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On an estimate for the norm of a function
of a quasihermitian operator

by

M. I. GII’ (Beer Sheva)

Abstract. Let A be a closed linear operator acting in a separable Hilbert space.
Denote by co{A) the closed convex hull of the spectrum of A. An estimate for the norm of
J{A) is obtained under the following conditions: f is 2 holomorphic function in a neigh-
bourhood of co(A4), and for some integer p the operator A7 ~ (A*)? is Hilbert—Schmidt.
The estimate improves one by I. Gelfand and G. Shilov.

1. Introduction. Notatioms. Let H be a separable Hilbert space,
and let A be a closed linear operator acting on H with domain D(A). Then
A is called quasthermitian if D(A) C D(A*) and the imaginary component
Ay = (A— A*}/2i is completely continuous. Denote by co(A) the closed
convex hull of the spectrum o(A) of A. In this paper we obtain an estimate
for the norm of f{A) if f is a holomorphic function in a neighbourhood of
co(A), and A is a quasihermitian operator with

(1.1) Ay € Chy

where C5 is the Hilbert—Schmidt ideal [9]. Moreover, this estimate is gener-
alized to the case

(1.2) AP~ (AN ey

for some integer p.

Singular integral and integral-differential operators are examples of op-
erators which satisfy (1.1) and (1.2).

We recall that I. M. Gelfand and G. E. Shilov [3, Ch. 2] obtained an esti-
mate for the norm of a matrix-valued function with equality being attained
for no matrix (finite-dimensional operator). In [6] we obtained a sharp es-
timate for matrix-valued functions. This estimate becomes equality in the
case of a normal matrix. In [7] an estimate for the norm of a function of a
Hilbert-Schmidt operator is obtained.
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Below we generalize and improve the results from [6, 7] and also supple-
ment Carleman’s estimate for the resolvent R, (A) of A € Cy [4, Ch. XIJ.
Let I denote the identity operator in H, and let

hind 1/2
A= [JAs3 - lmpm ()P V2
k=1
where |B|z is the Hilbert-Schmidt norm of a Hilbert—Schmidt operator B,
and p1{A), uz(4),... are all nonreal eigenvalues of A counted with their
multiplicity. If A is a normal operator, then v(4) = 0 (see [8]).
We define f(4) by

(1.3) f(4) = f F(u) Ry (A) dis + f(00)]

2m

where I' is a smooth contour enc1rc11ng a(A).

2. Main result

THEOREM 1. Let A be a quasihermitian operator satisfying (1.1} and let
f be a holomorphic function in a neighbourhood of co(A). Then

k
S swp |

k=0 HGCD(

(2.1) |F(A

First we prove a few lemmata.

LEMMA 1. Let the imaginary part Ay of a guasthermitian operator A

belong to the Matsaev ideal C,, [10, Ch. 4.3], i.c.

oo

> 2k =17 (A <00 (u(As) € o(An).

k=1
Then there are an orthogonal resolution of the identity E(t) (—oo < ¢ < 00),
a normal operator N and o Volterra (completely continuous quasinilpotent)
operator V such that for allt € (—00, 00)

(2.2) NE(t) = E(t)N,
(2.3) E()VE®) = VE(t),
(2.4) A=N+V,
Proof. Asis shown in [2],
(2.5) A= f h()dP(t) + 1 f P(t)Ay dP(3).

Here P(t) is an orthogonal resolution of the identity and & is a nondecreas-
ing scalar-valued function. The second integral in (2.5) is the limit in the
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(' -norm of the sums
= Z (te) + P(te—1)]As APy = 8, + U,

(tk :i](ﬂ ); AP = P(tk)— Pltp_1), —co <y <ty < ...

where

<ty < 00)

m n

(2.6) Up= Plty1)AsAP;, S, =3 APA;AP,.

k=1 k=1
The sequence {5, } is norm convergent by Lemma 1.5.1 of [10]. We denote
its limit by S. By Theorem 2.5.2 of [9, p. 77|, each S, belongs to C..
According to Theorem 3.5.1 of [9, p. 113], so does S. It is clear that the
P(f) {—oo < t < oo) are projectors of H onto invariant subspaces of the
selfadjoint operator 5. We arrive at (2.2) when E(t) = P({) and N =
J2 R($)dP(t) + iS. Further, U, is a nilpotent operator: (U,)™ = 0. The
sequence {U,} converges in the C,,-norm because so do the second integral
in (2.5) and {S,}. We denote the limit by U. Then U is a Volterra operator
by Lemma 2.17 of {3]. From (2.5) we obtain (2.4). m

By Neumann'’s theorem [1, p. 314] there exists a bounded scalar-valued
function ¢ such that 5 = f_ww Pt} dE(t) since E(t)S = SE{f). Hence
(2.7) N= [ y(t)dE)
—0

where i = h + it

DEFINITION 1. Suppose there are an orthogonal resclution of the iden-
tity B(t), a scalar-valued function ¢ and a Volterra operator V such that
(2.3), (2.4) and (2.7) hold. Then we call E(t), N, V and (2.4) a spectral
function, a diagonael part, a nilpotent part and a triangular representation
of A, respectively.

Our definition of spectral function is analogous to the corresponding
definitions in [2, 3].

LeMMA 2. Let o bounded operator A have a triangular representation
and a spectral function P(t) which consists of n < oc projectors 0 = Fy <
P <...< P,=1I Supposeits nilpotent part V is in Cy. Then
(28) sy o 170 e i’
| (k1)o7

k=0 HEC
for every function f holomo'rphzc o nezghbourhood of co(A).
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Proof. (2.7) has the form N = 370, i AP, in this case. Here py, (k =
1,...,n) are eigenvalues of A. Let {e;(m)} (m =1,2,. ..} be an orthonormal
ba.sis in AP;H. We set :

i (‘m-) = (Aei (m); € (m))’

= Y ilestmes(m)

Z O:,'j(m)(',ﬁj(m))ﬂ-,‘,(m), Ay = New+ Vi

1<i<isn

Clearly, a;;(m) = 0 when ¢ > j. The operators 4, N, V' and F(A) are the
orthogonal sums of A, Nm, Vi and fm(A) (m = 1,2,...), respectively.
Therefore

29)  o(An) Co(d), Vul <[V, max|f{4n)] =/ (A

I

Vin

Let B be an (n x n)-matrix. We apply the estimate {7}

[Val5
(B < sup f(’“) e
where Vg is the nilpotent part of B. Hence
Vinl%
< 511 (k) | mi2
1£ (Al < kZO Ol

since A,, is a finite-dimensional operator and Vi, is its nilpotent part. From
this and from (2.9} we obtain (2.8). = -

CoOROLLARY 1. Under the conditions of Lemma 2,

n—1
qur (k) ”U(A)k
IF(A)] < };}MECO&) ) e

This follows from Lemma 2 and the equality
(2.10) v(d) = [Vlz,
which is proved in [8, p. 164].

LEMMA 3. Let A admit o trianguler representetion, and let N be ils
diagonal part.: Then o(A) = o(N).

Proof. By (2.4), )
Ru(4) = Ru(N)(I + VR, (N))™
Now, VR, (A) (1 & o(A)) is-a Volterra operator by Corollary 2 of Theorem
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17.1 of [3, p. 121]. Hence
(4 VR, = 3 (VR (N (1),
ie. -
Ry(4) = Ry(N) kf(vmw»k(—l)k
=0

which clearly implies our assertion. m

Proof of Theorem 1. (2.3), (2.4) and (2.7) hold by Lemma 1. De-
fine

1 n
Va=3 Pltet)VAPy, No= @(t)AP;, Bn=Ny+Vp.
k=1 k=1

First, suppose that A is bounded. Then {B,} strongly converges to 4. By
(1.3), {f(Bn)} strongly converges to f(A4). The inequality

(2.11) IF(A) < sup | f(Ba)ll

follows from the Banach-Steinhaus theorem. Since the spectral function of
B,, consists of n < oo projectors, Lemma 2 yields

.'c) |Vﬂ|£G
HF(Bulll < Z peif(%n) ()l (k1372
By Lemma 3, o(B,,) = o(N,). Clearly, o(N,) C o(N). Hence, o(B,) C
o(A). By Theorem 3.6.3 of [9, p. 119], |V,ls — |[V|2 as n — oo. (2.1) holds
by (2.10) and (2.11).

Now, let A be an unbounded operator. Let @, = P(n) — P(—n). Then
AQ,, is bounded for each n < 0o, We have (A—pl) 1 Qn(AQn— Q) = Q..
By (1.3), || f(AQn)|| = [[f(A)Qn]||. Moreover, AQ, is a restriction of A onto
its invariant subspace. Hence a(AQn) C o(A). Now, we obtain by (2.1) the
estimate

(2.12) 1£(AQu)] |<Z sup |F™(w)| g
=0 HE co(A )

Since |VQrla — [Va and v(AQn) = [V Qa2 by (2.10), we have v(4Q,) —
v(A) as n — co. From this and from (2.12) we get (2.1). m

'”(AQn}
(k1)3/2

Theorem 1 is sharp: (2.1} turns into the equality || f(A)}|| = sup ¢4y |.f ()]
if A is a normal operator and supg,(ay 1f ()| = sup,(a) 1F(8)]-
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COROLLARY 2. Let A satisfy (1.2) and let g(A) = FOMP) be an analytic

function on co(AP). Then
> v(AP)*
HIY sup 9@ .
1£( )H_kg[)m&p)lg (W) Gora
COROLLARY 3. Let A satisfy (1.1).. Then
o (A
(k1)o7

|| exp(At)[| < expla(4)t]

(t=0)
k=0

where o:(A) = sup Reo(A4).

COROLLARY 4. Let A satisfy (1.1) and let o(A) = [a,b] (—
oa). Then

oo <a<b

o~ v(A)
1Ru(A)] < =
where d(g, A} is the distance between o(A) and u on the complez plane.

This supplements Carleman’s estimate {4, Ch. XI] and also generalizes
the author's estimate [8] in the case Imo(4) = 0.

3. Perturbation of the spectrum

LEMMA 4. Let A, B be linear operotors acting in o Banach space and
suppose
(3.1) g=[|A- Bl <oo,
(32) I Ru( A < D(d(, 4)7)
where b(y) is an increasing function of y > 0. Then sup{dist(}, o(A)) :
Meo(B)} < 1/¢(g™") where ¢ is the inverse function to b; w(b(y)) =y
Proof Wehave R,(A4)—R.(B) = R,(B)(B—A)R,(A). Let g||R,.(A)
< 1. Then ||Ru(B)|l < | Ru(4)[(1 - g|Ru(A)])"", hence p € o(B). There-
fore 1 < qj|R.(A)| < gb(d(p, A)™1) if p € o(B). This implies d(u, A) <
1/4(g™t) for each € o(B). w

Lemma 4 and Corollary 4 give:

COROLLARY 5. Let A satisfy (1.1) and (3.1}, and suppose o(A) = [0, b],
-0 < a<b<oo. Then

(3.3) sup{dist(%, o(4)) : A € o(B)} < 1/¢alg™)
where Y4 18 the inverse function to
00 A)k
bA(y = Z

k=0
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Let A= A* Thenv(4) =0, ba(y) = y. In this case under the condition
(3.1), dist{e(B),0(A)} < g, ie. (3.3) generalizes the well-known result for
selfadjoint operators with o(A) = [a, 8] [12, Ch. V.

Remark. Schwarz’s inequality gives

P>y WA e e eginagay).

§=0 k=0

By Corollary 4 under (1.1) and ¢(A) = [a, b] we have

I1BL (A £ V2d(p, 4)7 explo(A)*/d(p, 4)*).

4. Nonlinear perturbation of a linear semigroup. Consider the
equation

(4.1) du/dt = Au + F(u,t)

where A is a linear operator in H and F maps H x [0, 00) into H.

A solution of the Clauchy problem for (4.1) is a continuously differentiable
function u : [0,00) — D(A) which satisfies (4.1) and an initial condition
u(0) = ug € D{A). Assume

(4.2) || F(z,t)|| < g|lzl for each z € D{A) and ¢ > 0.

(0 <t < oo0)

THEOREM 2. Let z(t) be o solution of the Cauchy problem for (4.1) under
the conditions (1.1), (4.2), a{A) < 0 and

N v
1= 2 Tty < Ve
Then

(4.3) lz()]] < alle(@)]I(1 ~ ¢~
Proof We have by (4.1)

(£ > 0, a = const).

2(t) = exp[At]z( f expl[A(t — 5)|F(z{s),s) ds

0
{see [11, p. 53]). This implies

lz()]l < || explAtlz(O)]l + [ || explA(e — s)lllallz(s)]; ds -
0

By Corollary 3,
lexpldt]] <o (20,
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[ llexplA(t—s)llds < [ [lexp[As]ids
0

Okl AVK
expla(A)] t—(a%); dt=j (t=0).
k=0

i
o;ﬁg

Hence, max»o |[2(8)]| < a|z(0)!] + max;zo |z(t)]j and we arrive at (4.3). m
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On molecules and fractional integrals on spaces
of homogeneous type with finite measure

by

A. EDUARDO GATTO and STEPHEN VAGI (Chicago, IIL)

Abstract. In this paper we prove the contimuity of fractional integrals acting on non-
homogeneous function spaces defined on spaces of homogeneous type with finite measure.
A definition of the molecules which are used in the H? theory 1s given. Results are proved
for L7, H? BMO, and Lipschitz spaces.

1. Definitions and statement results. We shall follow the definitions
and notation of [GV], and we assume that the reader is familiar with that
paper. In the present paper (X, §, 4) is a normal space of homogeneous type
of finite measure and of order v, 0 < v < 1. In this case the diameter of
the space is finite and will be denoted by D. We may and will assume that
w(X) =1

For the sake of completeness we will repeat the definitions of normality
and order. (X, 6, 1) is a normal space if there are positive constants 4; and
A, such that for all z in X

{1.1) Ayr < p(Bp(z)) H0<r<Re,

(1.2) p(Br(z)) < Aor i 7 >rg,

where B,.(z) denotes the ball of radius » and center z, and where Ry =
inf{r > 0: Bn(z) = X}, and r; = sup{r > 0 : B.(2) = {z}} if u({z}) # 0,
and ry = 0 if u({z}) = 0. Note that sup{R; : ¢ € X} = D < 00, that (1.1)
holds for 0 < r < 2D with constant A; /2 instead of Ay, and that (1.2) holds
for r = 7y if vy £ 0. The space (X, 8, u) is said to be of order v, 0 <y <1,
if there exists a positive constant M such that for every z, y, and z in X,

16(z,2) — 8y, 2)| < M6(w,y)" (max{8(z, 2),6(y.2)})" " -

We will consider on (X, §, 1) the following function spaces and norms. If
0 < p < oo then L and ||fll, have their usual meanirg. For a measurable
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