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STUDIA MATHEMATICA 102 (3) (1992)

Uniqueness of unconditional bases of cp{l;), 0<p <1
by

¢. LERANOZ (Columbia, Mo.)

Abstract. We prove that if 0 < p < 1 then a normalized unconditional basis of
n complemented subspace of eg(lp) must be equivalent to a permutation of a subset of
the canonical unit vector basis of ¢p{ly). In particular, cg(ly) has unigue unconditional
basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously
proved the same result for eo(l1).

1. Introduction. If X is a quasi-Banach space with unconditional basis
we say that X has unique normalized unconditional basis (up to permutation)
if whenever (&,,)nen and (&, )nen are two normalized unconditional bases of
X, (2n)nen is equivalent to (a permutation of) (eq)nen- -

It is well known that the only Banach spaces with unique normalized
unconditional basis are cp, Iy, and I ([8], [10]). In the wider class of
quasi-Banach spaces, however, we find many other spaces with that prop-
erty, including I, (0 < p < 1) (see [3], [5]). Bourgain, Casazza, Lindenstrauss
and Tzafriri considered in [2] the uniqueness up to permutation of the nor-
malized unconditional basis of direct sums of the spaces ¢g, I, and 2. They
proved the following theorem:

TeROREM 1.1 (Theorem 4.1 0f [2]). Let @ be a bounded linear projection
from eg(ly) onto a subspace Z which has a normalized K-unconditional basis
(2n)hy. Then there eist a constant D, depending only on K and lQll, and
a partition (B;) j::l of the integers {1, .. .,n} into mutually disjoint subsets
80 that

(1.1)

n
-1
D 1%1}?‘] 2 lan| € H Zanzﬁ

ne By =]

for any choice of scalors ay,...,ay. In particular, co(l1) has unique nor-
malized unconditional basis up lo permutation.

SD&I?ECJ Z loal -
sist o3,
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194 C. Lerdnosz

Motivated by this result and by the fact that I, (0 < p < 1) has unique
normalized unconditional basis, we will show in Section 2 the analogue of
Theorem 1.1 for eq(l,) (0 < p < 1).

We recall that if X is a quasi-Banach space whose dual separates points
and 0 < ¢ < 1 then the gauge functional of the g-convex hull.of the closed
unit ball of X is a g-norm on X that we will denote by [|- ||, The g-Banach
space X, resulting from the completion of (X, || - [|,) is called the g-Banach
envelope of X (see [4] and [6]). The g-Banach envelope has the property that
every continuous linear operator from X into a g-Banach space extends
to X, with preservation of norm. In particular, the dual of .ffq is X*.
The 1-Banach envelope is a Banach space and will be called simply the
Banach envelope. If (e, e is a K-unconditional basis of X then it is also
a K-unconditional basis of }?q, and

(1.2) K7 len| € llenlle € |ien]] foralln e N.

Since the Banach envelope of ¢p(ly) (0 < p < 1) is ¢o(l1), the result in
Theorem 1.1 will be essential to our arguments. However, the techniques in
[2] do not extend to the non-locally convex case. Instead, we will follow the

apprﬁch used for proving uniqueness results in guasi-Banach spaces in [3]
and {5].

We recall that a quasi-Banach lattice X is said to be p-convez, where
0 < p < oo, if for some constant C and for all zy,...,2, € X we have

| (; i) ) < O(Z1 7).

The procedure to define the element (3", |z;|?)*/? € X is described in [9]
pp. 40-41. ’

THEOREM 1.2. Let X be a p-convez quasi-Banach lattice (0 < p < 1).
(1) (Proposition 2.2 of [5]) There is a constant Ay such that

”(iilxﬁﬁ)l/z” '_<_A1f1 j“ii:mﬁm(t)rj(s)” dt ds
=1 j=1 0 0 =l 4=l

for any X -valued matriz (mij)ﬁjd, where (r;)icn denotes the sequence of
Rodemacher functions on [0,1]. ‘ '

(ii) (Proposition 2.1 of [5]) If (zn)nen is an unconditonal basis of X

the7.z there is o constant Az, depending only on X and the unconditional
basis_constant, so that

) (S 2 e
i= _ i=1

for any scalars ay, ..., an.

<A (Shar) )
=1

fo=
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(i) is a vector version of Bonami’s extension of Khinchin’s inequality
(j1]), and (ii) is a generalization of the Maurey-Khinchin inequalities ([9],
[11]).

THEOREM 1.3 (cf. Lemma 6.3 of [3] and Theorem 2.3 of [5]). Let X
be a p-convexr quasi-Banach lattice (0 < p < 1) with a nermalized uncon-
ditional basis (en)nen; and let @ be a bounded lkinear projection from X
onto a subspace Z with o normalized unconditional basis (Zn)nes (S € N).
Let (eX)nen and (24)nes be the sequences of biorthogonal linear functionals
associated with (en)nen and (Tn)ncs respectively, i.e.

o0

T = Z ei(z)en, and Qz) = Z @y (z)en
n=1 . nes

for oll x € X. Suppose that there is a constant 3 >0 and an injective map

g: 85— N so that

‘e;(n)(mn)l >3 and |$:(ed(n))‘ >0
for all n € §. Then the unconditional basic sequences {Tnlney and
(€a(nyInes are eguivalent.

2. Uniqueness of unconditional bases of ¢g(lp). Let 0 <p < 1be
fixed. Throughout this section || - || will denote without confusion both the
quasi-norm in co(l,) and the norm in the dual it (leo)jandf 0<p<g <1,
|| - ]l will denote the (quasi-jnorm in the g-Banach envelope co(ly). The
canonical 1-unconditional basis of unit vectors of co(lp) will be denoted by
(elk)?ﬁc=1' Here if b= Zic;cm—_l biews € Co(lp) then

il = sup (3 ost?) "
k=1

The lattice structure induced by the canonical basis in co{lp) is clearly
p-convex. We will devote this section to the proof of the following theo-
rem:

TuEoREM 2.1. Let Q be o bounded linear projection from co(lp) onto a
subspace X with a normalized K-unconditional basis (zn)r—y. Then there
exist o constant A and o partition of the integers {1,...,n} into mutually
disjoint subsets (Li)l_y so that _

o g (3 ) < e <2 (R o)

for any scalars ay, ..., - S
Before we attempt the proof of Theorem 2.1 we need to establish a few

lemmas. We will begin by introducing some more notation.
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The sequences in I (leo) of the biorthogonal linear functionals associ-
ated with (ej;) and (z,) are denoted by (ef,) and (z}) respectively. For
abbreviation we will write

ejp(zn) = bfp and  z;(en) = ajj,
for I,k € N,1 <n < 7. The Banach envelope of X, 5{' is a complemented
subspace of ¢o(l1) and (z,)].; is 2 K~uncond1t10nal ba.SLS of X. By (1.2),
the basis (z,)]_, is equwa,lent in X to the normalized basis (z,,/|zx, 1)y
Therefore, Theorem 1.1 applies, hence there exist a constant D, depend—

ing only on K and ||Qf, and a partition of {1,...,n} into disjoint subsets
(B;}]., so-that (1.1) holds, that is,

i
-1
(2.1) D max Z lan| < ” Zanmn )
REBJ' n=1

for aﬁy scalars ay, ..., an.
Lemma 2.2 states a simple fact that will be useful in the sequel.

< D max E |
1<5<T
neB;

LeMMA 2.2. Fiz 0 <r < g < oo. For any e > 0 there is C. so that

(imn]q)l/q _<_Z Cesuplan| + ¢ (i |a.n|’")l/T
" n=1

n=1

for any choice of ay,...,an,...

Proof. It is enough to prove this when (Y00, [an|")*/" = 1 and
{lan|)nen decreases. Then

L
nlan|” < lax|" <1

-for all n. For each £ > 0 choose

[

where §; = max(1,2'/971} and [-] denotes the integer part function. Then

Z‘anw—ztaniq“F Z |an|?

n-—-n.c+1
a 1
< sup|a:nE + E 7
fni=n,+1 n

1

o (g/r-ymg
< g suplan|? + 9679, '
s

< e sup |an|q
n
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Hence C; < 8;ne/% < 82((8,(g/r — 1)~ Yee=1)r/la=) 4 1), u

Next, we will prove in Lemmas 2.3 and 2.4 that, for each 7, (@n)ne B, is
equwalent to an l;-basis in the g-Banach envelope co( o D<p<g< 1)
In the sequel, if A is a finite subset of N, |A| will denote the number of
elements of A.

LEMMA 2.3. There is a constant v > 0 independent of 7 and N so that

|2

ned
whenever A C B; with |A] =

> NP

Proof dombining (2.1) and Theorem 1.2(ii) we can find a constant
0 < C' < 1, independent of j and N, so that whenever A C B; with |A| =

o < [(Sea) =3 (3 )"

k=1 ncA
We fix I € N so that

o0

(2.2) oN < (Z b 2)1/2

k=l neEA
On the other hand, 3> 72, |blk| < ||lza| = 1for alln € A so, by Lemma 2.2
withr=1,¢=2,and e = 0/2 (which yields C. < (24 C)/C < 3/C), we
get

29 L () s g b+ Y
k=1 neA k=17 klneA

> C

5_(3;7 :lelalbﬁci+5N'

(2.2) and (2.3) together imply that

ZSHP |bik| >

h=1 mEA
Therefore, since sup,c4 b} <1 and p < 1,

(S eet) | = e (5 nez;b?,ce)f””)m’ (Saminr)”
| (Zﬁup |b ) > (%)1/ NP

—1 NEA
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Furthermore, by Theorem 1.2(ii}, there is a constant Az, depending only
on p and K, such that

| S o] 2 a5 (35 o))
nca neA

Thus the result holds with v = (C?/6)/? A", m
LeMMA 2.4. Fiz g (p < g < 1). There is a constant I' > 0, independent

of 4, so that
lq
(2.4) H anwn‘ >r( Y Ianl")
neB; ned;
for any scalars (an)nep;, 3 =1,...,J.

Proof. Fix j € {l,...,J}, and call n; = |B;|. Let (bn)7i; be a
decreasing rearrangement of (|an|)nep;- From the K-unconditionality of
(#n)neB; and Lemma 2.3 we deduce that

b, < K'}'”ln“l/’”H E ammm“
meB;

for 1 < n < 5;. Now,

(25) ( Z Ian|q)1/q _ (ibﬁ)l/ti

neBy n=1

gt 1/q
=87 ( nq/P) H Z ammm”

<17 (25) "] 3 el
meB;

Thus we can define a map T : X — [, by
e, ifn € By,
T(za) = { ifn ¢ B;,
where (e,)nen represents the canonical basis of I;, and (2.5) says that T
is bounded with ||} < K+ '(g/(g — »))*/9. Every operator from X into

a g-Banach space extends to the ¢-Banach envelope with preservation of
norm; therefore,

(5 tear) " <x7(;45) "] |
nEB; _ n€B;

for any scalars (an)negj; ie. I'= K 'v((g—p)/g)*% u

icm
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We now study the behavmur of the sequence (23))_,. We recall that for
eachn=1,...,7, z} €li(le) and

lzall = ZSUP lai| < K| Q|

=1

where a}}, = @y, (ew) (I, k € N). We also recall that (2,)”_; is a K-uncon-
ditional basis of X, the Banach envelope of X, which is complemented in

eo(l1); and that, by (1.2), (|QIE)™* < ||2ally < 1for m=1,...,n. There-
fore, the following result from [2] holds:

LemMA 2.5 (Lemma 4.4 of [2]). For every € > 0 there is a constant O,
depending only on K and e, and sequences o € l; with ||a7||; < © so that

oo

Z |52p laf| — mm(al , sup lal])] < €
=1

forallne By, andall j=1,...,J.

Lemma 2.5 implies that for each j = 1,...,J there is a finite set F; of I’s
so that for each n € B;, the norm of z}, is concentrated in F;. In Lemmas
2.6-2.8 we will see that, at the cost of ignoring some uniformly finite number
of n’s in each B;, we can bound the numbers |F;| by a number depending
only on K and ||Q||.

LeMMA 2.6. Fiz p < ¢ < 1, suppose that 1,...,N € B;, and choose a
family {Gp}2_, of finite, mutually disjoint subsets of N. Then there is a
constant C, independent of 7, N, and the choice of the G ’s, so that

(2.8) (Z( Z SUPIGM) )

n=1 €@,

Proof For each l € 7, choose k; and g; so that
1
aiafy, = lafy,| = 5 supg ol
Then

(S (5 mri)" s2(3
ARz )

<
n=1l m=1 IEGm

<o 33 (3] 3 aet ) o]

IeGn

(T aen))™”
(
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where I' is 2s in (2.4). Now, by Theorem 1.2, there are constants Ay and
As so that

N N 24 1/2
22|30 wan) =
1 1 N
A1ar J”Z(Zrm Z e;a?kl):cnrn(s)”qdids

n=l =1 1€Gm

<a (S| 3w,

=1lm=1l [EGn

N N

< AgAK “ Z (Z Z ezalklwn)wm H

m=i n=1I1ECGmn

= A AK fl H mZ::lP(lZ

where (7y)men is the sequence of Rademacher functions on [0,1], and P is
the projection associated with the basis (zn )y, of Xq that maps ¢o(lq) onto
the subspace spanned by {z1,...,2x}. The norm of P is at most K|[Q|;
therefore,

1S5 3 wenf)

m=1 leln,

Elelk’i)T’”L(t)llth

g

< L4 KQ) f [T S st ae= siicial.

m=11cGn

Hence (2.6) holds with € = 242 A, K2||Q|l/I". =

LEMMA 2.7. There is o constont Ny, independent of j, so that if we define
the sets H,(No) = {I € N :sup, |a,?k[ < 1/(2No)} then

@2.7) Hn € B sup afy| > 1/2}1 < No

lEHn(Ng)
forall =1,...,J.

Proof. Fix g (p < g < 1), and let C be as in (2.6). We will prove that
(2.7) holds with Ny = (8C)%/(1~9). For this Ny, define

Y, suplafii>1/2},

IEHn.(ND
L;={leN: sup|a | < 1/(2Ng) for some n € C;} .

CjZ{'ﬂ.EBj:

icm
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For l € Ly, n € C;, we define

Al = {Supk: lafy,| if supy, |afy,| < 1/(2No),
0 otherwise.
We claim that if N = min(|C;], Ny} we can find Gy,..

., Gx, finite and
mutually disjoint subsets of £;, and 4y, ..

. iN € C; so that

Z sup|a. | 2 — 4N

128G,
for n = 1,

..+ N. To see this, we proceed as follows: For each n € C; we
have '

SoAr>

1EL;
so we can find G} C £; so that

> A > -—— and min A? > max AP.
2No i;m 4N 567 L TieLer

o

Let ¢; € C; be so that |G| is minimal, and set G = G*.
Now, for each n € C; \ {i1} we have

1 1 1
> Az =g (Mo-1)
leLGy 2 2Ny, 2Ng
so we can find G§ C £; \ Gy so that

> A”Z— and min A} > max
2N0 IEG“ 4Ny leGy ! TE(LN\GINGE

Let iy € C; \ {i1} be so that |G§| is minimal, and set Gg = G,
Now, for each n € C; \ {i1, 42} we have
1 2 1
e = (N — 2
2 T ik A
1Ly \(G1UG)

and we find 45 and G as above.

We can repeat the above process N = min(|C;|, No) times to find iy, ..
...,in and Gy,...,Gy satisfying our claim. Furthermore, we can apply
Lemma 2.6 to get :

(2.8) (Z( Z supla ) ) <

ledy
where € is the constant in (2.6).
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Finally, we recall that Ny and G1,...,Gx have been chosen so that
C = N{9/9/8 and Tieq, SUPg laip| = 1/(4Np) (n =1,..., N). Therefore,
(2.8) implies that
Ni/e NélﬂfJ)/q
4Ny, — 8
or N < Ny/29 < Np. Hence |Cj| < Npforallj=1,...,J. m

From now on we fix Ny as in Lemma 2.7 and define

Bj=B;\¢;={neB;: Y Sl;pla?:eld/?} (G=1,...,J).

IEHn(Nu)
Lemma 2.8. For each j = 1,...,J there is o finite subset of N, Fj, so
that
2.9 sup |aj,| < 1/2
(2.9) Z kP| i /

1-3 30
for alln € B;. Moreover, |F;| < 4No@ forall j=1,...,J
Proof. For each j, let

Fj ={l € N:sup|af| > 1/(2Ny) for some n € B;}.
k

Then (2.9) clearly holds.

In order to bound | F;| we recall that, by Lemma 2.5, there is a constant
©, independent of j, and sequences o’ & Iy, with |of||; < ©, so that

E | sup [a| —mm(%sup Jafi)| < 1/(4M)
1=1

forn EBj,j= 1.,
1/(2No), and
of > min(sup o}, ) > sup fy| ~ | sup afy| ~ min(suplafy, o)
> 2 1 1 1
SN, 4N,  aNg '
Hence |Fjl < 4NgB for allj =1,...,J. =

~ Finally, we observe that the sequence {z, : n € C;,j = 1,...,J} is

equivalent in ¢o(ly) to a co-basis. This will be a consequence of the following
theorem:

,J. Now, if | € F} thereis n € B} such that sup, |af| >

THEOREM 2.9. Let Y be p-convex (0 < p < 1) and so that Y* has
cotype 2. Then there is a constant k, depending only on p and the cotype-2
constant of Y, so that ||y|| < s|ly|, for ally €Y.

Proof. This is a consequence of Theorem 3.3 of [4]. m

icm
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COROLLARY 2.10. There is a constant A, depending only on K and ||Ql,
so that
bt m#x|an! < H Z b o,

nec;
15T

for any choice of scalars {a, :n€C;, j=1,...,J}.
‘Proof. Let ¥ be the closed linear span in cy(l,) of {z, : n € Cj,5 =
, J}. The Banach envelope ¥ of " is the closed linear span in ¢p(l;) of

{zn:ne€Csj=1,...,J}. We proved in Lemma 2.7 that |[C;| < Ny for all
ji=1,...,J; therefore, by (2.1),

< Amax |a,|
n

Dt m??x!an\ < H

ned;
1<<J

for any scalars (a,). This implies that the cotype—2 constant of ¥* depends
only on D and Ny, which depend only on K and ||@Q|, and by Thecrem 2.9

H E anwnngDNonmaxmn].

nec;
1<i<

cun:cnnl < DNgmax |an|
k3

Furthermore, by the K-unconditionality of (z,);._, we also have

K~ ma,x|an| < H anmn’ ..

nel;
1<3<J

Our last lemma is a quite elementary observation that will simplify much
the proof of Theorem 2.1.

LeMMa 2.11. Suppose {A; : i = 1,...,N} is a partition of {1,...,J}
and that for each j = 1,....J, {4 1 m = 1,...,M} is a partition of B;:
Suppose there is a constant g so that for each i and m

e (8 o) | S 5w <omp (32 1eot)

JEA TG.(E”" ﬂm A nEﬂJ’."‘

for any sequence of scalars (an)nen. Further suppose that N, M, and g
depend only on K and ||Q|. Then Theorem 2.1 holds.

Proof. By the psubadditivity of || -1,

HZZanwn 2D 33} 9P oL

j=1ne =1 jed; m=lneld"

S(ZZHZ 2, ann

i=1 m=1 jEAsn€RP

p)llp
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< N/EpAP sgp S%Jp H Z Z oy By

f=1 =1 jEAinEQ;?‘

N M /e
<Nty sup (3 laat)'”
i=1 m=1j8A: \ Em

7

and by the K-unconditionality of the basis (2n)_,
N
HZ Z Gntn| = K-t sup sup ” Z Ay

j=1n¢ i=1 m=1 jeAine

N 1/p

> Ko tsup Stip sup ( E |an[”) ,
i=1 m=1jed; ©, Som
M

which proves the claim. w
Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let us first remark that by Corollary 2.10
and Lemma 2.11 it is enough to prove the result for {z, : n € B}, j =

I C{znin=1,...,n}
Foreach j =1,...,J, n € B, (2.9) holds, therefore

o0 oo
ap.bik < Z Z |atibli| + Z Z |afi.67%|
eF; k=1 1€F; b=l
a,”cb (Z
&F;

o0

sup !a”c|) (SLllp (Z |b?kip) l/p)

IEF; k=1

<2
e

3

[ ?TMS EMS

laZ b | + '2‘H$n|i .

a
i

1

Since |zl = 1 we get

. OO

D D lahbl > 1/2
leFy k=1 '

for all n € BJf,-, j=1,...,J. Thus for each j = 1,...,J we can define a
function f; : B; — Fj so that

b
Z |Ef.1 Tk f,(n)kj - 2|FJL
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forn € B}. We now write

U ' G=1...,7,
lEFj
disjoint
and recall that |F;| < 4Np6 for all j.

Fix I; € F; and call Bf = f;7'(1;) (j=1,...,J). Recall that

Zlaz Wkl 2 =
Lalis 2!F| z 8N,

for all n € BY, j = 1,...,J. Now suppose that there are M different j’s,
Jis-oosdm sothat I = .. = I;, =1 Wepickn; € B}, (i=1,...,M);
then, since |aj;| < [|Q| K for all L k, and n,

M2 < 806 (Z(Zlazzb;:) )"

i=1 k=l

<smoxial S ()
k=1 i=1

oo

< 8MOK1Qlmp Y (3o mi)”

k=1 i=1
= SNOQK”Q”H (i |$”i|2)1/2H1 ’
i=1

Moreover, combining (2.1} and Theorem 1.2(ii) gives

(2 tewir) ], = 400
i=1

Therefore, M < (8NyOK||Q||A2D)?, which depends only on K and |Q];,
and there is a partition of {1,...,J} into M disjoint subsets S1,..., S,
and a map o : N — N whose restriction to each S; is one-to-one so that

o0

1
(2.10) ; eeiwlenl 2 g

for each n € B;. On the other hand,

[+ ]
(2.11) ():qu)kb?(f)dp) <S“P|%mk|(2|bamk]”) < K[\Qll
k=1

k=1 -
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for each n. € By, (2.10) and (2.11) imply, by Lemma 2.2, that there is § > 0
such that

SII:P lag (157 el > 6
for each n € By. So for each n € B} we can pick k. € N so that

|9% (3)kn U (30n | > 6
Now suppose there are N different n’s, ny,...,ny € B}’, sothat kp, =... =
kny = k. Then, since |b% \ < 1foralli, k, and n,

-1 e 1
N<6§ Z ol br gl < 67 Z lajr gl

Moreover, by (2.1} and the K-unconditionality of the basis (z,)7 _; in eg(l),

3 b 2] 3 e, < 0] Stigne,

— D @esgy0)ls = D).

Therefore, N < §~*DK||Q||, which depends only on K and |Q|.

For each j = 1,...,J there is now a partition of B;’ into N digjoint
subsets, R{, ...,R and a map ¥; : B;-’ — N whose restriction to each RJ,
is one-to-one, so that

(2.12) 1255303 ) o s | > 6

for each n € B. This implies by Theorem 1.3 that {z, : n € RJ,, j € S;}

is equivalent to {eo(iyusny * 1 € Ri,j & 8} The result follows from
Lemma 2.11.

As a straightforward consequence of Theorem 2.1 we get the following
infinite-dimensional results:

THEOREM 2.12. Every normalized unconditional basis of an fnfinite-
dimensional complemented subspace of cy(l,) is equivalent to o permuta-
tion of the unit vector basis of one of the following spaces: co, Iy, co D 1,
co(l5 )7ty p @ coll3)asy, colly).

THEOREM 2.13. The fo.!lowing quasi-Banach spaces have unique un-
conditional basis up fo permutaiion: cp @ I, co(lp dae1s bp @ co(lp)atss
co(lp)-

The results of this paper form part of the thesis of the author ([7]}. The
author wants to thank her thesis advisor, Professor N. J. Kalton, for his
guidance during the realization of this Work
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