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A note on topologically nilpotent Banach algebras
by

P DIXON (Sheffield) and V. MULLERT (Proha)

Abstract. A Banach algebra A is said to be topologically nilpotent if sup{|lzy...

...mnH]‘/” sag €4, el £1 (17 <n)) tends to 0 as n — co. We continue the study
of topologically nilpotent algebras which was started in [2].

A Banach algebra A i sald to be nilpotent if A® = 0 for some n, i.e.
ifawg...mq = 0 for all z,...,2, € A. An element z € A is said to be
nilpotent if & == 0 for some n, The algebra is said to be nil if every element
is nilpotent.

By [4], a Banach algebra is nil if and only if it is nilpotent.

The topological versions of these notions were studied in [2] and {3].
Following the notation there, define for a Banach algebra A and a positive
integer n the guantities

Na(m) = {sup|las...zal™ 2 € 4, |lms|| =1 (i=1,...,n)}
and
Sa(n) = {sup|lz"|*™:z € A, |z =1}.

Note that we do not assume the existence of the unit element in A and,
if A lias a unit elemont e, then we do not suppose |j¢|| = 1 (otherwise these
notions would become trivial).

A Banach algobra is said to be topologically nilpotent if limp..co Na(n)
= O and uniformly topologically nil i limy a0 S4(n) = 0. These two notions
are equivalent for commutative Banach algebras (see [2]).

Our first result shows that this is not true for noncommutative Banach
algebras.

We denote by N the set of all positive integers.

Turonem 1. There exists a Banach algebra A such that Na(n) = 1
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Proof. Let S be the free semigroup with generators =y, 9, . . . satisfying
the relations @;z; =0 (j # ¢4 1). Let A be the ¢! algebra over S, ie. A is
the set of all formal series

(1) Y= Z TR T T3 TER S .
i<y
with complex coefficients a;; such that [yl = 25, ;I < oco. With
algebraic operations defined in the natural way A becomes a Banach algebra.
Clearly ||y ...2,]| = 1 for every n so that Na(n) =1 (n € N).
Let y be of the form (1) such that ||y|| = ;< |os] < L. Then

Iiy”LI=H > aio,n%,iz---ain_l,in«’féo---ma‘ﬂ—l"
o<l < Lip
=S S AP [P DO PR
igii <. <Lin

Further,
n

IZ(Z\%,jl) >l Y gl |- Ll

i< ip i <o

so that ||| < 1/nl. Thus S4{n) < (1/n)V/™ < 8/n — 0. (In fact, it is not
difficult, but rather tedious, to show that S4(n) = 1/n and the supremum
is attained for y = n"1 3" | z;.)

Rematk 1. In the previous example, consider the element

- 1
y—zkln(k+1)$k'

k=1,
Then
n_ 1
VT Wz, mmrnr e
50 that

1 1
> > .
lv™li = 2. .In(n+1) = nin2
If z = y/{|y|| then |z|| =1 and
1/n
Hzn”l/‘n?_ ( | 21 ) . e
nln?{|y | 7|yl
“as n — oo, Thus, although our example has ||z"||Y/* = O(1/n) for each z,
it does not have [|z™||/" = o(1/n) for all z.
It is possible to improve the preceding example to get ||#" ||/ = o(1/n),
by setting zgs_jzoe = 0 (k= 1,2,...), i.e. A is now the set of all formal

icm

Topologically nilpotent Banach algebras 271

series

o
(2) = Z Z Q4§ %i 0 Tjt .

ks=l) 25 <y <kl

Again Na(n) = 1 and Sa(n) = 1/n (n = 1,2,...) but we have |y*||*/" =
o(1/n) for every y € A. Indeed, if y is given by (2) with |yl = 3
== 1, we have, for n > 2%,

) 1/n
s (03 el o))

PLE SIS

< (1/mhyH/n Z i) = o(1/n).
2h< i< .

Remark 2. By the Nagata-Higman theorem [5], every product of 271
elements of a complex algebra can be expressed as a linear combivnation
of nth powers. When studying topologically nilpotent algebras it is very
important to have some estimate of the corresponding coefficients. In [2] the
following quantitative version of the Nagata-Higman theorem was proved:

Let A be a complex algebra. Suppose that B is an absolutely convex,
multiplicatively closed subset of 4 (i.e. Ayz1 + dowo € B and za2 € B
whenever 1y, ae € B and Ay, Ay € C with |Aq] 4 |Az| £ 1). Denote by P, the
absolutely convex hull of the set of all nth powers of elements of B. Then
every product of 2™ — 1 (or more) elements of B is contained in n*%" - P, ,
where o = 2,26. :

Denote by K, the smallest coefficient with this property. By the above
mentioned result we have Ky, < n®®". The example constructed in Theo-
rem 1 gives a lower bound for K,,: Taking B to be the unit ball in A we
have K, = n" There ig still a big gap, however, between the lower and
upper bounds.

Prorosrrion 2. Let A be a Banach algebra.
iMoo Na(n) exists and limg,—oo Na(n) = infreny Na(n).

i<y levi,

Then the limit

Proof. We have
Na(m 4 n) ™™ o= gup{||er. .. Emin : @€4, |l2if=1 (i=1,...,m + n)}
< Na(m)™ - Na(n)®
for every m,n € N. It is well known that this implies the conclusion.
The limit given in the previous proposition will be denoted by Na =
limy om0 N4 (0}

THEOREM 3. Let A be u Banach algebra. Then there exisis a sequence
{2}, ¢ A with ||lzi]] <1 (4 € N) such that limsup,, . Jlz1 .. e s

= Ny
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Proof. Cleatly limsup,_ . ||21. Lz < N4 for every sequence
{z}%2, C A with ||2;|| <1 (i € N). Therefore it is sufficient to show that
limsup,,_, ., |1 ... 24]|*/® > N4 for some sequence {z;}{2;. This is clear if
N4 = 0. In the following we shall suppose that Na > 0.

Forr > 0,let A, = {z € A: |jz]| £ r}. We consider the space X = (A()"
with the product metric

o0

(3) d((z:), (:)) = Zg~i_ﬂﬂ:_gji||_m

2t T e vl

Then (X,d) is a complete metric space. For each § € (0,1) and k € N,
consider the set

Xps={(z) € X ¢ |zr...zajY™ > (1~ §)N4 for some n > k}.
Then X s is open in X, since Xp s = Unzk Yo, 5, where ¥, 5 = {(2;) € X :

12y ... 2. || > (1 — 6)Na}, which is clearly open in X.
Our desired result will foliow from the statement

[ Xeam #0,
k=1

which, in turn, follows from Baire’s Category Theorem if we can show that
each of the sets Xy s is dense in X. Now,

X = J A,
r<l

so it suffices to show that if z = (z;) € {4V, k € N, § € (0,1) and
0 <& < 1—r, then there exists y € X} 5 with d(z,y) < e.
We observe from (3) that if 27™*! < g then.

{4) 2 —wl <e/2(1<i<m) = d(z,y) <e¢.
Choose such an m and then choose { > max{m, k} such that
(em /2Ly 5 (1 - )12
Now find uy,...,u; & Ay with
Nz w2 (= OM2NAW) 2 (1 - 62N,
Let &, = 2™"/Mg (1 < v < m) and g9 = 0. Set

‘ Ep Epr .
Zp = (mﬁ—gul) (mm+ Eum)umﬂ...u; (r=0,1,...,m).
Then '

Hi _zo)H a Hm > me™ (1 2—m5)z/2Nj1 |
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g0 that there exists s € {0,..., m} such that
5m(1 . (t,)l QNA

ol 2 ER T s (- gy
Set '
+(es/2)u; (1 <1 < m),
Yi= 9 U (m<i<l),

i (z > 1).
Then y = () & (AN and d(z,y) < ¢ by (4). Moreover,
lys sl =z = (1= 6)N4

and [ 2 k, s0 ¢ € Xy s This finishes the proof,

CorornLary 4. Let A be a Banach algebra. The following statements
are equivalent:

(1) A is topologicelly nilpotent,

(2) lityoo |21 -2 @0 || = 0 for every sequence {®;}32, C A with
llz:] €1 (i€ N).

Remark 3. The analogous statement for S4(n) is not true even for
commutative Banach algebras.

Clonsider the free semigroup S with generators zy, xg, ... satisfying the
relations a; = 0 (i # j) and 2t™ = 0 (i = 1,2,...). Let 4 be the £
algebra over 9, L.e. A is the set of all formal series

(5) y=3 5 ol

I

= 35 ;o3| < co. Then 27| =
{lan || = L 80 that S (n) == 1 for every positive integer n.

On the other hand, ||J"||*/™ — 0 for every y € A. Indeed, if y is given
by (5) then

ot i At/
| 1/n . - -
CARGE DI OIS
psep feel
< HLLW"H‘JH }:lg”\—+0 AB T — 00 .
fumn fuwl fwary Jaml

‘We say that two Danach algebrag A, B are isomorphic if there exists a
bijective homomorphism f: A — B such that both f and - are continu-
ous.

THEOREM 5. Let A be o Banach algebra.
(1) If Ny == 0 and B is a Banach algebra isomorphic to A then Np = 0.
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() If Nga > 0 and r € (0,1) then there exists a Banach algebra B
isomorphic to A such that Ng =r.

Proof. (1) Let (A, | - ||) be a Banach algebra with N4 = 0. We may
assume without loss of generality that B = (4, ||-||') where || ||’ is an algebra
norm on A equivalent to the original norm || - ||. This means that there is a
constant K > 0 such that K~'||al| < [|a|i’ < K]ja| for every a € A.

Let n € Nand @y,...,2, € A, ||zl <1 (i=1,...,nr). Then

:E]_ mn

|21 ... znll < K2y 2] = K™

$ Kw[—:t NA (n,)“

and Ng(n) < K1/ N4 (n). Hence Np = limp— o0 Np(n) <K -Nga=0.
(2) Let Ny > Oand r € (0,1). Findn € N such that Na/Na(n) 2 r. De-
fine M = {z € A:|z|| < Na(n)~'}. If oy, ..., 2 € M then ||z ... 2| < 1.
:Jlf'lkeN,k=k1n+zwithk1,zeNU{D},OSzgnwl and xq1,..., 2 M
en

”:B]_ - .’L‘k”
Sl all 2 —tnr o aall - [Ekasal] - ohnes]) € Na(n)i=",

Thuls M generates a bounded semigroup and by [1], p. 18, there exists an
Eqmvalent algebra norm |- ||" on A such that ||z|' < 1 for every ¢ € M. We
ave
K7l < Jlolf < Klla]|  (a € 4)
for some constant K > 0 (in fact, K = N4(n)*~").
- Let A =(A - ) end k€N, k > n. We find ay,..., 2y € A, |zl <1
glzt L;.... k) such that ||, ... 2] > IN4(k)*. Then Na(n)~tz; € M s0
a

INa(n) 2zl <1 (i=1,....,k)

and
oz Tk / I AT
> E-l B T 1 Na(k)*
‘ Na(n) " Na(n) Na(n) " Ng(n) 2 2K Na(n)e~
Thus

1/h
Ny(k) > (_1_) Nalk)
' 2K NA(TL)
and Na/ = limp., 00 Ng (k) > NA/NA(H) =
Set ¢’ = N4 /r and consider the norm |- [|” on A defined by
lal”= Clal’  (a€ 4),
Clearly || - ||” is equivalent to the original norm ||l Let B = (4, |- {|") and
keN Ifay,... o0 € A, o' <1 (= 1,...,k) then .

lo1- . 2el” = Cllay ... zp||" = CrH*(Czy). .. (Cap)|!

Topologicelly nilpotent Banach alyebras 275

where [|Call’ € 1. Thus Np(k) = CO-*VEN 4 (k) (k € N) and Ng ==
C*lNA’ = Tr.

The following problem remains open: if A is a Banach algebra with
N4 > 0, does there exist a Banach algebra B isomorphic to A with Ng = 1?
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