

STUDIA MATHEMATICA 102 (3) (1992)

Selections and representations of multifunctions in paracompact spaces

by

ALBERTO BRESSAN and GIOVANNI COLOMBO (Trieste)

Abstract. Let (X, \mathcal{T}) be a paracompact space, Y a complete metric space, $F: X \to 2^Y$ a lower semicontinuous multifunction with nonempty closed values. We prove that if \mathcal{T}^+ is a (stronger than \mathcal{T}) topology on X satisfying a compatibility property, then F admits a \mathcal{T}^+ -continuous selection. If Y is separable, then there exists a sequence (f_n) of \mathcal{T}^+ -continuous selections such that $F(x) = \overline{\{f_n(x); n \geq 1\}}$ for all $x \in X$. Given a Banach space E, the above result is then used to construct directionally continuous selections on arbitrary subsets of $\mathbb{R} \times E$.

- 1. Introduction. In the study of differential inclusions, it is often desirable to reduce the multivalued problem to an ordinary differential equation in the same space, constructing a continuous selection of the right hand side. Among the earliest selection theorems, the following results of Michael are well known:
- [7, Thm. 1] If X is a paracompact topological space, every lower semi-continuous multifunction F from X into the nonempty, closed and convex subsets of a Banach space Y admits a continuous selection.
- [7, Thm. 2] If X is paracompact and zero-dimensional, every lower semi-continuous multifunction F from X into the nonempty closed subsets of a complete metric space Y admits a continuous selection.

We recall that a normal topological space is zero-dimensional if and only if every locally finite open covering of it admits a disjoint open refinement [7, Prop. 2].

In cases where these results do not apply, one can introduce a finer topology \mathcal{T}^+ on X and ask for selections of F which are \mathcal{T}^+ -continuous. A result in this direction is:

¹⁹⁹¹ Mathematics Subject Classification: 54C65, 34A60.

Key words and phrases: directionally continuous selections.

(P₀) every $x \in X$ has a basis of neighborhoods (in the metric topology) consisting of T^+ -closed-open sets.

Then F admits a T^+ -continuous selection.

Given a Banach space E and a number M>0, the family of all conical neighborhoods

(1.1)
$$\Gamma^{M}(t_{0}, x_{0}, \delta)$$

$$\doteq \{(t, x) \in \mathbb{R} \times E : ||x - x_{0}|| \leq M(t - t_{0}), \ t_{0} \leq t < t_{0} + \delta\}$$

for all $\delta > 0$, $(t_0, x_0) \in \mathbb{R} \times E$, generates a topology T^+ which satisfies the assumption (P_0) . Functions which are continuous w.r.t. this stronger topology will be called T^M -continuous, or simply directionally continuous. By constructing suitable directionally continuous selections, various results on the qualitative theory of differential inclusions were recently proved [3, 4, 5]. Until now, however, all applications have been confined to problems in locally compact spaces, mainly finite-dimensional. The aim of this paper is to remove the restriction on the domain of F in [6, Thm. 1], letting X be any paracompact topological space, as in Michael's theorems. This will allow the use of our selection technique in connection with infinite-dimensional differential inclusions, in full generality.

Instead of (P₀), we consider the stronger property:

(P) For every pair of sets $A \subset B$, with A closed and B open (in the original topology T), there exists a set C, closed-open w.r.t. T^+ , such that $A \subset C \subset B$.

The following results will be proved.

THEOREM 1. Let (X,T) be a paracompact space, (Y,d) a complete metric space and $F: X \to 2^Y$ a lower semicontinuous multifunction with nonempty closed values. If T^+ is a topology on X with the property (P), then F admits a T^+ -continuous selection.

THEOREM 2. Let E be a Banach space, M>0, Ω a subset of $\mathbb{R}\times E$. Any lower semicontinuous multifunction $F:\Omega\to 2^E$ with nonempty closed values admits a Γ^M -continuous selection.

THEOREM 3. Let X be a metric space, Y a separable complete metric space and $F: X \to 2^Y$ a lower semicontinuous multifunction with nonempty closed values. If T^+ is a topology on X with the property (P), then there

exists a sequence f_n of T^+ -continuous selections from F such that, for every $x \in X$, the closure of the set $\{f_n(x) : n \geq 1\}$ coincides with F(x).

For the basic theory of multifunctions and differential inclusions we refer to [1].

- 2. Proof of Theorem 1. Following a well-established argument due to Michael, the selection is obtained as the limit of a uniformly converging sequence of \mathcal{T}^+ -continuous approximations. By induction, we shall construct functions $(f_n)_{n>1}$ with the properties:
- (i)_n there exists a \mathcal{T}^+ -open and disjoint covering $\mathcal{O}^n = (\Omega^n_\alpha)_{\alpha \in \mathcal{A}^n}$ of X; for every α , f_n is constant on Ω^n_α , say, $f_n(x) = y^n_\alpha$ for all $x \in \Omega^n_\alpha$;

$$(ii)_n d(y_\alpha^n, F(x)) < 2^{-n} \quad \forall x \in cl(\Omega_\alpha^n), \forall \alpha \in \mathcal{A}^n;$$

$$(iii)_n d(f_n(x), f_{n-1}(x)) < 2^{-n+1} \quad \forall x \in X \ (n \ge 2)$$

To construct f_1 , using the lower semicontinuity of F, for every $x \in X$ choose a point $y_x \in F(x)$ and a neighborhood U_x of x such that

(2.1)
$$d(y_x, F(x')) < 2^{-1} \quad \forall x' \in U_x$$
.

Let $(V_{\alpha})_{\alpha \in \mathcal{A}^1}$ be a locally finite open refinement of $(U_x)_{x \in X}$, say with $V_{\alpha} \subset U_{x_{\alpha}}$, and let $(W_{\alpha})_{\alpha \in \mathcal{A}^1}$ be another open refinement such that $\operatorname{cl}(W_{\alpha}) \subset V_{\alpha}$ for all $\alpha \in \mathcal{A}^1$. Here and throughout the paper, $\operatorname{cl}(W)$ and $\operatorname{int}(W)$ will denote the closure and the interior of a set W in the original topology T. By the property (P), for each α one can choose a set Z_{α} , closed-open w.r.t. T^+ , such that

(2.2)
$$\operatorname{cl}(W_{\alpha}) \subset \operatorname{int}(Z_{\alpha}) \subset \operatorname{cl}(Z_{\alpha}) \subset V_{\alpha}$$
.

Then $(Z_{\alpha})_{\alpha}$ is a locally finite \mathcal{T}^+ -closed-open covering of X. Choose a well-ordering \leq of the set \mathcal{A}^1 and define, for each $\alpha \in \mathcal{A}^1$,

$$\Omega^1_{\alpha} = Z_{\alpha} \setminus \left(\bigcup_{\beta \prec \alpha} Z_{\beta} \right).$$

Set $\mathcal{O}^1 = (\Omega^1_{\alpha})_{\alpha \in \mathcal{A}^1}$. By the well-ordering, every $x \in X$ belongs to exactly one set $\Omega^1_{\overline{\alpha}}$, where $\overline{\alpha} = \min\{\alpha \in \mathcal{A}^1 : x \in Z_{\alpha}\}$. Hence, \mathcal{O}^1 is a partition of X. Moreover, since (Z_{α}) is locally finite (w.r.t. \mathcal{T} and therefore w.r.t. \mathcal{T}^+), the sets $\bigcup_{\beta \prec \alpha} Z_{\beta}$ are \mathcal{T}^+ -closed-open. Hence \mathcal{O}^1 is a \mathcal{T}^+ -closed-open, disjoint covering of X such that, by (2.2), $\{\operatorname{cl}(\Omega^1_{\alpha})\}$ refines $(V_{\alpha})_{\alpha}$. By setting $y^1_{\alpha} = y_{x_{\alpha}}$ and

$$f_1(x) = y^1_{\alpha} \quad \forall x \in \Omega^1_{\alpha}, \ \forall \alpha \in \mathcal{A}^1,$$

we obtain a T^+ -continuous function which, by (2.1), satisfies (i)₁, (ii)₁.

Suppose now that functions f_k have been constructed satisfying the properties $(i)_k$ - $(iii)_k$, for $1 \le k < n$. Since \mathcal{O}^{n-1} is a disjoint \mathcal{T}^+ -open covering, the map f_n can be defined separately on each set Ω_{α}^{n-1} . Fix $\alpha \in \mathcal{A}^{n-1}$.

For every $x \in \mathrm{cl}(\Omega_{\alpha}^{n-1})$, by $(\mathrm{ii})_{n-1}$ and lower semicontinuity there exist $y_x \in F(x)$ and a neighborhood U_x of x such that

$$(2.3) d(y_x, F(x')) < 2^{-n} \quad \forall x' \in U_x,$$

$$(2.4) d(y_x, y_\alpha^{n-1}) < 2^{-n+1}.$$

Since $\operatorname{cl}(\Omega_{\alpha}^{n-1})$ is paracompact, the same argument used in the first induction step provides two locally finite open refinements (V_{β}) , (W_{β}) , $\beta \in \mathcal{A}_{\alpha}^{n}$, of $(U_{x})_{x \in \operatorname{cl}(\Omega_{\alpha}^{n-1})}$ such that $\operatorname{cl}(W_{\beta}) \subset V_{\beta} \subset U_{x_{\beta}}$ for some $x_{\beta} \in \operatorname{cl}(\Omega_{\alpha}^{n-1})$, for all $\beta \in \mathcal{A}_{\alpha}^{n}$. Using the property (P), construct a family $(Z_{\beta})_{\beta \in \mathcal{A}_{\alpha}^{n}}$ of T^{+} -closed-open subsets of $\operatorname{cl}(\Omega_{\alpha}^{n-1})$ such that

$$\operatorname{cl}(W_{\beta}) \subset \operatorname{int}(Z_{\beta}) \subset \operatorname{cl}(Z_{\beta}) \subset V_{\beta} \quad \forall \beta \in \mathcal{A}_{\alpha}^{n},$$

and let \leq be a well-ordering on \mathcal{A}_{α}^{n} . As in the first step, by setting

$$\Omega^n_{\alpha,\beta} = Z_\beta \setminus \left(\bigcup_{\gamma \prec \beta} Z_\gamma\right)$$

we get a disjoint T^+ -closed-open covering of $\operatorname{cl}(\Omega_{\alpha}^{n-1})$ such that $(\operatorname{cl}(\Omega_{\alpha,\beta}^n))_{\beta}$ refines $(V_{\beta})_{\beta}$. Set now $y_{\alpha,\beta}^n = y_{x_{\beta}}$ and define the T^+ -continuous map $f_n : \Omega_{\alpha}^{n-1} \to Y$ as

$$f_n(x) = y_{\alpha,\beta} \quad \forall x \in \Omega^n_{\alpha,\beta}$$
.

Repeat the above construction for all $\alpha \in \mathcal{A}^{n-1}$ and define

$$\mathcal{A}^n = \bigcup_{\alpha \in \mathcal{A}^{n-1}} (\{\alpha\} \times \mathcal{A}^n_{\alpha}), \quad \mathcal{O}^n = (\Omega^n_{\alpha,\beta})_{(\alpha,\beta) \in \mathcal{A}^n}.$$

By (2.3), (2.4), the properties $(i)_n$ - $(iii)_n$ are satisfied.

The completeness of Y and $(iii)_n$ now imply that the sequence (f_n) converges uniformly to a \mathcal{T}^+ -continuous function f. Since the values of F are closed, by $(i)_n$ and $(ii)_n$ it follows that f is a selection from F.

3. Proof of Theorem 2. Theorem 2 is an immediate consequence of Theorem 1 and of the following Lemma, showing that the property (P) holds for the topology \mathcal{T}^+ generated by the family of all conical neighborhoods $\Gamma^M(t_0, x_0, \delta)$ defined in (1.1).

LEMMA. Let E be a Banach space and let A, B be disjoint and closed subsets of $\mathbb{R} \times E$. Then there exists $C \subseteq \mathbb{R} \times E$ such that

- (i) $A \subset \operatorname{int}(C)$ and $\operatorname{cl}(C) \cap B = \emptyset$;
- (ii) C is T^+ -closed-open.

Proof. For every $(t,x) \in \mathbb{R} \times E$, $n \geq 1$, consider the open neighborhood

(3.1)
$$L_n(t,x) = \{(s,y) : ||y-x|| < 2^{-n} - M|t-s|\}.$$

Observe that, for every n,

$$\bigcup_{k\in\mathbb{Z},x\in E} L_n\left(\frac{k}{M\cdot 2^n},x\right) = \mathbb{R}\times E.$$

In the following, on $\mathbb{R} \times E$ we use the distance $d((t,x),(s,y)) = \max\{|t-s|, \|x-y\|\}$. Define the closed set $A^* = \{(t,x) \in \mathbb{R} \times E : d((t,x),A) \le d((t,x),B)\}$. For every $(t,x) \in A$ choose $k = k(t,x) \in \mathbb{Z}$ and $n = n(t,x) \ge 1$ such that, setting

(3.2)
$$L_{t,x} = L_{n(t,x)} \left(\frac{k(t,x)}{M \cdot 2^{n(t,x)}}, x \right),$$

one has

$$(3.3) (t,x) \in L_{t,x} \subset A^*.$$

The sets $L_{t,x}$ can also be written as

$$L_{t,x} = \{(s,y) : \varphi_{t,x}(y) < s < \psi_{t,x}(y)\},$$

where

(3.4)
$$\begin{aligned} \varphi_{t,x}(y) &= \frac{k(t,x)}{M \cdot 2^{n(t,x)}} - \frac{2^{-n(t,x)} - \|y - x\|}{M} ,\\ \psi_{t,x}(y) &= \frac{k(t,x)}{M \cdot 2^{n(t,x)}} + \frac{2^{-n(t,x)} - \|y - x\|}{M} .\end{aligned}$$

Define

$$\varphi_{n,k}(y) = \inf\{\varphi_{t,x}(y) : (t,x) \in A, \ n(t,x) = n, \ k(t,x) = k\},$$

$$\psi_{n,k}(y) = \sup\{\psi_{t,x}(y) : (t,x) \in A, \ n(t,x) = n, \ k(t,x) = k\}$$

and

$$W_{n,k} = \{(s,y) \in \mathbb{R} \times E : \varphi_{n,k}(y) \le s < \psi_{n,k}(y)\}.$$

Since all maps $\varphi_{t,x}$, $\psi_{t,x}$ are Lipschitz continuous with constant 1/M, the same is true for every $\varphi_{n,k}$ and $\psi_{n,k}$. We claim that each $W_{n,k}$ is closed-open in the stronger topology T^+ . Indeed, if $(t,x) \in W_{n,k}$, then $t = \psi_{n,k}(x) - \delta$ for some $\delta > 0$. By Lipschitz continuity we thus have

$$\{(s,y): ||y-x|| \le M(s-t), \ t \le s < t + \delta/2\} \subset W_{n,k},$$

showing that (t, x) is an interior point. On the other hand, if $(t, x) \notin W_{n,k}$, then either $t \geq \psi_{n,k}(x)$ and

$$\{(s,y): ||y-x|| \leq M(s-t)\} \cap W_{n,k} = \emptyset$$

or $t = \varphi_{n,k}(x) - \delta$ for some $\delta > 0$ and

$$\| \{(s,y) : \|y-x\| \le M(s-t), \ t \le s < t + \delta/2 \} \cap W_{n,k} = \emptyset.$$

In both cases, (t, x) does not belong to the closure of $W_{n,k}$.

We now show that the requirements of the Lemma are satisfied by the set

$$(3.5) C \doteq \bigcup_{n \geq 1, k \in \mathbb{Z}} W_{n,k}.$$

By (3.3), every $(t,x) \in A$ belongs to $\{(s,y) : \varphi_{t,x}(y) < s < \psi_{t,x}(y)\}$, and therefore to the interior of some $W_{n,k}$. Moreover, $C \subset \operatorname{cl}(\bigcup_{(t,x)\in A} L_{t,x}) \subset A^*$; hence $\operatorname{cl}(C) \cap B = \emptyset$. This proves (i).

Concerning (ii), it is clear that C is open in the topology \mathcal{T}^+ , being a union of open sets. To prove that C is closed, assume $(\overline{t}, \overline{x}) \notin C$. Then $r \doteq d((\overline{t}, \overline{x}), A) > 0$. Observe that, if d((s, y), A) > r/2 and $(s, y) \in L_{t,x}$ for some $(t, x) \in A$, then $\operatorname{diam}(L_{t,x}) = \max\{2^{1-n(t,x)}, 2^{1-n(t,x)}/M\} > r/2$, i.e.

$$n(t,x) < N_r \doteq -\log_2(\max\{r/4, Mr/4\})$$
.

As a consequence, the ball $B((\overline{t}, \overline{x}), r/2)$ intersects only finitely many sets $W_{n,k}$. Indeed, if $1 \le n < N_r$ the sets

$$L_n(k/(M\cdot 2^n),x)\cap B((\overline{t},\overline{x}),r/2)$$

can be nonempty only for the finitely many $k \in \mathbb{Z}$ such that $|kM^{-1}2^{-n}-\overline{t}| < r/2 + M^{-1}2^{-n}$. We now have

$$(3.6) (\overline{t}, \overline{x}) \in B((\overline{t}, \overline{x}), r/2) \setminus \bigcup W_{n,k},$$

the union being taken over the finitely many indices (n,k) for which $W_{n,k} \cap B((\bar{t},\bar{x}),r/2) \neq \emptyset$. Clearly the set in (3.6) is open w.r.t. \mathcal{T}^+ and does not intersect C. This proves that C is closed in the topology \mathcal{T}^+ , establishing (ii).

Remark. For the topology \mathcal{T}^+ generated by the family (1.1), each conical neighborhoods $\Gamma^M(t_0,x_0,\delta)$ is actually a \mathcal{T}^+ -closed-open set. However, our Theorem 2 does not follow from [7, Thm. 2], because $(\mathbb{R} \times E, \mathcal{T}^+)$ is never paracompact, provided $E \neq \{0\}$. Indeed, consider the \mathcal{T}^+ -open covering of $\mathbb{R} \times E$

$$\mathcal{O} = (\Gamma^M(k, x, 1))_{k \in \mathbb{Z}, x \in E}.$$

Any point of the form (0,x) belongs to exactly one set of \mathcal{O} . Hence every \mathcal{T}^+ -open refinement of \mathcal{O} must contain a conical neighborhood $\Gamma^M(0,x,\varepsilon)$ with $\varepsilon = \varepsilon(x) > 0$, for each $x \in E$. For any fixed \widehat{x} we have

$$\bigcup_{\nu \ge 1} \{ \lambda \in [0,1] : \varepsilon(\lambda \widehat{x}) > \nu^{-1} \} \doteq \bigcup_{\nu > 1} S_{\nu} = [0,1].$$

Therefore, some S_{ν} is infinite (actually, uncountable), and has a cluster point, say $\widehat{\lambda}$. Any T^+ -neighborhood of $\widehat{\lambda}\widehat{x}$ then intersects infinitely many cones $\Gamma^M(0, x, \varepsilon(x))$, showing that \mathcal{O} is not locally finite.

4. Proof of Theorem 3. The following proof is an adaptation of the arguments used in [8, Lemma 5.2].

Let $(y_i)_{i\geq 1}$ be a countable, dense subset of Y and set, for each $i,j\geq 1$,

$$U_{i,j} = \{x \in X : F(x) \cap B(y_i, 2^{-j}) \neq \emptyset\}.$$

By the lower semicontinuity of F, each $U_{i,j}$ is open, and therefore it is a countable union of closed subsets of X, say

$$U_{i,j} = \bigcup_{k>1} C_{i,j,k} .$$

Define

$$F_{i,j,k}(x) = \left\{egin{aligned} F(x) & ext{if } x
otin C_{i,j,k} \,, \ \operatorname{cl}(F(x) \cap B(y_i, 2^{-j})) & ext{if } x
otin C_{i,j,k} \,. \end{aligned}
ight.$$

Then each $F_{i,j,k}$ is lower semicontinuous with closed values. By Theorem 1, for every i, j, k, there exists a \mathcal{T}^+ -continuous selection $f_{i,j,k}$ from $F_{i,j,k}$.

To conclude the proof of Theorem 3, it suffices to check that the countable set $\{f_{i,j,k}(x): i,j,k\geq 1\}$ is dense in F(x) for every $x\in X$. To see this, fix any $\varepsilon>0$, $x\in X$ and $y\in F(x)$. Let i,j be such that $2^{1-j}<\varepsilon$ and $d(y,y_i)<2^{-j}$. Then $x\in U_{i,j}$ and therefore there exists k such that $x\in C_{i,j,k}$. Hence

$$d(f_{i,j,k}(x),y) \le d(f_{i,j,k}(x),y_i) + d(y_i,y) \le 2^{-j} + 2^{-j} < \varepsilon$$
.

Remark. Theorem 3 still holds under the weaker assumption that X be a perfectly normal space, i.e. that any open subset of X be the union of countably many closed sets. The proof relies on the same arguments used for Proposition 5.2 and Theorem 3.1 in [8].

References

- [1] J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin 1984.
- A. Bressan, Directionally continuous selections and differential inclusions, Funkcial. Ekvac. 31 (1988), 459-470.
- [3] —, On the qualitative theory of lower semicontinuous differential inclusions, J. Differential Equations 77 (1989), 379-391.
- [4] —, Upper and lower semicontinuous differential inclusions. A unified approach, in: Controllability and Optimal Control, H. Sussmann (ed.), M. Dekker, New York 1989, 21–32.
- [5] A. Bressan and G. Colombo, Boundary value problems for lower semicontinuous differential inclusions, Funkcial. Ekvac., to appear.
- [6] A. Bressan and A. Cortesi, Directionally continuous selections in Banach spaces, Nonlin. Anal. 13 (1989), 987-992.
- [7] E. Michael, Selected selection theorems, Amer. Math. Monthly 63 (1956), 233-238.

A. Bressan and G. Colombo

[8] E. Michael, Continuous selections. I, Ann. of Math. 63 (1956), 361-382.

S.I.S.S.A. VIA BEIRUT 4 34014 TRIESTE, ITALY

216

Received February 7, 1991

(2775)

STUDIA MATHEMATICA 102 (3) (1992)

Representing and absolutely representing systems

bу

V. M. KADETS (Kharkov) and Yu. F. KOROBEĬNIK (Rostov-na-Donu)

Abstract. We introduce various classes of representing systems in linear topological spaces and investigate their connections in spaces with different topological properties. Let us cite a typical result of the paper. If H is a weakly separated sequentially separable linear topological space then there is a representing system in H which is not absolutely representing.

A sequence $X = (x_k)_{k=1}^{\infty}$ of elements of a space (everywhere below the word "space" means "linear topological space") H over a field Φ is called a basis in H (see e.g. [6]) if for each x in H there exists a uniquely determined sequence $\{\eta_k\}_{k=1}^{\infty}$ of scalars from Φ such that the series $\sum_{k=1}^{\infty} \eta_k x_k$ converges to x (everywhere below $\Phi = \mathbb{C}$ or \mathbb{R}). A basis X in a locally convex space H is said to be absolute if for each x in H the corresponding series $\sum_{k=1}^{\infty} \eta_k x_k$ converges absolutely in H (to x). As is well known, there exist bases in Banach spaces which are not absolute. On the other hand, according to the Dynin-Mityagin theorem [6], each basis in a nuclear Fréchet space is absolute. A. A. Talalyan [7] introduced representing systems in a complete metrizable space as a natural generalization of bases. A sequence $X = (x_k)_{k=1}^{\infty}$ of elements of a space H is called a representing system (r.s.) if each x in H can be represented in the form of a series

$$(1) x = \sum_{k=1}^{\infty} \alpha_k x_k$$

converging in H. The class of spaces having at least one r.s. is much wider than the class of spaces with basis. According to [1], every nuclear Fréchet space not isomorphic to ω has a quotient space without a basis. As for r.s., we can give a criterion for a space to have an r.s. We say that a space H is sequentially separable if there exists a "universal" sequence $V = \{v_k\}_{k=1}^{\infty}$ in H such that for each x in H one can find a subsequence $(v_{n_k})_{k=1}^{\infty}$ tending to x in H. For example, every separable space with a countable defining

¹⁹⁹¹ Mathematics Subject Classification: 46A35, 46A99.