

On an estimate for the norm of a function of a quasihermitian operator

by

M. I. GIL' (Beer Sheva)

Abstract. Let A be a closed linear operator acting in a separable Hilbert space. Denote by co(A) the closed convex hull of the spectrum of A. An estimate for the norm of f(A) is obtained under the following conditions: f is a holomorphic function in a neighbourhood of co(A), and for some integer p the operator $A^p - (A^*)^p$ is Hilbert-Schmidt. The estimate improves one by I. Gelfand and G. Shilov.

1. Introduction. Notations. Let H be a separable Hilbert space, and let A be a closed linear operator acting on H with domain D(A). Then A is called quasihermitian if $D(A) \subseteq D(A^*)$ and the imaginary component $A_J = (A - A^*)/2i$ is completely continuous. Denote by $\operatorname{co}(A)$ the closed convex hull of the spectrum $\sigma(A)$ of A. In this paper we obtain an estimate for the norm of f(A) if f is a holomorphic function in a neighbourhood of $\operatorname{co}(A)$, and A is a quasihermitian operator with

$$(1.1) A_J \in C_2$$

where C_2 is the Hilbert-Schmidt ideal [9]. Moreover, this estimate is generalized to the case

$$(1.2) A^p - (A^*)^p \in C_2$$

for some integer p.

Singular integral and integral-differential operators are examples of operators which satisfy (1.1) and (1.2).

We recall that I. M. Gelfand and G. E. Shilov [5, Ch. 2] obtained an estimate for the norm of a matrix-valued function with equality being attained for no matrix (finite-dimensional operator). In [6] we obtained a sharp estimate for matrix-valued functions. This estimate becomes equality in the case of a normal matrix. In [7] an estimate for the norm of a function of a Hilbert-Schmidt operator is obtained.

Key words and phrases: functions of linear operators, estimation of norms.

¹⁹⁹¹ Mathematics Subject Classification: 47A56, 47A55.

Below we generalize and improve the results from [6, 7] and also supplement Carleman's estimate for the resolvent $R_{\mu}(A)$ of $A \in C_2$ [4, Ch. XI].

Let I denote the identity operator in H, and let

$$v(A) = \left[|A_J|_2^2 - \sum_{k=1}^{\infty} |\operatorname{Im} \mu_k(A)|^2 \right]^{1/2} \sqrt{2}$$

where $|B|_2$ is the Hilbert-Schmidt norm of a Hilbert-Schmidt operator B, and $\mu_1(A), \mu_2(A), \ldots$ are all nonreal eigenvalues of A counted with their multiplicity. If A is a normal operator, then v(A) = 0 (see [8]).

We define f(A) by

(1.3)
$$f(A) = -\frac{1}{2\pi i} \int_{\Gamma} f(\mu) R_{\mu}(A) d\mu + f(\infty) I$$

where Γ is a smooth contour encircling $\sigma(A)$.

2. Main result

THEOREM 1. Let A be a quasihermitian operator satisfying (1.1) and let f be a holomorphic function in a neighbourhood of co(A). Then

(2.1)
$$||f(A)|| \le \sum_{k=0}^{\infty} \sup_{\mu \in co(A)} |f^{(k)}(\mu)| \frac{v(A)^k}{(k!)^{3/2}}.$$

First we prove a few lemmata.

LEMMA 1. Let the imaginary part A_J of a quasihermitian operator A belong to the Matsaev ideal C_{ω} [10, Ch. 4.3], i.e.

$$\sum_{k=1}^{\infty} (2k-1)^{-1} \mu_k(A_J) < \infty \quad (\mu_k(A_J) \in \sigma(A_J)).$$

Then there are an orthogonal resolution of the identity E(t) $(-\infty < t < \infty)$, a normal operator N and a Volterra (completely continuous quasinilpotent) operator V such that for all $t \in (-\infty, \infty)$

$$(2.2) NE(t) = E(t)N,$$

$$(2.3) E(t)VE(t) = VE(t),$$

$$(2.4) A = N + V.$$

Proof. As is shown in [2],

(2.5)
$$A = \int_{-\infty}^{\infty} h(t)dP(t) + i \int_{-\infty}^{\infty} P(t)A_J dP(t).$$

Here P(t) is an orthogonal resolution of the identity and h is a nondecreasing scalar-valued function. The second integral in (2.5) is the limit in the

 C_{ω} -norm of the sums

$$\frac{1}{2} \sum_{k=1}^{n} [P(t_k) + P(t_{k-1})] A_J \Delta P_k = S_n + U_n$$

$$(t_k = t_k^{(n)}; \ \Delta P_k = P(t_k) - P(t_{k-1}), \ -\infty < t_0 < t_1 < \dots < t_n < \infty)$$

where

(2.6)
$$U_n = \sum_{k=1}^n P(t_{k-1}) A_J \Delta P_k, \quad S_n = \sum_{k=1}^n \Delta P_k A_J \Delta P_k.$$

The sequence $\{S_n\}$ is norm convergent by Lemma 1.5.1 of [10]. We denote its limit by S. By Theorem 2.5.2 of [9, p. 77], each S_n belongs to C_{ω} . According to Theorem 3.5.1 of [9, p. 113], so does S. It is clear that the P(t) ($-\infty < t < \infty$) are projectors of H onto invariant subspaces of the selfadjoint operator S. We arrive at (2.2) when E(t) = P(t) and $N = \int_{-\infty}^{\infty} h(t) dP(t) + iS$. Further, U_n is a nilpotent operator: $(U_n)^n = 0$. The sequence $\{U_n\}$ converges in the C_{ω} -norm because so do the second integral in (2.5) and $\{S_n\}$. We denote the limit by U. Then U is a Volterra operator by Lemma 2.17 of [3]. From (2.5) we obtain (2.4).

By Neumann's theorem [1, p. 314] there exists a bounded scalar-valued function ψ such that $S = \int_{-\infty}^{\infty} \psi(t) dE(t)$ since E(t)S = SE(t). Hence

(2.7)
$$N = \int_{-\infty}^{\infty} \varphi(t) dE(t)$$

where $\varphi = h + i\psi$.

DEFINITION 1. Suppose there are an orthogonal resolution of the identity E(t), a scalar-valued function φ and a Volterra operator V such that (2.3), (2.4) and (2.7) hold. Then we call E(t), N, V and (2.4) a spectral function, a diagonal part, a nilpotent part and a triangular representation of A, respectively.

Our definition of spectral function is analogous to the corresponding definitions in [2, 3].

LEMMA 2. Let a bounded operator A have a triangular representation and a spectral function P(t) which consists of $n < \infty$ projectors $0 = P_0 < P_1 < \ldots < P_n = I$. Suppose its nilpotent part V is in C_2 . Then

(2.8)
$$||f(A)|| \le \sum_{k=0}^{n-1} \sup_{\mu \in co(A)} |f^{(k)}(\mu)| \frac{|V|_2^k}{(k!)^{3/2}}$$

for every function f holomorphic in a neighbourhood of co(A).

20

Proof. (2.7) has the form $N = \sum_{k=1}^{n} \varphi_k \Delta P_k$ in this case. Here φ_k $(k = 1, \ldots, n)$ are eigenvalues of A. Let $\{e_j(m)\}$ $(m = 1, 2, \ldots)$ be an orthonormal basis in $\Delta P_i H$. We set

$$a_{ij}(m) = (Ae_i(m), e_j(m)), N_m = \sum_{j=1}^n \varphi_j(\cdot, e_j(m))e_j(m),$$

$$V_m = \sum_{1 \le i \le j \le n} a_{ij}(m)(\cdot, e_j(m))e_i(m), A_m = N_m + V_m.$$

Clearly, $a_{ij}(m) = 0$ when i > j. The operators A, N, V and f(A) are the orthogonal sums of A_m , N_m , V_m and $f_m(A)$ (m = 1, 2, ...), respectively. Therefore

(2.9)
$$\sigma(A_m) \subseteq \sigma(A), \quad |V_m|_2 \le |V|_2, \quad \max_m ||f(A_m)|| = ||f(A)||.$$

Let B be an $(n \times n)$ -matrix. We apply the estimate [7]

$$||f(B)|| \le \sum_{k=0}^{n-1} \sup_{\mu \in co(B)} |f^{(k)}(\mu)| \frac{|V_B|_2^k}{(k!)^{3/2}}$$

where V_B is the nilpotent part of B. Hence

$$||f(A_m)|| \le \sum_{k=0}^{n-1} \sup_{\mu \in co(A_m)} |f^{(k)}(\mu)| \frac{|V_m|_2^k}{(k!)^{3/2}}$$

since A_m is a finite-dimensional operator and V_m is its nilpotent part. From this and from (2.9) we obtain (2.8).

COROLLARY 1. Under the conditions of Lemma 2,

$$||f(A)|| \le \sum_{k=0}^{n-1} \sup_{\mu \in co(A)} |f^{(k)}(\mu)| \frac{v(A)^k}{(k!)^{3/2}}.$$

This follows from Lemma 2 and the equality

$$(2.10) v(A) = |V|_2,$$

which is proved in [8, p. 164].

LEMMA 3. Let A admit a triangular representation, and let N be its diagonal part. Then $\sigma(A) = \sigma(N)$.

Proof. By (2.4),

$$R_{\mu}(A) = R_{\mu}(N)(I + VR_{\mu}(N))^{-1}.$$

Now, $VR_{\mu}(A)/(\mu \notin \sigma(A))$ is a Volterra operator by Corollary 2 of Theorem

17.1 of [3, p. 121]. Hence

$$(I + VR_{\mu}(N))^{-1} = \sum_{k=0}^{\infty} (VR_{\mu}(N))^k (-1)^k,$$

i.e.

$$R_{\mu}(A) = R_{\mu}(N) \sum_{k=0}^{\infty} (V R_{\mu}(N))^k (-1)^k$$
,

which clearly implies our assertion.

Proof of Theorem 1. (2.3), (2.4) and (2.7) hold by Lemma 1. Define

$$V_n = \sum_{k=1}^n P(t_{k-1}) V \Delta P_k, \quad N_n = \sum_{k=1}^n \varphi(t_k) \Delta P_k, \quad B_n = N_n + V_n.$$

First, suppose that A is bounded. Then $\{B_n\}$ strongly converges to A. By (1.3), $\{f(B_n)\}$ strongly converges to f(A). The inequality

$$||f(A)|| \le \sup_{n} ||f(B_n)||$$

follows from the Banach-Steinhaus theorem. Since the spectral function of B_n consists of $n < \infty$ projectors, Lemma 2 yields

$$||f(B_n)|| \le \sum_{k=0}^{n-1} \sup_{\mu \in co(B_n)} |f^{(k)}(\mu)| \frac{|V_n|_2^k}{(k!)^{3/2}}.$$

By Lemma 3, $\sigma(B_n) = \sigma(N_n)$. Clearly, $\sigma(N_n) \subset \sigma(N)$. Hence, $\sigma(B_n) \subset \sigma(A)$. By Theorem 3.6.3 of [9, p. 119], $|V_n|_2 \to |V|_2$ as $n \to \infty$. (2.1) holds by (2.10) and (2.11).

Now, let A be an unbounded operator. Let $Q_n = P(n) - P(-n)$. Then AQ_n is bounded for each $n < \infty$. We have $(A-\mu I)^{-1}Q_n(AQ_n-\mu Q_n) = Q_n$. By (1.3), $||f(AQ_n)|| = ||f(A)Q_n||$. Moreover, AQ_n is a restriction of A onto its invariant subspace. Hence $\sigma(AQ_n) \subset \sigma(A)$. Now, we obtain by (2.1) the estimate

(2.12)
$$||f(AQ_n)|| \le \sum_{k=0}^{\infty} \sup_{\mu \in co(A)} |f^{(k)}(\mu)| \frac{v(AQ_n)^k}{(k!)^{3/2}}.$$

Since $|VQ_n|_2 \to |V|_2$ and $v(AQ_n) = |VQ_n|_2$ by (2.10), we have $v(AQ_n) \to v(A)$ as $n \to \infty$. From this and from (2.12) we get (2.1).

Theorem 1 is sharp: (2.1) turns into the equality $||f(A)|| = \sup_{\sigma(A)} |f(\mu)|$ if A is a normal operator and $\sup_{\sigma(A)} |f(\mu)| = \sup_{\sigma(A)} |f(\mu)|$.

An estimate for the norm

COROLLARY 2. Let A satisfy (1.2) and let $g(\lambda) = f(\lambda^{1/p})$ be an analytic function on $co(A^p)$. Then

$$||f(A)|| \le \sum_{k=0}^{\infty} \sup_{\mu \in co(A^p)} |g^{(k)}(\mu)| \frac{v(A^p)^k}{(k!)^{3/2}}.$$

COROLLARY 3. Let A satisfy (1.1). Then

$$\|\exp(At)\| \le \exp[\alpha(A)t] \sum_{k=0}^{\infty} \frac{v(A)^k}{(k!)^{3/2}} t^k \quad (t \ge 0)$$

where $\alpha(A) = \sup \operatorname{Re} \sigma(A)$.

COROLLARY 4. Let A satisfy (1.1) and let $\sigma(A) = [a, b] \ (-\infty \le a < b \le \infty)$. Then

$$||R_{\mu}(A)|| \le \sum_{k=0}^{\infty} \frac{v(A)^k}{d(\mu, A)^{k+1} \sqrt{k!}}$$

where $d(\mu, A)$ is the distance between $\sigma(A)$ and μ on the complex plane.

This supplements Carleman's estimate [4, Ch. XI] and also generalizes the author's estimate [8] in the case $\operatorname{Im} \sigma(A) = 0$.

3. Perturbation of the spectrum

Lemma 4. Let A, B be linear operators acting in a Banach space and suppose

$$(3.1) q = ||A - B|| < \infty,$$

(3.2)
$$||R_{\mu}(A)|| \le b(d(\mu, A)^{-1})$$

where b(y) is an increasing function of y > 0. Then $\sup\{\operatorname{dist}(\lambda, \sigma(A)) : \lambda \in \sigma(B)\} \le 1/\psi(q^{-1})$ where ψ is the inverse function to b: $\psi(b(y)) = y$.

Proof. We have $R_{\mu}(A) - R_{\mu}(B) = R_{\mu}(B)(B-A)R_{\mu}(A)$. Let $q \| R_{\mu}(A) \| < 1$. Then $\| R_{\mu}(B) \| \le \| R_{\mu}(A) \| (1-q \| R_{\mu}(A) \|)^{-1}$, hence $\mu \not\in \sigma(B)$. Therefore $1 \le q \| R_{\mu}(A) \| \le q b(d(\mu,A)^{-1})$ if $\mu \in \sigma(B)$. This implies $d(\mu,A) \le 1/\psi(q^{-1})$ for each $\mu \in \sigma(B)$.

Lemma 4 and Corollary 4 give:

COROLLARY 5. Let A satisfy (1.1) and (3.1), and suppose $\sigma(A) = [a, b]$, $-\infty \le a < b \le \infty$. Then

(3.3)
$$\sup \{ \operatorname{dist}(\lambda, \sigma(A)) : \lambda \in \sigma(B) \} \le 1/\psi_A(q^{-1})$$

where ψ_A is the inverse function to

$$b_A(y) \equiv \sum_{k=0}^{\infty} \frac{v(A)^k}{\sqrt{k!}} y^{k+1}$$
.

Let $A = A^*$. Then v(A) = 0, $b_A(y) = y$. In this case under the condition (3.1), dist $\{\sigma(B), \sigma(A)\} \leq q$, i.e. (3.3) generalizes the well-known result for selfadjoint operators with $\sigma(A) = [a, b]$ [12, Ch. V].

Remark. Schwarz's inequality gives

$$b_A(y)^2 \le \sum_{j=0}^{\infty} (1/2)^j y^2 \sum_{k=0}^{\infty} \frac{(yv(A))^{2k}}{k!} 2^k = 2y^2 \exp[2v(A)^2 y^2].$$

By Corollary 4 under (1.1) and $\sigma(A) = [a, b]$ we have

$$||R_{\mu}(A)|| \le \sqrt{2} d(\mu, A)^{-1} \exp[v(A)^2/d(\mu, A)^2].$$

4. Nonlinear perturbation of a linear semigroup. Consider the equation

$$(4.1) du/dt = Au + F(u,t) (0 \le t \le \infty)$$

where A is a linear operator in H and F maps $H \times [0, \infty)$ into H.

A solution of the Cauchy problem for (4.1) is a continuously differentiable function $u:[0,\infty)\to D(A)$ which satisfies (4.1) and an initial condition $u(0)=u_0\in D(A)$. Assume

$$(4.2) ||F(x,t)|| \le q||x|| \text{for each } x \in D(A) \text{ and } t \ge 0.$$

THEOREM 2. Let x(t) be a solution of the Cauchy problem for (4.1) under the conditions (1.1), (4.2), $\alpha(A) < 0$ and

$$j \equiv \sum_{k=0}^{\infty} \frac{v(A)^k}{|\alpha(A)|^{k+1} \sqrt{k!}} < 1/q.$$

Then

$$||x(t)|| \le a||x(0)||(1-qj)^{-1} \quad (t \ge 0, \ a = \text{const}).$$

Proof. We have by (4.1)

$$x(t) = \exp[At]x(0) + \int_{0}^{t} \exp[A(t-s)]F(x(s), s) ds$$

(see [11, p. 53]). This implies

$$||x(t)|| \le ||\exp[At]x(0)|| + \int_0^t ||\exp[A(t-s)]||q||x(s)|| ds.$$

By Corollary 3,

$$\|\exp[At]\| \le a \quad (t \ge 0),$$

$$\int_{0}^{t} \| \exp[A(t-s)] \| ds \le \int_{0}^{\infty} \| \exp[As] \| ds$$

$$\le \int_{0}^{\infty} \exp[\alpha(A)t] \sum_{k=0}^{\infty} \frac{t^{k} v(A)^{k}}{(k!)^{3/2}} dt = j \quad (t \ge 0).$$

Hence, $\max_{t\geq 0} \|x(t)\| \leq a \|x(0)\| + \max_{t\geq 0} \|x(t)\| j$ and we arrive at (4.3).

References

- [1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Nauka, Moscow 1966 (in Russian).
- [2] L. de Branges, Some Hilbert spaces of analytic functions, J. Math. Anal. Appl. 12 (1965), 149-186.
- [3] M. S. Brodskii, Triangular and Jordan Representations of Linear Operators, Nauka, Moscow 1969 (in Russian); English transl.: Transl. Math. Monographs 32, Amer. Math. Soc., Providence, R.I., 1971.
- [4] N. Dunford and J. T. Schwartz, Linear Operators, II. Spectral Theory, Selfadjoint Operators in Hilbert Space, Interscience, New York 1963.
- [5] I. M. Gelfand and G. E. Shilov, Some Questions of the Theory of Differential Equations, Fiz.-Mat. Liter., Moscow 1958 (in Russian).
- [6] M. I. Gil', On an estimate for the stability domain of differential systems, Differential nye Uravneniya 19 (8) (1983), 1452-1454 (in Russian).
- [7] —, On an estimate for the norm of a function of a Hilbert-Schmidt operator, Izv. Vyssh. Uchebn. Zaved. Mat. 1979 (8) (207), 14-19 (in Russian).
- [8] —, On an estimate for the resolvents of nonselfadjoint operators "close" to selfadjoint and to unitary ones, Mat. Zametki 33 (1980), 161-167 (in Russian).
- [9] I. Ts. Gokhberg and M. G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators, Nauka, Moscow 1965 (in Russian); English transl.: Transl. Math. Monographs 18, Amer. Math. Soc., Providence, R.I., 1969.
- [10] —, —, Theory and Applications of Volterra Operators in Hilbert Space, Nauka, Moscow 1967 (in Russian); English transl.: Transl. Math. Monographs 24, Amer. Math. Soc., Providence, R.I., 1970.
- [11] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin 1981.
- [12] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin 1966.

DEPARTMENT OF MATHEMATICS BEN GURION UNIVERSITY P.O. BOX 653 BEER SHEVA 84105, ISRAEL

> Received November 2, 1990 (2734) Revised version April 24 and November 8, 1991

On molecules and fractional integrals on spaces of homogeneous type with finite measure

by

A. EDUARDO GATTO and STEPHEN VÁGI (Chicago, Ill.)

Abstract. In this paper we prove the continuity of fractional integrals acting on non-homogeneous function spaces defined on spaces of homogeneous type with finite measure. A definition of the molecules which are used in the H^p theory is given. Results are proved for L^p , H^p , BMO, and Lipschitz spaces.

1. Definitions and statement results. We shall follow the definitions and notation of [GV], and we assume that the reader is familiar with that paper. In the present paper (X, δ, μ) is a normal space of homogeneous type of finite measure and of order γ , $0 < \gamma \le 1$. In this case the diameter of the space is finite and will be denoted by D. We may and will assume that $\mu(X) = 1$.

For the sake of completeness we will repeat the definitions of normality and order. (X, δ, μ) is a *normal space* if there are positive constants A_1 and A_2 such that for all x in X

$$(1.1) A_1 r \le \mu(\mathcal{B}_r(x)) \text{if } 0 < r \le R_x,$$

(1.2)
$$\mu(\mathcal{B}_r(x)) \le A_2 r \quad \text{if } r > r_x,$$

where $\mathcal{B}_r(x)$ denotes the ball of radius r and center x, and where $R_x = \inf\{r > 0: \mathcal{B}_r(x) = X\}$, and $r_x = \sup\{r > 0: \mathcal{B}_r(x) = \{x\}\}$ if $\mu(\{x\}) \neq 0$, and $r_x = 0$ if $\mu(\{x\}) = 0$. Note that $\sup\{R_x : x \in X\} = D < \infty$, that (1.1) holds for 0 < r < 2D with constant $A_1/2$ instead of A_1 , and that (1.2) holds for $r = r_x$ if $r_x \neq 0$. The space (X, δ, μ) is said to be of order γ , $0 < \gamma \leq 1$, if there exists a positive constant M such that for every x, y, and z in X,

$$|\delta(x,z) - \delta(y,z)| \leq M\delta(x,y)^{\gamma} (\max\{\delta(x,z),\delta(y,z)\})^{1-\gamma}.$$

We will consider on (X, δ, μ) the following function spaces and norms. If $0 then <math>L^p$ and $||f||_p$ have their usual meaning. For a measurable

¹⁹⁹¹ Mathematics Subject Classification: Primary 42C99, 26A33, 44A99; Secondary 31C15.