. By (1) and Lemma 1,
choose ny so that n > n; implies

() (TnB*,2) < B +(¢/2)B,

() (Tn[F(z)], ) < F(z) + (¢/2) B,
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for every z € §. By (2), choose k > 0 so that
(ill) nAn(z) < kB
for every x € S, and then choose na so that n > ng implies
(iv) w(F51/vm)) < (/2)(1 + k+e/2)7*
Let t,z € § be given. By Lemma 2, we have
F(t) S F(z) + [1+ It — «||*/8*w(F; 6)B
for every & > 0. Hence
(TwF,z) < (TulF(2)*], 2) +w(F; §)[(TuB*, 2) + An(2)/6%].
Taking § = 1/4/n, we get
(TnF\2) S (TulF(2)"], @) + w(F; 1/V)[(Tn B, @) + ndn(2)] -
By (i)-(iv), it follows that for n > ng = max(ny,na)
(TuF,z) < Fx)+ (¢/2)B + w(F;1/+/n)[B + (¢/2)B + kB]
< F(z)+ (¢/2)B + (¢/2)B = F(z) + B,
for every z € §. In a similar way, we get the twin inequality for n = ng:
Flz} < (T F,a) +eB
for every x € S. Hence dy (T F,z), F(z)) <eforalln>ngandz € 5. »

CoROLLARY 1. Let {T,.}n>1 be a sequence of monotone R -linear oper-
ators on the convex cone C(8;C). If they preserve the constants and

Ap{e) =0®™Y), uniformly inz € 9,
then T,F — F, for every F € C(8;C).

DepinrrioN 11, If {T,}np1 is a sequence of R, -linear operators that
are regular, we define o, € C(S5), n=1,2,..., by

on(@) = (Tult ~c||®,2), forallzes.

THEOREM 2. Let {T7}n>1 be o sequence of monotone R4 -linear operators
on the convex cone C(5;C). Assume that they preserve the constants and
are regular. Then '

A (ToF, ), F() < [1 + o (2)/82)(F3 6)
for every F € C(5,C), 2 € 5 and § > 0. '
Proof. From Lemma 2 and the hypothesis made, we have
(T F, z) < F(2) + w(F; 6)[B + An(z)/6%].
By regularity, A,(z) = an(z)B. Hence
- (TwFa) S Flz)+ 1+ an(W)/52]w(F 6)B.
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The twin inequality

F(z) < (ToF,3) + [1 + aa(2)/6°Jw(F; 6)B
is obtained similarly, and therefore

da((TnF,z), F(x)) < [1+ an(z)/6%w(F;6)
forevery z€ Sand § > 0. =

COROLLARY 2. Let {T,}n>1 be as in Theorem 2. Assume that for some
peCL(S) and >0
on(z) < plz)n~2
foreveryz € § andn = 1,2,... Then
dr((TuF x), F(2)) < [1 +¢(2)w(F;n~?)
forevery Fe C(S;C},z€ 8, andn=1,2,...
Proof. Take § =n? in Theorem 2. m

COROLLARY 3. Let {T, }n>1 be as in Theorem 2. For every z € S where
an(z) > 0, we have

dr((TnF,z), F(z)) < 2w(F; aﬂ(m)”z)

for every F € C(S;C) andn =1,2,...

Proof. Take § = a,(2)'/2 in Theorem 2. u

4. Operators of interpolation type. Let § be a compact Hausdorff
space and let (C,dy) be a Hausdorff convex cone.

Let J be a finite set, and for each k € J, let {1, € § and ¢}, € C(S) be
given. Define an operator T : C(S;C) — C(S;C) by setting

(%) (TF,2) = on(s)Ft)
keJ

for every F' € C(5;C) and z € S. Then T is a monotone R..-linear operator
defined on C'(5;C). On the other hand, if X' € C and F(t) = FOELK, for all
t €5, where f € C,(5), then

(TF2) = > en@l K] = | 3 oula) f(80) | &

keJ keJ
Hence T is regular.
Assume that, for every z € §,

() D eklp) =1.

kSJ
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We claim that T' preserves the constants. Indeed, let K € C be given.
Then for F = K* we have

(TF,2) =Y eu@F(t) = ) (pr(@)K) = | 3 gul)| K = K = K* ()
keJ ket ' kad

for every » € §. Thus Theorem 2 is true for any sequence of monotone
R..-linear operators of the interpolation type () such that (+*) is true when-
ever S is a compact and convex subset of some normed space E. Notice that
in this case (see Definition 11) we have

on(@) =Y Oxn(@)llten — 2|
keJ{n)

for every x € §.

5. Operators of Bernstein and of Hermite-Fejér type. Suppose
that the compact Hausdorf space § is the standard simplex Sy, Le.,

™m
S = S = {(ml,...,mm) eR™; Y @ <1, w20, i:l,...,m},
PESN
The nth Bernsiein operetor B, on the simplex Sp, is an operator of
interpolation type defined as follows. Let J(n) be the set of all m-tuples of
nonnegative integers k = (k1,...,kn) such that k1 4+ ... + kn < n. Now if
k € J(n), the point tg ., € Sy, is given by
ten = k/n=(ki/m, ... kn/n).

The function @x n € Cy(8y) is defined by

n -
onn(®) = () (1 = ol)" M
for every @ € Sm, where

Ll ("D =nl/ ()L (k) = R,

g* =l

|k =Ky +. ..+ ke,
ifk = (ky,...,km) and = (21,..., Tm) € Sm. Hence, for any F € C(S; C),
(BoF,z) = 3 @rn(2)F(k/n)
k] En
for every @ € Sp,. We know that (see, e.g. Ditzian [2], p. 297)

) D ernle) =1

|k|sn

|m|=—..m1+.,.+£cm
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D DY LI PRREIES R
lkl<n o ngg z
for every z = (x1,...,2,) € S,,. Hence

on(e) = =Y (1 - 2
i=1

and we may apply Theorem 2 and Corollary 2 to get the following results.
THEOREM 3. For every F &€ C(Sm;C), 6 > 0 and x € Syn, we have

(1) dg((BuF,z), F(z)) < [1 + 512_ . %Zmi(l - a:i)]w(F; ),

i==]

m
@ du((BuFoa), F(@) < [14 3 mill — w)|w(F31/v/R),
a=]
(3) sup A ((BnFz), Fz)) < (1+m/4)w(F;1/v/n).
BESm .
Proof Foreachi=1,...,m, 2i(l—z)<1/4. m
THEOREM 4. For every F € C(8,;C), we have B, F— F.

Proof. Each F € C(S8,;C) is uniformly continuous and therefore
w(F;1/y/m) ~+0asn-— co. m

Remark. Let S be a compact Hausdorff space and let C be & Hanzdorff
convex cone contained in Conv(E), where F is some normed space, Given
F e C(8;C), can we find a single-valued function I € C(8;E) such that
f(z) € F(z), for every © € §7 When the elements of ¢ are closed and
E is a Banach space, the answer is yes, by Michael’s selection theorem,
since any F € ((8;C) is lower semicontinuous. When § — [0, 1], we can
use the Bernstein operators to construct, for each ¢ > 0, an e-approximate
continuous selection for F, i.e., to construct f € C([0,1]; E) such that f (z) €
F(z)+ B, for all z € [0, 1). Indeed, for each n = 1,2,... and each k =

0,...,n, choose vectors v n € F(k/n) and define
ZOES 3 (4 EICRMLE
i=0)

forall 0 <z < 1. Clearly, §, C({0,1}; ) and Ju(z) € (BoF,z), for all
n=1,2,... Now, given & > 0, choose ng so that n > n, implies d(B, F, F) <
€. Then n > ny implies (B,F,z) C F(z) + B, for all z € [0,1]. Hence
fu(z) € F(z)+eB, for all z € [0,1], if n > ng, and f, is an g-approximate
continuous selection for F. m
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Let § = [—1,1]. Let T},(2) = cos(narccos z) be the Chebyshev polyno-
mial of degree n, and let tyn, k= 1,...,n, be the zeros of T,. Hence

2k —1
tk,n=cos( " w), k=1,...,n.

The nth Hermite-Fejér operator H, on C([—1, 1];C) is an operator of
interpolation type defined as follows:

) 2
(HoF,z) =Y (1—atyn) [Hﬁ] Ftyn)
kel !

for every « € [—1, 1]. We know that (see, e.g., DeVore [1], pp. 42-43)

(1) i(l — Ttgm) [ﬂ—(?%b]z = 1,

b1,
() (HaPo2) = CIT@)B,

for all z € [=1, 1], where Py(t) = (¢t — z)?B, for all £ € [~1, 1]. Hence
1
nla) = ST

Therefore we can apply Theorem 2 and its corollaries to get the following
results.

THEOREM 5. For every F &€ C([-1, 1;C), 6 > 0 and v € [-1, 1], we
have

O (), FE) < (14 5 ST e,

@ ds((EF0)F@) S [+ Ta(e)e(Fi1/VR),

(3) sup ]dy((HnF, %), F(z)) < 2w(F, l/ﬁ).
wg[-1,1

Proof |Th(z)| < 1 for every 2 € [~1,1]. =
COROLLAﬁY 4. For every F ¢ C([~1, 1];C) and & € [~1, 1], we have
dg{(HaF, z), F(2)) < 2w(F; | Ta(2)l/vR).
Proof For z # tga, take § = |Th(z)|/+/n in Theorem 5. When & =
bk, (HpF2) = F(z). =

6. Korovkin systems. Throughout this section .S is a compact HausIT
dorff space, (C, dy) is a Hausdorff convex cone :'md K is a convex Sll.bioie 0
C such that there exists an element Ky € K with c_iH()\Kg, wKp) = | ,u|f
For example, if C = C(E) (see Example 5) and K is any convex subcene o
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C(E) contajning an element Ky of the form Kj = {v}, where v € F is such }
that [v]| = 1, then dg (AKo, pKo) = [[dv ~uv|| = |A — gl

The convex cone K = C has the above property. Take Ky = B and notjce
that dg (AB, uB) = |A — p| for all A > 0 and p > 0.
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DEFINITION 12. A subset G C C(9;K) is called a Korovkin system for

C(S$;K) if, for any sequence {T}n51 of monotone R -linear operators on
C(8;C),

(*) ThG— G, forall G €§, implies T,F — F, for all FeC(5K).

When () holds only for sequences of monotone R -linear aperators on
C'(S;C) that are regular over K (see Definition 9), then we say that G is a
regular Korovkin systern for C(S;X).

Remark. Let C = Ry. Then a Korovkin system for C(S;R,) is a
Korovkin system in the linear space C(S). Indeed, let F C C4(8) be a Ko-
rovkin system according to Definition 12. Let {Tw}n>1 be a sequence of pos-
itive linear operators Ty, : C(S) ~ C(S) such that Tg — g, for every g€ F.
When we restrict ), to C4(S) it becomes a monotone R..-linear operator
on C(8;R+). Hence T, f — f, for every f € C(8;Ry.). Now let feC(s)
be given. Write f = fi — f., where f, = max(f,0), f. = max(—f,0).
Then T, f = To(fy) — Tu(F-), because T, is a linear operator. Conse-
quently, Tnf — f+ — f. = f, and therefore F is a Korovkin system in
C(8). Conversely, if F is a Korovkin system in C(§) and F c C.(9),
then 7 is a Korovkin system for C(S;R.,.), since every monotone R -linear

operator on C'(S;R;) can be extended to C(S) as a positive linear opera-
tor.

LEMMA 3. Let {T}n>1 be a sequence of monotone Ry -linear operators
on the convex cone C(S;C) such that T, K* — K* for every K € KL U{B}.
Let F € C(S; K) be such that for each & > 0, there is some bounded Sfunetion
P:8%x 8> R, such that

(*) da(F(t), F(z)) < ¢ + P(t, z)
for all t,2 € § and Py(t) = P(t,2), t € 8, belongs to C'1(9), for each

€S If (Tn(FB),z) — 0 uniformly in z € S, then T, F — F.

Proof Let 0 <e < 1 be given. By hypothesis, there exists a function
PS8 x 5 — Ry such that («) holds for all ¢,z € S. Hence

F(t) < F(z) +eB + P,(t)B
and, consequently, '

(TuF,2) < (Tu[F(2)"), 2) + &(TnB*, z) + Au(z),

IR
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where A,(z) = (Tn(PB),z), for every z € S. By Lemma 1, choose ng so
that n = ng implies for every z € 9, :

(TalF(2)*], &) S F(z)+eB, (TwB*,z) < B+eB, Au(z)<eB.

Then (I, F,x) < F(z) +4eB for all z € S. Similarly, one gets F(z) <
(ToFyz) + 4eB for all z € 5. Hence dy ((ThF,z),F(z)) < 4¢, forallz e §

and 17> ng m

LemmA 4. Let S be a compact Hausdorff space and let F C C(S) be a
nonempty subsct that separates the points of §. For each R € C.(S x §)
that vanishes on the diagonal A = {{t,8) € § x 8;¢ = s}, and for each
g >, there exists § > O and @1, ...,¢n € F such that

R(t,z) < e+ % > (wilt) — @ila))?
i=1

for all t,x € §, where M = sup{R(t,2); (t,z) € S x 5}.

Proof. Since F separates the points of 9, and § is a compact Hausdorff
space, the weak topology determined by F coincides with the initial topology
on S. Hence each R € C.(9 x5) is uniformly continuous with respect to the
uniform structure determined by the weak topology. Therefore, given & > 0,
there exist § > 0 and 1, ..., em € F such that |R(t,z) — R{u,y)| < ¢, for
all (¢,z) and (u,y) in N(6), where for each § > 0,

N(ﬁ):{(v,z) €5 xS, 1‘:0?3(”)_901'(3” <b,i= L---sm}'

Since A C N(§) and R(u,y) = 0 if u = y, it follows that R(t,z) < €
whenever |@;(t) — pi(z)| < Sforalli=1,...,m. .

Now let (t,z) € § x § be such that jp;(t) — wi(z)] = 6 for some index
1 <i<m. Then

1< 5 D) — i)

and therefore

R, < 523 (eult) = i),

izl
where M = sup{ R(t,2); (t,z) € § x §}.
In any case,

R(t,9) < 6+ 23 (u(t) ~ ()
f=1 .

forall{,z €S5S. m
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THEOREM 6. Let F C C(S;Ry) be a Korovkin system for C(S;Ry).
Choose Ko € K such that dg{AKo, pKo) = |A — pl, for all A > 0,4 > 0.
Then G = {fKo; f € F} is o regular Korovkin system for C(S;K).

Proof. Let {T,}n»1 be a sequence of monotone Ry-linear operators
that are regular. Assume that T, — G, for all G € G.

Let F € C(8;K) and € > 0 be given. Let R(t,z) = du(F(t), F(x)),
for t,z € §. Clearly, R € C.(8 x §) and R(z,z) = 0 for z € §. Now S
being a compact Hausdorff space, C'+(9) separates the points of S, and by an
obvious modification of Lemma 4, there exist § > 0 and ¢y, .. ., om € C.(8)
such that

m
d5(F(©), F()) <=+ 5 3 lgilt) - wi(e)]
i=L
for all t,x € S, where M = sup{du(F'{t), F(z)); (t,x) € § x §}.

Let P(t,z) = (M/6)Y iv li(t) — wi(z)|, (t,2) € § x S. Notice that
P(w,x) = 0. Then P: S x § — R, is bounded and P,(t) := P(t,z),t € &,
belongs to C(S) for each » € 5. By Lemma 3, to prove that T, F — F,
it suffices to show that T, K* — K*, for every K € KU {B}, and that
(Tn(P,B),z) — 0, uniformly in = € S.

Now for each z € §,
dH((Tn(fKO): ﬂ’}), f(.’D)Kg) dH(( n.f: )Kﬂﬂ f(“m")I{O) = {(Tﬂfi $) - f(mN ’
Hence [ Thf — fll = d(Tn(FKo), fKo) — 0, for every f € F. Since F is a
Korovkin system for C(S;R,.), this implies Tg — gfor every g € C(S). In
particular, fnl — 1 and Tan — P, for each 2 € §. Now Tnl — 1 implies
T, K* — K* for every K € KU{B}, and in fact for every K € C. It remains
to show that (T, Py, z) — 0 uniformly in z € §. Let £ > 0 be given. For
each z € 8, let N(z) = {t € §; P,(t) < €}. By compactness of S, there is
a finite set {z1,...,Tr} C S such that § C N(z1)U...UN(zg). Choose ngy
so that n > ng implies |(T5n Py, t) — Pr, ()] < €, and [(Thl,t) — 1] <&, for
allte S, j=1,...,k

Now let x € S be given. Then Py (z) < ¢ for some j € {1,.
Py(t) < Py, (t) + Py (x) < Pyt )+af0rallt€5 Hence

(ToPp,z) < fn,ij,m)'-}— e(fnl,m)
S Py(z)tete(l+e)<ete+e(le)
for all n > ng, and so (fnPw_,:c) — 0, uniformly in s € 5. =

COROLLARY 5. Let F C C(S;R..) be a Korovkin system in C(S;R..).
Then G = {fB; f € F} is a regular Korovkin system in C(8;C).

Proof. Take X = C in Theorem 6 and notice that in any Hausdorff
convex cone dg(AB,uB)=|A— p|forall A >0and > 0. u

., k}. Now
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COROLLARY 6. Let E be a normed space over the reals and letv e E be
chosen with |[v]| = 1. If Ky = {v}, end F C C(S;R..) is a Korovkin system
Jor C(S;R.), then G = {fKq; f € F} is a regular Korovkin system for
C(9;K) where K is any convex subcone of C(E) that contains Kg. In par-
ticular, G s a regular Korovkin system for C(S; K(E)) and for C(S;C(E)).

THEOREM 7. Let 8 be a compact nonempty subset of a normed space E.
Let {f1,...,fim} be a finite subsel of C.(8) such that there are bounded
real-valued functions {ay,...,am} defined on § and some constant M > 0

such that
Qt2) =3 ay(a)
I

)z Mlit-al?,  Qz,2)=0

forallt,m € S. Assume that for each j = 1,...,m, the function a; does not
change sign in §. Then {1, f1,..., fm} is a Korovkin system for C(S;R,).

Proof. Let {T,}n>1 be a sequence of monotone R..-linear operators on
C({S;R..). Assume that T, f; — fy, foreach 1 < § < m, and 7,1 — 1.

Let F € C(S;R..) be given. We claim that T,F — F. Let ¢ > 0 be
given. By the uniform continuity of F, there is some § > 0 such that

P - F@) s o4 2l e
for all ¢,z € S. Hence |F(t)
2r] 2

(t ) 'MQ(t: m) .

By Lemma 3, to prove that TnF — F, it suffices to show that (T, Py, x)
—+ 0, uniformly in z € 8, and for this it suffices to show that (7,,Q, %) — 0
uniformly in z € S, where, for each z € 9,

Qult) = Qt,z) = > a;(z) f;(t)

j=1

- F(z)| < &+ P(t, z), where

for allt € S.
Without loss of generality, we may assume that aj(m) = 0 for all z €S,

ifj=1,...,k and aj(z) <0, forallzc S,if j=k+1,..
Let
k m
tie) =D @A), Qo)=Y (—a(=)fi).
J=1 : J=ht1

Then Q+ Z 0 Q =0 and Q"‘i“‘Q_ = Q+ Hence (Tan: )+ (T'ﬂQm ,EB)
(TnQF,z) for every o € §. Now T, f; — f; for each j = 1,...,m. Hence
(Th@s %) — Q3 (s), and (1,QF,%) — QF(z). Therefore (TuQs,3) —
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Qi (z) — Q7 (), uniformly in z € S. Since QF (z) - @7 () = @x(z) = 0,
this ends the proof. m

COROLLARY 7. The set {1,,t?} is a Korovkin system for C([0, 1 R..),

COROLLARY 8. The set {1,701, - ., Tm, Mot . 72, } 48 0 Korovkin system
Jor C([0, 1]™;Ry), where mi{t) = t; (§ =1,...,m) fort = (f1,... ,tn) €
[0, 1]™. '

Proof. If t,z € [0, 1], then (t — #)? =12 — 2zt + 22 . L. Now ~2z¢ < 0
and 2 > 0forall z € [0, 1]. If ¢,z € [0, 1]™, then

m

1t — 2P = (t ~ )

i=1

= (2 4+ ...+ 712 () ——i?mmi(t)—{— (73 4. w2 =) -1,

=1
and —2z; <0 (E=1,...,m), (@ +.. . +7%)(x) > 0forallz € [0,1]™ =
THEOREM 8. Let § and the fomily {f1,..., fm} be as in Theorem 7.

Choose Ky € K such that dg(AKo, pKo) = |A— u|, for all X > 0, > 0.
Then G = {f1 Ko, ..., fmKo} is o regular Korovkin system for C(9;K).

Proof Apply Theorems 6 and 7. m

COROLLARY 9. Let § = [0, 1]. Choose Ky € K such that dg (AKy, pKq)
= [A~p|, for dl A >0, p > 0. Then G = {1 - Ko,tKp,{>Kqy} is a regular
Korovkin system for C(S;K).

COROLLARY 10. Let § = [0, 1]™, and let Ky be as in Corollary 8. Then
G= {].Ko,ﬂT]_KD, e, Ko, (71‘12 T W?n)Ko}
is a regular Korovkin system for C(S;K).
Remark. If o and b are real numbers with 0 < @ < b, then the closed
interval [a, b] C R4 can be substituted for [0, 1] in Corollaries § and 8.

Similarly, if S is any compact and convex nonempty subset of (R..)™, then
S can be substituted for [0,1]™ in Corollaries 7 and 9.

THEOREM 9. Let F C C.(S) be a subset that separates the points of S.
Then G = {p*; p € F and k=0,1,2} is a Korovkin system for C(S;R.).

Proof. Let {Ti}n»1 be a sequence of monotone R, -linear operators on
C(S8;R+). Assume that T,,g — g, for all g € G.

Let f € O(S;Ry) and € > 0 be given. The mapping R(t,z) = |f(¢) —
f(z}| belongs to 0, (§x ) and R(z, z) = 0. By Lemma 4, there exist § > 0
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and @y, ..., @m € F such that
M
£#) - f(@)| S & + 7 P(t,)

for all ¢, € S, where
[
Pl z) = > (pilt) = wilw))?
sl
and M = sup{|f(f) — F(z)|; (¢, %) € § x S}
By Lemma 3, to prove that T,, f — [, it suffices to show that (T Py, ) —
0, uniformly in @ € S. Since Py (t) = P(t, 2) I8 a finite sum, it suffices to show
that (Tul(@: — wi(@))?],2) — 0, uniformly in & € 5, for each i = 1,...,m.
Notice that
(Tul(ipi — il @))?], 3) + 20:(2) (Tuipi, ) = (Tnipd, @) + 9 (2)(Tnl, 2)
for each ¢ € 8. Now Thg — g, for all g € G, implies T,0¥ — F for k
0,1,2. Hence (Thk,z) — pF(z), uniformly in ¢ € §, for each k = 0,1,
Hence (T [(i — wi(a))?],2) ~+ 0, uniformly in z € 5. =
THEOREM 10, Let F C C'n(8) be a subset that separates the points of 5.

Let Ko be as in Theorem 6, Then § = {¢*Ky; p € F and k =0,1,2} is a
regular Korovkin system for C(S;K).

2.

Proof. Apply Theorems 6 and 9. w

COROLLARY 11. Let F € C..(9) be a subset that separates the points of
5. Then G = {@*B; ¢ € F and k = 0,1,2} is a regular Korovkin system in
c(5;0).

Proof Apply Corollary 5 and Theorem 9. =
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