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Selections and representations of multifunctions
in paracompact spaces
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Abstract. Let (X, T) be a paracompact space, ¥ a complete metric space, F' : X —
2¥ a lower semicontinuons multifanction with nonempty closed values. We prove that
if T is a (stronger than T') topology on X satisfying a compatibility property, then F
admits a 7 -continuous selection. If Y is separable; then there exists a sequence (fn) of

7+ .continuous selections such that F(z) = {fu(z);n = L} for all z € X. Given a Banach
space E, the above result is then used to construct directionally continuous selections on
arbitrary subsets of R x EB.

1. Introduction. In the study of differential inclusions, it is often desir-
able to reduce the multivalued problem to an ordinary differential equation
in the same space, constructing a continuous selection of the right hand side.
Among the earliest selection theorems, the following results of Michael are
well known: ' '

[7, Thm. 1] If X is a paracompact topological space, every lower semi-
continuous multifunction F from X inte the nonempty, closed and conver
subsets of a Banach space Y admits a continuous selection.

[7, Thm. 2] If X is paracompact and zero-dimensional, every lower semi-
continuous multifunction F from X into the nonempty closed subsets of o
complete melric space Y admits a continuous selection.

We recall that a normal topological space is zero-dimensional if and only
if every locally finite open covering of it admits a disjoint open refinement
[7, Prop. 2]. _

In cases where these results do not apply, one can introduce a finer
topology 7% on X and ask for selections of F' which are 7 -continuous. A
result in this direction is:
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[6, Thin. 1] Let X be a locally compact subset of a metric space and let F
be a lower semicontinuous multifunction from X into the nonempty, closed
subsets of a complete metric space Y. Let Tt be a second topology on X
with the property:

(Po) every = € X has a basis of neighborhoeods (in the metric topology)
consisting of T+ -closed-open sets.

Then F admits o T -continuous selection.

Given a Banach space F and a number M > 0, the family of all conical
neighborhoods

(1.1)  I'™(ty,z0,6)
ﬁ{(‘t,':ﬂ) ceRx F :”.."'J—CB(]” SM(t—*to), to <1 <ty +5}

for all § > 0, {to,z0) € R x F, generates a topology T which satisfies
the assumption (Pg). Functions which are continuous w.r.t. this stronger
topology will be called I'™ -continuous, or simply directionally continuous.
By constructing suitable directionally continuous selections, varicus results
on the qualitative theory of differential inclusions were recently proved [3, 4,
5]. Until now, however, all applications have been confined to problems in
locally compact spaces, mainly finite-dimensional. The aim of this paper is
to remove the restriction on the domain of F in [6, Thm. 1], letting X be any
paracompact topological space, as in Michael’s theorems. This will allow
the use of our selection technique in connection with infinite-dimensional
differential inclusions, in full generality. '

Instead of {Pg), we consider the stronger property:

(P)  For every pair of sets A C B, with A closed and B open (in the
original topology T'), there exists a set C, closed-open w.r.t. T,
such that AC C ¢ B.

The following results will be proved.

THEOREM 1. Let (X, T) be a paracompact space, (Y,d) a complete metric
space and F : X — 2Y g lower semicontinuous multifunction with nonempty

closed values. If TT is a topology on X with the property (P), then F' admits
o TT-continuous selection.

THEOREM 2. Let E be a Banach space, M > 0, 2 a subset of R x E.

Any lower semicontinuous multifunction F: 2 — 28 with nonempty closed
values admits ¢ '™ -continuous selection.

THEOREM 3. Let X be a metric space, Y o separable complete metric
space and F : X —2Y o lower semicontinuous multifunction with nonempty
closed values. If T is a topology on X with the property (P), then there
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exists a sequence fy, of T ¥ -continuous selections from F such that, for every
x € X, the closure of the set {fn(z): n > 1} coincides with F(x).

For the basic theory of multifunctions and differential inclusions we refer
to [1).

2. Proof of Theorem 1. Following a well-established argument due to
Michael, the selection is obtained as the limit of a uniformly converging se-
quence of T "-continuous approximations. By induction, we shall construct
functions (fn)n>1 with the properties:

(i)n there exists a 71-open and disjoint covering O™ = (§27)acar of
X; for every o, f, is constant on 27, say, fn(z) = y2 for all x € £27;
(i), d(y?, F(z)) <27 Vz €c{f2?), Yo € A™;
(i) d(falz), fr—i(z)) <27 Voe X (n>2).

To construct fi, using the lower semicontinuity of F, for every € X
choose a point ¥, € F(z) and a neighborhood U of # such that

(2.1) dy., F(z) <27 vz’ eU,.

Let (V,)aea: be a locally finite open refinement of (Uz)xex, say with Vo C
Us., and let (W,)ac.ar be another open refinement such that cl(Wa) C Vo
for all @ € Al. Here and throughout the paper, cl(W) and int(W) will
denote the closure and the interior of a set W in the original topology 7.
By the property (P), for each o one can choose a set Z,, closed-open w.r.t.
T7, such that

(2.2) A(W,) € int(Za) C cl(Zy) C Va.

Then (Za)q is a locally finite 7 -closed-open covering of X. Choose a
well-ordering < of the set A! and define, for each o € A?,

Qé:Za\(UZ,gq),

o

Set O = (21)4e.41. By the well-ordering, every z € X belongs to exactly
one set 2L, where @ = min{a € A' : ¢ € Z,}. Hence, O' is a partition
of X. Moreover, since (Z,) is locally finite (w.r.t. 7 and therefore w.r.t.
T), the sets | J;_,, Zp are T*-closed-open. Hence O! is a T*-closed-open,
disjoint covering of X such that, by (2.2}, {c1(2})} refines (Va)a. By setting
yL = ya, and
filz) =yl Veenl, VacA,

we obtain a T+-continuous function which, by (2.1), satisfies (i)1, (ii)1.

Suppose now that functions f have been constructed satisfying the prop-
erties (i)x—(iii)x, for 1 < k < n. Since @™~ is a disjoint T T-open covering,
the map fn can be defined separately on each set 27!, Fix o € A™L
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For every z € cl(2%71), by (ii}y—1 and lower semicontinuity there exist
Yz € F(z)} and a neighborhood Uy of = such that
(2.3) dlys, F(z')) <27 Va' e Uy,
(24) Ay, yy~t) < 277
Since cl{£2271) is paracompact, the same argument used in the first induc-
tion step provides two locally finite open refinements (Vj), (W), 8 € A7,
of (Us),ea(on-1) Such that cl(Wp) < Vg C Us, for some x5 € cl(NZ71),
for all # € A7, Using the property (P), construct a family (Zp)gean of
T *-closed-open subsets of ¢l(£277!) such that

c(Wp) Cint(Zs) Ccl(Zg) C Vg VG e AL,

and let < be a well-ordering on A%. As in the fivst step, by setting

‘Qz,ﬁ =Zg\ ( U Zv)
=8
we get a disjoint 7 t-closed-open covering of cI(2271) such that (cl(423 5))p
refines (Vg)s. Set now y} 5 = s, and define the 7+ -continuous map f, :
214 Y as
_ fal@)=1yapz Vze€ g
Repeat the above construction for all & € 4™ ! and define
Ar= ) Ha}x4y), o= (22.8) (year -
agAn—1 -

By (2.3), (2.4), the properties (i),(iii),, are satisfied.

The completeness of ¥ and (iii),, now imply that the sequence (f,)

converges uniformly to a T t-continuous function f. Since the values of F'
are closed, by (i), and (ii), it follows that f is a selection from F. =

3. Proof of Theorem 2. Theorem 2 is an immediate consequence of
Theorem 1 and of the following Lemma, showing that the property (P) holds
for the topology T+ generated by the family of all conical neighborhoods
'™ (45,10, 6) defined in (1.1).

LeMMA. Let F be a Banach space and let A, B be disjoint and closed
subsets of R x E. Then there ezists C C R x E such that
(i} A € int(C) and c{C)N B =B,
(#) C is TT-closed-open. .
Proof. For every (t,z) € Rx E, n > 1, consider the open neighborhood
(3.1) La(t,z) = {(s,9) : ly — =] < 27" — Mt~ s}
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Observe that, for every n,

k
U Ln(—n,m) =RxE.
keZ,zcE M-2

- In the following, on R x E we use the distance d((¢,z), (s,y)) = max{|t — 5|,

[z — yl|}. Define the closed set 4* = {(t,z) € Rx E : d((,z),4) <
d((t,z), B)}. For every (t,z) € A choose k = k(t,z) € Zand n = n(t,z) > 1
such that, setting

k{t, z)
@2 b= It 57 3 2
one has
(3.3) (t,z) € Ly, C A*.

The sets L , can also be written as

Lic= {(s, ) : (Pt,:v('y) <s< ¢t,m(y)}:

where
__k{t,=) 27 — Hy — g
(3.4) #ral¥) = 37 gntem — M ’
k(t,z) 2—ne) — |y — |
¢t,a: (y) = M. on(ta) 1 M .
Define
enk(y) = nf{es.{y) : (t,2) € A, n(t,z)=mn, k(t,z) =k},
Uk (y) = sap{e o (y) : (t,2) € A, n(t,z) =n, k(t,z) =k}
and

Woi={(s, 1) ERX E:pni(y) <5 <vnr(¥)}.
Since all maps ¢z, ¥t are Lipschitz continuous with comstant 1/M, the
same is true for every ¢, ; and ¥, x. We claim that each Wy, x is closed-open
in the stronger topology 7T. Indeed, if (t,2) € Wy, then t = ¥, 1 (z) — §
for some § > 0. By Lipschitz continuity we thus have

{(s,9): ly—zl| S M(s—1), t<s<t+6/2} CWnp,

showing that (¢, z) is an interior point. On the other hand, if (,2) € Wy ,
then either ¢ > 7y, x(z) and

{sy): ly— 2l S M(s =)} N Wap = 0,
or t = @y (z) — 6 for some § > 0 and _
{(s9): lly—all S M(s —t), t S s <t+6/2pNWop = 0.

In both cases, (¢, z) does not belong to the closure of Wy, x.
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We now show that the requirements of the Lemma are satisfied by the
set
(3.5) ' c= |J War.

n>1,kEZ
By (3.3), every (¢,z) € A belongs to {(s,1) : ¢ra(y) < 8 < ¥ro(y)}, and
therefore to the interior of some Wy, ;. Moreover, C' C cl{l; myea Lt2) C
A*; hence cl{C) N B = 0. This proves (i).

Concerning (i), it is clear that C' is open in the topology 7T, being a
union of open sets. To prove that C is closed, assume (£,%) € C. Then
r = d((t,T), A) > 0. Observe that, if d({s,y), 4) > r/2 and (s,y) € Ly, for
some (¢,z) € A, then diam(L; ;) = max{2!—n{t2) 21-nlt=) /a1 > r /2, de.

n(t,z) < N, = —log,(max{r/4, Mr/4}) .

As a consequence, the ball B((%,%),7/2) intersects only finitely many sets
Wi k. Indeed, if 1 < n < N, the sets

Lﬂ(k/(M ' 211)5"17) N B((%.: E)J'/Z)

can be nonempty only for the finitely many k € Z such that [kM ~127"~F| <
r/2 + M~'27". We now have

(3.6) (7)€ B(E3),r/2)\ | Wa,

the union being taken over the finitely many indices (n, k) for which Wy N
B((%,T),r/2) # 0. Clearly the set in (3.6) is open w.r.t. 7% and does not
intersect C. This proves that C is closed in the topology T+, establishing
(ii). =

Remark. For the topology 7 generated by the family (1.1), each
conical neighborhoods '™ (tg, o, 8) is actually a T+-closed-open set. How-
ever, our Theorem 2 does not follow from [7, Thm. 2], because (R x E, T+)
is never paracompact, provided E # {0}. Indeed, consider the 7*-opén
covering of R x B

0= (FM(ka T, 1))kEZ,mEE .

Any point of the form (0, x) belongs to exactly one set of . Hence every
T*-open refinement of () must contain a conical neighborhood I" (0, x,¢)
with € = g(z) > 0, for each z € E. For any fixed ¥ we have

U e0,1]:e(8) >y =] 8, =0,1].
v>1 21

Therefore, some S, is infinite (actually, uncountable), and has a cluster

point, say X Any Tt-neighbortiood of 3% then intersects infinitely many
cones I'™ (0, z, £(z)), showing that @ is not locally-finite.
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4. Proof of Theorem 3. The following proof is an adaptation of the
arguments used in [8, Lemma 5.2).

Let (1:)i>1 be a countable, dense subset of ¥ and set, for each 7,7 > 1,
Uipj={z€X:Flx)nB(y;,277) #0}.

By the lower semicontinuity of F', each Uj ; is open, and therefore it is a
countable union of closed subsets of X, say

Ui = U Cijk -
k>1
Define
F, . — . 2Ja 46 2
59,4 (2) {cl(F(m) NB(y;,277)) fzeCisp.
Then each F; ;  is lower semicontinuous with closed values. By Theorem 1,
for every i, j, k, there exists a T -continuous selection f; ;x from Fj ;.
To conclude the proof of Theorem 3, it suffices to check that the count-
able set {f; ; k() : 4,7,k > 1} is dense in F(x) for every z € X. To see
this, fix any € > 0, z € X and y € F(z). Let i, j be such that 2177 < ¢

and d(y,y;) < 279, Then z € U,; and therefore there exists k such that
z € C; ;5 Hence

A fiin(@),y) € d(fiju(@)y) +d(ysy) <277 +277 <e. w

Remark. Theorem 3 still holds under the weaker assumption that X
be a perfectly normal space, i.e. that any open subset of X be the union of
countably many closed sets. The proof relies on the same arguments used
for Proposition 5.2 and Theorem 3.1 in [8].
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Representing and absolutely i‘epresenting systems
by

V. M. KADETS (Kharkov) and Yu. F. KOROB EINIK (Rostov-na-Donu)

Abstract. We introduce various classes of representing systems-in linear topological
spaces and investigate their connections in spaces with different topological properties.
Let us cite a typical result of the paper. I H is a weakly separated sequentially separable
linear topological space then there is a representing system in H which is not absolutely
representing.

A sequence X = (z), of elements of a space (everywhere below the
word “space” means “linear topological space”) H over a field € is called a
basis in H (see e.g. [6]) if for each z in H there exists a uniquely determined
sequence {n;}52, of scalars from @ such that the series S he 1 Nk CONVETgES
to  (everywhere below & = C or R). A basis X in a locally convex space H
is sajd to be absolute if for each = in H the corresponding series 3 ey Tk
converges absolutely in H (to z). As is well known, there exist bases in
Banach spaces which are not absolute. On the other hand, according to
the Dynin-Mityagin theorem [6], each basis in a nuclear Fréchet space is
absolute. A. A. Talalyan [7] introduced representing systems in a complete
metrizable space as a natural generalization of bases. A sequence X =
(z1)32, of elements of a space H is called a representing system (r.s.) if
each x in H can be represented in the form of a series '

‘oo
(1) , r=Y T
k=1

converging in H. The class of spaces having at least one r.s. is muuch wider
than the class of spaces with basis. According to [1], every nuclear Fréchet
space not isomorphic to w has a quotient space without a basis. As for r.s.,
we can give a criterion for a space to have an r.s. We say that a space I is
sequentially separable if there exists a “universal® sequence Vo= {wx}i2, in
H such that for each z in H one can find a subsequence (vn, )52, tending
to z in H. For example, every separable space with a countable defining
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