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The wavelet characterization of the space Weak H*
by. ‘
HEPING LIU (Beifing)

Abstract. The speice Weak H' was introduced and investigated by Fefferman and
Scria. In this paper we characterize it in terms of wavelets. Equivalence of four conditions
is proved.

1. Introduction. When we study the boundedness on LP(R") for some
of the basic operators in harmonic analysis, the case p = 1'is often different
from p > 1. For example, if T is a Calderén—Zygmund singular integral
operator, then T is bounded from L*(R") to WL'(R"). So one finds a
smaller space H*(R") C L'(R®) such that T is bounded from H'(R™) to
LY(IR™), which is well known. On the other hand, one can also find a space
larger than LY(R™) and T is bounded from it to. WL!(R™). This space is
WH'(R™), introduced and investigated by Fefferman and Soria (see (3]).

We recall the definition of WH*(R"): Let f be a tempered distribution,
and € C®(R™) with [ (z)ds = 1. We define the maximal function

F(z) = sup |f * g (2)].
>0

Then we say that f € WH(R") provided f* € WL'(R™), i.e.
Hz e R™: f*(z) > v} £ C/u for all v > 0.

The smallest ¢ which makes the preceding estimate valid is called the “Weak
H' norm” and denoted by ||f|wa:. The choice of ¢ in the definition of
WH(R") is of no importance. The space WH'(R") is larger than L*(R™).
In fact, the space of complex measures is continuously embedded as a Bub-
space of WH Y(R™). Another basic example is the distribution p.v. % which
belongs to WH(R). o

If we proceed to characterize the function spaces in terms of wavelets,
we find ourselves in the same situation. Suppose f = 3 a(A)y» in the sense
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of distributions, where a(A) = (f, ) are the wavelet coefficients of f. Set

Wi = (e @)

Then f ¢ LP(R™) if and only if Wf € LP(R") for 1 < p < oo . This is not
true for p = 1 and we know that f € H'(R") if and only if Wf € L'(R")
(see [1]). It is natural to ask whether f € WH'(R") if and only if W/
WL'(R™). The answer is affirmative and we will prove the equivalence of
four conditions. It is well known that WH(R") is characterized by the con-
dition that Sy(f) € WL'(R™) where Sy (f) denotes the area integral (with
respect to a suitable nontrivial ¢ € C§°(R™) with i[ b =0) (see [3]). More-
over, a substitute for Sy (f) is (3 [a(A)?|va(2)[?)*/2 when Y7 a(A)ya(2) is
the wavelet expansion of f. Then it is implicit that f € WH*(R") if and only
I (3 |a(M)*fa(2)]?)/2 € WL(R™). The theorem we are going to prove is
not new but we will give a new proof together with a slight sharpening,

2. Statement of results. The wavelets used in this paper are the com-
pactly supported wavelets with r-regularity (r > 1) defined by L. Daubechies
12]. Let us recall it in more detail.

Let 7 be the set of all dyadic cubes, i.e. D = {Qjr:J7 €L k=
(k1,-.,kn) € Z™} where @ = {z € R™ : Yz -k & [0,1}"}. Set E =
{0,1}* \ (0,...,0). Suppose ¢ and v are r-regular compactly supported
functions obtained by multiresolution approximations in [1]. For sny e =
(€1,...,&n) € E and Qi €D, let

You = 29 (Vg — k). g (Y — k),

where 0 = ¢ and ' = 4. It is known that ¥g,, have the following
properties: '

(a) {¥%, , }a; xeD,ecp is an orthonormal basis of LA(R™);

(b) supp ’/)Ez,-, o ©MQjk, m > 1, where mQ is the cube concentric with
@ but with the side length m times that of @ (i.e. the “m-fold expansion”);

(©) 11{8%/02%)5, oo < C2W/2HI15 | |a] < 1y |

(d) fw“zbEQM (z)dz =0, |aj < 7.

For notational convenience we shall write ¥ and Q(X) instead of Y, .
i

and @ respectively, where A = 277k + 2-9"l¢. The set of all indices \
will be denoted by A.

- Now we are in a position to state our results.

THEOREM. Let f = 37, ., a(A))y in the sense of distributions, where
a(A) = {f, ) are the wavelet coefficients of f. Then the Jollowing condi-
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tions are equivalent:
1/2
(4) wi) = (3 Wb @P) " e WIHR®);
AEA ‘
2 -1 1/2 1/mn

B)  Sf@) = (X bWEFIQW T xan(@) & WIIRY),

reA

where R(A) C Q(X) are measurable sets such that |[R(N)] = 7|Q(A)] for a
fired positive constant vy, and y denotes the characteristic funclion;

) _ 1/2
€ GHz) = (3NN xam(@) € WLHR™);
reA
(D) f e WHY(R™).
If T is a Calderén—~Zygmund operator with 7%(1) = 0, then T is bounded
on WH' (R") (see [4]). Using this fact, we conclude that the theorem remains
valid for any choice of the wavelet base {¢3}rca-

3. Proof of Theorem. {A)=>(B) and (C}=>(B) are very easy. We shall
prove (B)=(C), (B)={D) and (D)=-(A). _

The letter C' will denote a constant whose value may be different in
different places.

(B)=(C). Set Ex = {x € R" : Sf(z) > 2%}. Then |Ey| < C27%. Take
0 < 3 < « and let Dy, be the set of dyadic cubes @ such that |QNE;| > 5lQ)|.
Let Ef = Jgep, @ Then

1 : .
(1) |EZ] < 'E|Ek| <C2°% and |Ex\Ej|=0.

Q is called a mazimal dyadic cube in Dy if Q € Dy and @ ¢ Dy, provided

G2 Qand § € D. Let {Q(k,é) : i € Fi} be the set of all maximal
dyadic cubes in Dy. Then Ef is a disjoint union of Q(k,¢), i € Fr. Set
Ap = Dy \ Dry1 and Ak ={QeN:QC @(k,1)}. Then

o0
D= U UA(k,i)
k=00 iEFy

is a digjoint decomposition of D. It is easy to get

@ S laEs ,Y—}EQM {Em-lsx(m)zdm
1

QA EA (k)
< ——— 4 Q(k, )}
v B
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For any v > 0, take kg such that 2k <y < 2Rot) Set
ko

e =( Y Y M xen®)

h=—o0 iEF) QIA)EA(R,D)
= 2 -1 1/2
Gf@=( Y X Y OFWI xen ()
k=ko+1i€F: Q(A)eA(k,E)

From (1) and (2), we obtain
kg

@) [GuflE= > > D la(NP

h=—ra i€l QM EA(k,:}

kg .
1 _ .
<3 7‘“‘“..,54’“""1|Q(k,%)lsc' S 4hBg < O

k=—oo i€ F =00
Since supp Gaf C Upei, 41 Bi» we have
ko
(4) suppGafl < > BRI < C/v.

k=—co
Therefore,
H{z e R*: Gf(z) > v} < [{x € R™ : G1f(z) > v}| + |supp Gz f]
< C’(HGlJ“Hz/V)2 +Clv < Cfv.
(B)=>(D). We keep the above notations. Write
ko

fo= 30 2. 2. (s,

k=—ot iEF, Q(A)EAlk,)

i YooY ala.

ka=ho+1i€ Py Q(A)E A h,5)

As in (3), we obtain
ko

A= 3  jaPEsow.

k=—cc i€ Q(N)EA (k)

Hence

() Hz e R": fi(z) > v} < O(| fill2/v)* £ C/w.
Set 2 = {Jpep, 41 UieF 2m@(k,1); then

(6) |n]<cz Z|ka\<OZ\Ek|<0/v.

k=—oc i Fy, kom0
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We shall prove that . ‘ S
(7) o g 2 f3(z) > v} < Ofv.
Write .
feal®) = Y a(Neale).

Q(MEA(k,L)
Obviously, supp fx¢ C mQ(k,4). Let zx; be the center of Q(k, 1): Suppose
p € CF(R™) with fgo () d:c = 1. For z € 2mQ(k, i),

| fie,i % 1 (2))] -| Q(fk l)fk.z(y t"n( (_%ﬂ) MW(E:{EE)) dy"'

<Cle— ol ™" [ |fui®)lly —onl dy
: Mm@ (ki)

< Oz — oag "™ QK D | frgll
C I 1/2
= Cla - wxa "N MHA( Y 1))
: : QR)EA(k,1)
< C2¥|Q(k, )| (T Mg — TR
This implies .
i (e) < C2F|Q(R, i)/ ™ g — 2T

We shall use the superposition principle for weak type estimates which was
found by Stein, Taibleson and Weiss [5]:

LEMMA 1. Let gi be o sequence of measurable functions and 0 < p <1,
Assume that .
[z € R™ : lgu(@)] > v}l < Cfo?,

where C is a constant not depending on k and v. Then
= P
frere | Saao| >} < 15 S ket

Set cpi = Czk@(k,i)l(nﬂ)/n’ gri(z) = |z = wh,ilunwl’ and take p =
(n 4+ 1)/n. We get '

o g 0: f3l@) > v} < {2 2 > 3 fis@r> v}

h==—o0 €M
|{ an Z chagkl(m)>y}'
C p=—ooi@Fg
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¢ & 3/
k(n41)/n
< = Z Z 2 |Q(k, )]
k=rwoo i€ F
ko

<L pk(n)/m B | < Cgmthorn/ontn ¢ €

P P v

k

This proves (7). Now (5)—(7) give us
{z € R™ : f*(z) > 2v}|
<Kz eR™: fi{z) > v} + 10|+ {z ¢ 2: f7(z) >vH £ Cv.

(D)=(A). The following atomic decomposition of WH!(R"™) is due to
Fefferman and Soria [3):

LEMMA 2. Given f € WH(R™), there exists o sequence of functions
{fx )32 _ o with the following properties:

(a) £ =300 _ fr in the sense of distributions.
(b) fr =301 hw,i in LY, where hy i satisfy:
1) hy; is supported in o cube By ; with {Byi}5%, having bounded
overlap for each k;
2) [ hys(a)de = 0;
3) Nk illoe < C2% and 332, )| Brll < C27F.

Whrite
.k:g o0
=3 f >
k=—o0 k=kp+1
Their wavelet series are respectively
Fi=>" a(\ga, =3 a(\yx.
A AEA
‘We have
WEE = |( S laaPRaP) [ = 3 fer () = 42
PY-A| AEA
ko 9 ko
< (X 1) sco( 3 2) <cow.
kEMDQ k‘m-—m
Therefore,
(8) {z e R* : WF(z) > v} < ([WFy|2/v)? < C/v.

Let Bk,, denote the “expansion” of the cube By, by the factor
Oy (3/2) 0k ko)/ﬂ here C |
where 'y is a large constant depending on m and deter-
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mined later. Set A4 = {Jio; ., U2y By It follows that:

oG o h =) % /3 k—Fp ‘
®  Ms Y Shdso S (5] i

h=kp+1 1=l " ks=kg-l d=1
b kﬂ O
<C E ( ) ko 2
keeshig 41 : Y
We shall prove
(10) - [ [Whyz)|de < C.
Aﬂ
Write

b i(x Zam()\ Pa(x

A
where

ari(N) = [ hri(y)0a(y)dy

By

are the wavelet coefficients of Ay ;. Set A = 23"‘“15}6,1 \ 25§k,.;. Then

I(ZMM APl m)|) dm<z f( lag i (V) Pea(z )l)/gd:n.

A® AEA a=0 A, AgA

I mQ(AYN By = 0, ax,i(A) = 0. When mQ(A) N4, =0, va(z)xa.(z) = 0.
So we assume that mQ(A\) N Be; # # and mQ(A) M A, # 0. This implies
that

(11) 277 > 28(3/2)(}"—"70)/71'3&”1/'71'"

when C is large enough. For fixed j, the number of- Q{A) satistying the
condjtions given above has a universal upper bound. We denote by 4o the
largest integer satisfying (11). Let by,; be the center of By;. Then

lak,i(A)] = | [ i) (@a(y) — a (b)) dy

Bl

< f |hii (¥)] 1y — bril dy [ Verll oo
B,i ' 7 ‘
< Czkz(n[z-i-l)j'Bk i|(n+1)/n o
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For @ € A,, we have

(Z ‘Gk,i()\)lz!’ﬂb)\(m)lz) 1/2 < O( i 22}c22(n+1)j'Bk!i‘2(n+1)/n)]/2

AeA jm=—oo
S Cgkz(nr!—l)ngBk il(n+1)/ﬂ

3 -~ {(k=ko)(n-+1)/n
< 02.’02—3(114-1) (:_) i
- 2

Therefore,

5. (S mvrmer) “wescf e (5) T

s=0 4, Agd
3 —(k~ko)/n
< OQk‘(é‘) | Bie,sl -

It follows that

f1WF2(x|dm< Z Z f (ZW* )2 loa ()] )de

k= .’cu+1 i=l A% Agd

<c Z ng( )““‘ o Byl

k=ko+1 i=1

o g\ ~lh—he)/n
<c > (§> <C.

This proves (10). From (8)-(10), we obtain
{z ER™: Wf(z) > 2v}|

<Hz e R™: WFi(z) > v} + [A|+ {z € A: WEy(z) > v}| < Cfv.
The proof of the Theorem is complete.
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