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On the uniform convergence and L'-convergence
of double Walsh—Fourier series

by

FERENC MORICZ (Szeged)

Abstract. In 1970 €. W. Onneweer formulated a sufficient condition for a periodic
TWocontinuous function to have a Walsh-Fourier series which converges uniformly to the
function. In this paper we extend his results from single to double Walsh~Fourier series in
a more general setting. We study the convergence of rectangular partial sums in LP-norm
for some 1 < p < oo over the unit square [0,1) x [0, 1). In case p = o0, by L? we
mean Cy, the collection of uniformly W-continnons functions f(w,y), endowed with the
supremum norm. As special cases, we obtain the extensions of the Dini-Lipschitz test
and the Dirichlet—Jordan test for double Walsh~Fourier series,

1. Introduction. We consider the Walsh orthonormal system {w;(x) :
j > 0} defined on the unit interval I := [0, 1) in the Paley enumeration (see
8]). To be more specific, let

ro{z) = {1_1 ﬁ: 2 ?2)’_21:3: ro(z +1) :=ro(z)

ri{g) =ry(2z), j=landzel,
be' the well-known Rademacher functions. For j =0 set wo(x) = 1, and if

oo
ji=3 g2, fi=0orl,
=0 i
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is the dyadic representation of an integer 7 > 1, then set

wy(a) == [[ i)}

i=0
Given m > 0 and 0 < j < 2™, we set
L.(g):=[j27™, (j + 1)27™).
It is plain that wps(x) is constant on I, (5) for 2™ < M < 2m+1,
We consider the double system {w;(z)w(y) : 5,k > 0} on the unit

square I? := [0, 1) x [0,1). Given a function f € L*(Z*), we form its double
Walsh-Fourier series (abbreviated as WFS)

(1.1) Z Z ajkw;(z)wy(y)

=0 k=0
with

Ok = fff(u,v)wj(u)wk(v)dudv.
00

The rectangular partial sums of series (1.1) are defined by

M~1N—-1
Suv(fimy) =Y Y agwi(z)uny), M,N>1.
i=0 k=0
As is well-known,

' 11
(1.2)  Smw(fiey)= [ [ fladu,y+v)Dyr(w) Dy (v) du dv
0 0 '

where

=0

is the Dirichlet kernel. Here 4 denotes dyadic addition. For this and further
notations, definitions, and properties of WEFS we refer to [10].

We will study approximation by Snx(f) := Smn(f;2,y) to functions
f € L?:= LP(I*),1 < p < oo, and Oy := Oy (I?) in the norm of LP and
Cw, respectively. We remind the reader that Cy(I?) is the collection of
functions f : I — R that are uniformly continuous from the dyadic topology
of I? to the usual topology of R, or for short: uniformly W-continuous. It is
known that if the periodic extension of f from I? to R? with period 1 in each
variable is classically continuous, then f is also uniformly W-continuous on
I?. But the converse is not true in general (cf. [10, pp. 9-~11]).
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For brevity of notation, we write L™ instead of Cy and set

1 1
1l ={ [ Jieoraa}”, 1sp<c,
o 0

”f”m = SuP{lf(m:y)l » T Y EI}‘

From the results of [10, pp. 142 and 156-158] it follows that LF is the
closure of the double Walsh polynomials (i.e., the finite linear combinations
of the Walsh functions w;(z)ws(y) with 7,k > 0) under the norm || - |5,
1 < p < oo. In particular, Cy is the uniform closure of the double Walsh
polynomials.

2. Preliminaries. We remind the reader that the (total) modulus of
continuity of a function f € L? in LP-nerm, 1 < p < oo, is defined by

wi(f;61,8)p = sup{||f(ztu,y+v) — f(= 95 :
0<u<b and0<v<bt,

while the partial moduli of continuity are defined by _
wl,:l:(f; 51),@ = wl(.f; 61, O)P and wl,y(f; 52);0 = Wl(f;D: 62)10
for 61,68 > 0. By the Banach—Steinhaus theorem, for any f € L? we have

BN :61,82), =0, 1<p=<oo.
(2.1) .sieli?l»owl(f’ 1,02)p P

We also use the notion of the (fotal) modulus of smoothness of a function
f € ILP in LP-norm, 1-< p £ 00, deﬁped by

walF361,62)p = sup{||f(z+u, y+v) — fzt+u,3)
—flz,yto) + fle,y)lp: 0Su<band 0 S v < 82},

Obviously, these moduli are nondecreaéing functions in 6 and &2, re-
spectively, and

max{ws o (f;61)p; w1,y (F362)p} S wi(fi b1, B2)p < wi,z(f; 61)p +wiy(Fi62)p s
wa(f361, 52)13 < wl,m(f's 51)1: +‘w1,y(f5 62)? -

We need the notion of bounded variation in the sense of Hardy [3] and
Krause. (See the discussion in [5, §254].) To go into details, given two
partitions :

Dy 0=zg<z1 < ... < T =1,

(2.2) Dy 0=gyo<yn <...<¥n=1,
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we form a rectangular grid D := Dy x D, on I* and set

1 ne-1L

=3 ST 1F (s, ue) — Fipns ) = F(@5vnan) + F(@501, 01|

3=0 k=0
where f : I? — R is an arbitrary function. We define the (fotal) variation
of f on I? by
var(f; 1%) == sup{D(f) : D is any rectangular grid on I*}

and say that f is of bounded variation (according to Hardy and Krause) if
each of the numbers

var(f;1%), var(f(-,0);I), var(f(0,);I)
is finite. Here the last two quantities are the ordinary variations of the single
variable functions f(x,0) and f(0,y), respectively. For instance,

var(f(-,0) 1) = sup{i’h( ( 0)) : D1 is any partition of I'},

Di(f( Z |£(25,0)

ma+1»0)|

and var(f(0,-); I} is defined a.nalogou_sly.

We denote by BV(I?) the collection of all functions f ; I — R of

bounded variation. It is readily verified that, with the norm given by
A1 = 1£(0, 0)] + var(£(-, 0); I) + var(f(0,); I) + var(f; I%),
BV(I?) is a Banach space.

A few remarks about the above definition are in order. Let f € BV(I?).
Then it is easily checked that f is bounded on I?, and satisfies || f|jce < [||£I].
Also, for each fixed z,y € I, the marginal functions f(-,y) and f(z,-) are of
_ bounded variation on I with

var(f(,u)i D) SIS and  var(f(z, % ) < IfII)-

Finally, we remind the reader that Minkowski’s mequahty in the gener-
alized form says that if f € L?([a,d] X [c,d]) for some 1 < p < oo, then

{ ji i pdm}l/p < fd { fb (o 5)l? dw}l/

(see, e.g., [4, p. 179 ) We will also use the multlvamate version, i.e., when
the smgle integrals f , and fc are replaced by the double ones f a fmz
f ?, respectively. '

. 3. Main result. First, we introduce a fow notations. Given a func-
tion f(z,%), periodic in both variables with period 1, for 0 < J < 2™ and

icm
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0 < k < 2" and integers m,n > 0 we set
1AT f(z,y) == f(z+2527™ Y y) — fa+H(27 + 127" y),
QAL flz,y) == f(z,y+2k27"71) — f(z,y4+(2k+1)27"71),
AT f(@,y) == 1 AT AL f(2,9)) = 28 AT f (2, 9))
= flzi2727™ % y42k27 1)
— fle-+(27 + 1D27™ 1 yi2k27 )
~ f(z42527™ 78y (26 + 127"
+ f(zH(25 + 127 g (2K + 1277
Furthermore, set Ag := 1 and A; := j~ for § > 1, and

2m 1

= 3 M 1147 f(z,y)l,

F=0

2" 1

= 3 M 245 f(= ),
2“‘:)1 9m 1

Vin(fim0) 1= > > MMlATE flz, )l

=0 k=0

VD (fr 2, 9)

VA (frz,y)

We will prove the following

THEOREM. Let M, N be positive integers such that
(3.1) M=2"+4+i 1<i<2™ and N=2"+4I, 112",
for some integers m,n > 0. If f € LP(I%) for some 1 < p < oo, then
(3.2)  NSmw(f) = flis
<wr(£27 2 + IV (A + 1V (D)o + [Vmn (Hllp -

This is an extension of a result by Onneweer [7} from single to double
WES.

Proof. We will prove (3.2) in the case when 1 < p < oo. The proof for
p == 00 is similar.
We start with the familiar representations
Dy(u) = Dam (u) + rm (u) D),
Dy (v) = Dan (v) + 7 (0) Di(v)

(cf. (3.1)). By (1.2) and Minkowski’s inequality in the usual form,
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(3.3)  18un(f) —fll»

(I

. . p 1/p
[[ Das () Dy ()], yo) — F(z,y)] dud| dedy}

72
< {ff ff Dam (1) Dy () [f (x4, y+v) — f(z, )] dudvr dx dy}w
12 12

[ rm(w)Di(u) Do (v)
Iz

x {f(z+u, y+o) — fl2,y)] du alfurJ de dy}lfp

+{f!‘ffD2m(uTn (v)Dy(v)

x [f(z+u, y+v) — f(z,y)] du dv‘p dz dy}l/p

+ { ff | ff 7 (w) Di(w)rn (v) D1 (v)
iz I2

X (flaugrbo) — f(z,p) dudv| dedy)

Since
_jam ifue [0,2_”‘),
(3.4) Dam (u) = {0 if u € [27™,1)

(see, e.g., [10, p. 7]), by Minkowski’s inequality in the generalized form, we
find that

(3.5) AE\?NS ff ng(u)Dgn(u){ff | Flzt+u, y+v)
% T2

. 1/’10 Ll 17 bl
—f(m,y)]"dwdy} dudy < wi(f;27™,27"),.

Next we will estimate A,g\?N. To this end, we keep in mind that

{a) D;(u) takes on a constant value on each dyadic interval I, (), where
0<j<2™and 1 <5< 2™
(b) Im(5) = Im41(25) U Irny1(25 + 1);
_ 11 ifue lnga(2)),
() rm () = {—1 i u € Tnga (27 + 1)
(d) t := u+2"™"1 is a one-to-one mapping of I,,+1(24) onto Iy41(25+1).

Double Walsh—Fourier series 231

Thus, by (3.4) and (a)-(d),
(3.6) Ay

e [ [ fetuyi) - f(o, )] dud

Im11(29) In (0)

- [ [ lfatuyto) -
Tt 1(2541) 1n(0}
2m ]

Flz,y)] du de dx dy}

™2t [ [ [t yie)
Imi1(23) In(0)
L . P 1/
~ flotuta ™1 yiv)] du dv‘ du dy } ’

2™ —1

={ ] | 3 D22
2 =0

. . P 1/p
X f f 1AT f(zdu, y+v) du dvl dz dy}
T 41(0) Lo (0)
We recall (see [1]) that

(3.7) |Ds(u)| < min(i,2u"Y), wel.
Thus, applying the generalized Minkowski inequality, from (3.6) it follows

that
v < { f Ik [7,2“

2™ w1

+ Z gmtlj=ign f f LWAT f(ztu, y-i—v)ldudv] dzdy}
j=1 Lm41(0) In(0)

< Qm'*“““{ff [ f f VA (f; atu, y+o) dudv] dz dy}

% T (0) I.(0)

< gmntl f f { ff [V‘n(ml)(fi z+u, y+v)|F dz dy}l/p duduv.
Ln41(0) T (D) »

[ 1147 f(zFu, y+v)] dudv
Tn41(0) In(0)

Since the norm | - ||, is translation invariant, hence we get
(3.8) Ay < IV ()lp-
Analogously,

(3.9) AQy <1V (Dl
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Finally, we deal with AS?N. Following a similar pattern to the case of
AE,?N, by (a)—(d) we obtain

2m.12%—1

Ay ={ {f} S Y oGz [ [

J=0 k=0 Lnt1(29) Int1(2k)

-/ S

T2 (2541) Lagr (20) T (29) Inga (2R+1)

o [ ehuyio) - fe ) dudo}| dudy)

T4 1(2541) Tngr (k+1)

= {ff‘ i i D;(27™)Dy(k2 ™)
I2 =0 k=0

< [ [fleteyte) - flatuda ™ ydo)
Lont1(25) Tn41(2K)

—flztu, yiob2 ™) + flabude L g2 ] du dv’p dz dy}l/p

2m_12"—1
=T T pzmpuee™)
17 =0 k=0

X f f AT flaetu, yv) du dvlp dz dy}lfp :

T 1 (0) In 1 (0)
By (3.7) and the generalized Minkowski inequality, we conclude that
(4) , mn X ;
Ay < {f! [zl f f | AGE" fz-tu, y+v)| dudv
I

Tm+1(0) Lnt1(0)

2™ ]
1,:-1 AT i }
T [ [ AR S, o) duds
j==1 Imf1(0) In-l-l(oj
2t -1

+ Y ekt [ [ Anr (e, vdo) dudo
k=1 T 41(0) Ing1(0)
2™ 2™l

o+ Z Z gm+1=lgntip -1

j=1 k=1

. . 1
X f f | AT f(2+u, y+v)| dudv]ﬁdm dy} &
Tm41(0) In41(0) : -
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<ol [ [ f vmn(f;m+u,y+u)dudv]pdmdy}”"
P Tpa(0) Inta (0)

et [ [ L] Wzt bl dody}  dudo.
Imt1{0) Inya(0) T

Since || - || is translation invariant, hence
(310) Ay < Veun (Dl -

Combining (3.3), (3.5), (3.8)(3.10) yields (3.2).

4. Corollaries. In this section we will show that our theorem implies
the extension of two classical results from single to double WFS. The first
of them is the Dini-Lipschitz test proved in [1, Theorem 13] for single WFS.

CoRoLLARY 1. If f € LP(I?) for some 1< p < oo and

(4.1) wa(f;61,60)p = o(ln 67 In6; )™ as 61,62 — 0,
(4.2) wiz(f;8)p = o(ln 1)t as6— 0,
(4.3) wiy(f;6)p = o(ln™1) as§— 0,

then the double WFS of f converges to f in L?-norm.

In particular, if wy - (f;8)p = o(lné™1) 7% and w14 (f16)p = o(ln §1)72,
then the conclusion of Corollary 1 holds true.

We note that Corollary 1 in the particular case when f € Cw(I?)
(p = o0) was stated in [2] without any proof.

Furthermore, Corollary 1 can be essentially improved in the cases when
1 < p < oo. Namely, for every such p there exists a constant Kp depending
only on p such that for any f € L?(I 2} we have

(4.4) [8mn(Hllp < Epllfllps  mom 21

This is ultimately a consequence of the corresponding univariate inequality
of Paley [8]. (See more details in [6].) On the other hand, from (4.4) and
the Banach-Steinhaus theorem it follows that the double WIS of a function
f € LP(I*), for some 1 <p < o0, converges to f in LP-norm.

ProBLEM 1. Nevertheless, we conjecture that Corollary 1 is sharp in the
cases when p=1 and p = co. That is, if “o” is replaced by “O” in any one
of the conditions (4.1)(4.3), then the conclusion of Corollary 1 is no longer
true. But we are unable to present counterexamples. '

Proof of Corollary 1. We see immediately that
||IA'?Lf_Hp Swl,m(ﬁ 2-m—1)P )
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whence -
2m_1
1 —
IV (e < (1 + Y 4 1)w1,z(f;2_m_1)p Swip(f;27™ ), Ing™tt,
j=1

Analogously,
IV ()llp € w1y (F327" )y ln 27
and
[Vin (Flp € wa(f;27™7 1, 2777 1), In 2™+ n gntE,
It remains to apply (3.2), (2.1) and (4.1)-{4.3).

.Th.e next corollary is the Dirichlet—Jordan test for double WFS, whose
univariate version was first proved in [11, Theorem 4].

COROLLARY 2. If f € Cw(I?) N BV(I?), then the double WFS of f
converges to f uniformly on I?

Proof. We can find two nondecreasing sequences {i(m) : m > 0} and
{l(n) : n > 0} of positive integers such that B

(1) z(m) < 2™ — 1 and I(n) < 2" — 1 for all m and n, respectively;
(ii) i(m) — oo and I(n} — oo as m — co and n — oo, respectively;

(i)
wie(f; 27" Ind(m) =0 asm -~ o0,
wiy(f;27" Hnl(n) -0 asn — oo,
wz(f;27™ L 27" N ni(m) Inl(n) - 0 asm,n— oo.
Here and in the sequel, we drop the subscript p = oc. Then
W i{m}-1 2m—1
PO (14 3 i ue(rrm 4| T i hars|
j=1 i
J:z('rﬂ)
< wie(£32777 1) In2i(m) + [i(m)] || £]] -
Analogously,
V(N < way (F5277 ) n2lfn) + ()72 A
Finally,
i(m)~11(n)~1

)
(45) VD Swn(fs27m 02771 3 52
) j=0 k=0

21 271 ilm

(m)~1 an .1
Y T+3 5 bonags|

g=i(m) k=0 j=0 k=I(n)
< w2 (£327™7, 277 In 2i(m) In 20(n) + max{i~ (m), 17 ()} 1| £]1]

icm
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Now, it is enough to apply (3.2), (2.1), (i), and (iii).

On closing, we will extend Corollary 2 to certain collections of W-con-
tinuous functions of generalized bounded variation. To this end, we recall
the definition of bounded $-variation.

Let (t) be a (classically) continuous, strictly increasing function defined
for ¢ > 0 such that ¢(0) = 0 and (t) — co as t — co. Let 1 be the inverse
of . Next, let

. U U
&(u) = [ p(t)dt and P(u):= [ w)de.
0 0
Such functions & and ¥ are called complementary in the sense of
W. H. Young, and they satisfy the following inequality:

(4.6) ob < $(a) +¥(d), a,b=0.

(See, e.g., [13, p. 16].)

Now, a function f:1 2 _, R is said to be of bounded $-variation if there
exists a constant K such that for any partitions Dy and D of T (see (2.2))
we have

m—1n—1
(4.7) Z > 8| Flwsw) — Fm541, )
i=0 k=0
—f(zj, Yor1) + F@, yp1))) S K

furthermore, for any fixed y € I,

m—1

(4.8) 3 B f (s y) — fleinnl) <K
e
and for any fixed x € 1,
n—1
(4.9) 3 8(1f(z,4w) — Fla ) S K.
k=0 .
We note that if & does not increase too fast in the sense that
(4.10) Ky = sup &(2u)/P(u) < oo,

u>0
then it is enough to require the fulfillment of (4.8) and (4.9) for y = 0 and
z = 0, respectively. In fact, it follows from (4.10) that for all 0 < vy < up
we have
@(’M]_ + ’Ltg) S df'(2u.z) S Kliﬁ(uz) S Kl{é(ul) + @('U:z)} .

Thus, assuming (4.7) and (4.8) for y =0, we obtain (4.8) for any y € I with

9K, K instead of K on the right-hand side.
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COROLLARY 3. Let @ and ¥ be complementary functions such that

(4.11) iiu‘f(j—lk-l) < 0.

=1 k=1
If f € Cyw(I?) is o function of bounded $-variation, then the double WFS
of f converges to f uniformly on I°.

This corollary is analogous to results obtained by L. C. Young [12] and
Salem [9] for trigonometric Fourier series and by Onneweer (7] for WFS in
the univariate case.

Proof. It is plain that from (4.11) it follows that 3.2, #(77) < oc.
Thus, we can find a sequence {=(7) : ¢ > 0} of positive numbers decreasing
to 0 as 4 — oo and such that

(4.12) K= Y W(Ahe (max(f, k))) < oo
7=0k=0

According to {4.6), we may write
| AT (2, v}l Ay Me ™ (max (5, K))
< F(IAF f (@ 0)]) + F(Asdee ™" (max(5, k).

By (4.7) and (4.12), for any 0 <4 < 2™ and 0 < 1 < 2™ we get
m-127-1

o1
{ PIDIEIIDD }[Aﬂ" (2, 9) A Ak ™ (max(j, k) < K 4 Ka,
k=i

D i=i k=0 j=0
whence
2m_12%—1 i 271

{ 2 kz_(; + })\j)\klA}’;‘cﬂf(m, W) < (K + Ka)e(max(i, ).

=i J=0 k=l

. N?W, we choose {i(m}} and {I(n)} as in the proof of Corollary 2 (see
(i)~(iii) there). Analogously to (4.5), we conclude that

Vnn(f3 2,9)| < wo(f; 2771, 27771 In 24(m) In 2U(n)
+ (K -+ Kp)e(max(i(m), [(n})),

which tends to zero as m,n — oo, uniformly in (z,y).
Similarly to the above reasoning, we find that

V(2,9 € wia(f;27™ ) 1n 2i(m) + (K + Ka)e(i(m)) ,
VA (fi2,9)] S wiy(£5277 ) I 2U(n) -+ (K + Ka)e(i(n))

These also tend to zero as m —» co and n — oo, respectively, and the
convergence is uniform in (z, y).
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PROBLEM 2. It may be of some interest to construct counterexamples
showing that conditions (4.10) and (4.11) cannot be weakened in general.
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