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On the distribution function of the majorant of ergodic means
by

LASHA EPREMIDZE (Thilisi)

Abstract. Let T be a measure-preserving ergodic transformation of a measure space
(X,8, ) and, for f € L(X), let

1 N—-1
® = m
= SEP N Z foI™.
me=0
In this paper we mainly investigate the question of whether
. 1
() fl (F>0-1 ffdp,|dt<oo
(£*>1)
and whether
(i) ”“(f > 1)~ ffd,u‘dt<oo
(f>t)

for some o > 0. It is proved that (i) holds for every f = 0. (i) holds if f>0 a.nd
floglog{f +3) € L(X) or if u(X) = 1 and the random variables f o T™ are independent..

Related inecualities are proved. Some examples and counterexamples are constracted.
Several known results are obtained as corollaries.

1. Introduction. Let T be a measure-preserving ergodic transformation
of a measure space (XS, u). For a function f : X — R the ma.Jorant of
ergodic means will be denoted by f*, :

N—1
e )--supN:L_:Of T™(z), ze€X.

In this paper we shall investigate the problem of isolating the principal
part of the distribution function ¢ — u(f* > t), t > 0 (we write (f* > ) =
{z: f*(z) > t}}, which is formulated as follows: Find a function (¢}, t > 0,
of the simplest form possible such that the difference ,u.( > t) - 4(t) be
integrable in the neighbourhood of 1nﬁmty : .
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2 L. Epremidze

Tt is well known that the Maximal Ergodic Theorem asserts that for any
integrable function f (f € L(X)),

: 1
(1) pfr > < [ fau, t>0.
(5" >1)
(At present there exist several different proofs of this theorem; see [12], [6],
9], [7] or Theorem 1.2 of this paper.)
Naturally, a qguestion arises if one can take

1
(@) W) =3 [ fau.

(F*>t)
It is easy to show that without any restrictions on T this is not true, i.e. the
inequality

oo . 1

®) Jursn=3 J faui<o
1 (F7>t)

may be false. Indeed, if T =idx, f € L(X), f > 1 and

J fosidu= JE [ riu=co,
QTN
then f* = f and (3) fails.

O. Tsereteli has raised the following question: Assuming that T is ergodic
(Le. p{AATHA)) = 0= p{d) =0or u(X\ A} =0, A € 8), can it be
asserted that ~ has the form (2), ie. (3) holds at least for nonnegative
feLXxy

Theorem 1.8 of this paper gives an affirmative answer to this question
(see Corollary 1.9). It is also shown that (3) is not true for an arbitrary
integrable f (see Example 1.12).

In some cases it is possible to improve the form of the principal part so
as to make it independent of the function f* and we can claim that

(4) (1) = f fp
Firsy

(Example 1.17 shows that this is impossible for an arbitrary nonnegative in-
tegrable f). Such cases are: (a) f € Lloglog(L+3) (i.e. |f|loglog(|fi+3) €
CL(X)), > 0 and T is an arbitrary ergodic transformation (see Theo-
rem 1.15); (b) (X, S, p) is a probability space, f € L{X) and ergodic T are
such that f, f o T, f o T%,... form a sequence of independent random vari-

ables (see Theorem 2.1; we empha.mze that f is not necessarily nonnegative
in that theorem).
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The proof of the main result of Section 1 (Theorem 1.4) uses the filling
scheme method (see [11], 3.7). Recently we have been made aware that
for finite measure spaces Theorem 1.4 may be deduced from the proof of
Lemma 1 in [13]. Nevertheless we have not made any change in our proof.
This makes our paper self-contained.

The following notation will be used: f* = max(f,0), f~ = —min(f,0);
T-™(A) = (T™)*(A), A €S. L. (X)is the class of S-measurable functions
for which [, f*du < cc. For f € L.(X) let

E(f)z;(}—jxffdﬂ,

where it is assumed that E{f) =
w(X) < oo and f, fdp=—co

0 if p(X) = co and E(f) = —oo if

1. The proof of the main results is based on

LEMMA 1.1, Let T : X — X be a transformation of ¢ space X, and let
F: X - R. Define

f0=f= fn+l=“f;+f§DTa n=0,1,...,

5 k

®) Eﬂz{m:g?£§n§f°Tm($)>O}'
Then

(6) (fn > 0) c B,

(7) By C{fa20), n=0,1,...

Proof. Since

N N N .
N faproT™ =y —froT™+ Y fif o™
m=0 =0 m==0
N
=—f7+ Y faoT™+ [T 0TV,
me=1
we have
N+1
8)  faoTV{2)>0 = 2 farroT™@) £ Y fao T™(2),
m=0 m=>0
N+1
(9) fulz) <0 = an+1oT 2 ) faoT™(2),

m=0 m=0

n=0,1,..., N=0,1,...
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From (5) it follows that fr41(z) > 0= fo0oT(2) > 0 and fryi(z) < 0
= fn( )< 0,n=0,1,... Henceif f,(z) > 0, then fr10T (%), fo2oT?(z},
L foT™(z) are a.lso positive and by (8) we have
0< ful@) € fac1 (@) + faer0T(z) ... < Zfon
Thus z € E,, and (6) holds.

If £.(z) <0, then f_1(z), fa—2(z), ..., f(x) are also negative and by {9)

we have
N N-1
Y foT™@)< D foT™a) <. < fulz) <0
m=0 m=0

for each N < n. Thus ¢ € E, and (7) holds.
Lemma 1.1 is proved.

To make the paper complete and also to illustrate the application of
Lemma 1.1 we give the proof of the Maximal Ergodic Theorem.

THEOREM 1.2. Let T be a measure-preserving transformation of (X, S, u),
and let f € Ly(X) andt > 0. Then

. 1
(10) wr>n<s [ fdn
(f">1)
LeMMaA 1.3 (Maximal Ergodic Theorem). Let T be a measure- presermng
transformation of (X,S,u) and f € L, (X). Then

(11) [ fap>o0.
(f*>0)
Proof. Let f, and E,, n = 0,1,...,
Since By C B1 C ... and | Joo,
to show that

(12) [ fauzo0
Bn

be the same as in Lemma 1.1.
E, = (f* > 0), to prove (11) it is sufficient

for each = > 0.
(6) implies that (f; > 0) C Ex C Ey, for k < n. Hence

ffkdu= f~f{d,u+ ff,fd,w= f——f,:d,u—}- fff:onn“
B X - B, X

By
2 f._f_ic+1 dy,
EBn o
Thos Je, fdp> fEn fndp, and (7) yields (12).

k=0,1,...,n~1.
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Proof of Theorem 12. Since f—t € L, (X),
[ G-vduzo,
({F-1)">0)
by Lemma 1.3. But {(f ~¢)* > 0) = (f* > t), and we obtain (10).

THEOREM 1.4. Let T be o measure-preserving ergodic transformation of
a measure space (X, S, u), let f € L {X), and suppose u(f* > 0) < co and

(13) [ fdu<o.
X

Then

(14) J

(f>0U(f"eT>0)

Fdp <.

To prove this theorem we need

LEMMA 1.5. Let T be a measure-preserving ergodic transformation of a
measure space (X,S, u). Let A be a measurable set of finite measure which is
not of full measure (i.e. A €8, u(X\A4) >0, u(A) < 0o) and let (B, )2, be
a sequence of measurable sets such that By C A and Bnyy C (T1{B,)nA),
n=01,... Then

nli{%o #(Brn) = 0.

Proof Let Ap = _oT ™(4), n=0,1,..
Then p(Ag) < oo and A, | Ae. Hence u(A,) — u(Ads). Smce #(Ax) <
oo and T (Aw) = Ny T‘m( ) D Ag, we bhave p(T71(Aw)AA,) =
(T Ax)) — t{Ae) = 0. Since T is ergodic, we have either u(A..) =0 or

w(X\ Ag) = 0. But the latter is impossible because X \ Ao, 2 X \ 4 and
p(X\ A) > 0 by assumption. Thus p(dy) = 0 and p(A4,) — 0.

Now it remains to show that B, C A,, n = 0,1,... This can be easily
done by induction: By C Ag and if B,, C A.n, then B,hq C ( L{B)NA) C
(T~ A)NA) = Apy1, n=0,1,.

Proof of Theorem 1.4. First note that
(15) (f*>0c{(f>0U(f*=-T>0)=GC

Indeed, if z € (f* > 0), then there exists N such that Emmo fol™(z) > 0.
Thus either f(z) > 0 or Em  foT™(z) = 2m=0 FoT™(T(z)) > 0. Hence
z€eG.

If (f* > 0) is a full measure set, then (14) follows from (15) and (13).
Assume now that (X \(f* > 0)) > 0. Lét f,,, n =10, 1,...; be the functions

i Aoo = n::o T_m(A)‘
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defined by (5). Let us show that

(186) ffnd,ux ffd,u, n=0,1,...
G G

Since

(17) (o> 0)C(f*>0)

(see (6)), we have (fnoT > 0) C (f* o7 > 0). Thus

(18) (fa>0U(froeT>0))CGq.

This implies
ff"d’u: f = fn dut ff;f"d,um f I dp+ ffnon,u
G

- [ [

and since fo = f, (16) holds.
‘We shall now show that

(19) lim. [ fdu=0.
X

oTdp = f.fn-i—!.d}u'a n=0,1,...,
e}

This will complete the proof on account of (16).
Since

(20) fapp SffoT
(see (5)) and (17) holds, we have
Ffar1 >0 CT fa>0)N(F>0), n=0,1,...
Hence the sets A = (f* > 0) and B, = (f, > 0), n = 0,1,..., satisfy the
conditions of Lemma 1.5 and thus
(21) Jim_pu(fn > 0) =0.
(20} implies that ff < ft oT™. Therefore for any ¢ > 0 we have

[ fraus [ frorrau
(fr>0) (fn>0)
= 5 +
(Fa20)N(FToT™>t)  (fa>0MN(FFolm<E)
[ fdpttu(fa>0), n=01,...
(f>1)

Thus, taking into account (21}, we conclude that (19) holds.
Theorem 1.4 is proved.

)f+oTndu
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Remark 1.6. The condition p(f* > 0) < oo is necessary in Theo-
rem 1.4. Indeed, let X be the set of all integers, and let y be the counting
measure on it. Let T(m)=m+ 1, m € Z, and define

1 ifm=-1

f(m)z{—l ifm=0,
0 ifm#—1,0.

Then f*(m} = —1/m > 0form <0 and f*(m) =0form >0, G = (f > 0)
U(f*oT>0)={m€Z:m<0}a.ndfod,u=1.

?

Tueorem 1.7 (cf. [13]). Let T be a measure-preserving ergodic trans-

formation of o measure space (X,S,p) and let f € Lo(X). Then for
t > max(E(f),0)

(22) w(F>)U(f"eT>1)) >

o | =t

[ fap

(Ft)U(fToT>t)

and consequently

(23) pfr>1) 2

ok | =

[ fdu—n(f>1).

F>ULFoT>t)

Proof If t > max(E(f),0), then the function.f — ¢ satisfies the con-
ditions of Theorem 1.4 (u({(f — t)* > 0) = pu(f* > %) < oo by Theo-
rem 1.2). Applying inequality (14) to this function, taking into account.
that (f*o T > ) =T"Yf*> ) =T H{Ff-t)*>0)=((f—2t)* oT > 0)
and performing elementary transformations, we obtain (22).

(23) immediately follows from (22) since

u((f > U (f el > ) S p(f > th+u(f ol > 1) =

Theorem 1.7 is proved.

p(f > 8+ p(f > 1).

Since
(24) ("> c{(f>tU(f"oT >1))
(see (15)), (23) implies the validity of

TuroreEM 1.8. Let T be ¢ measure-preserving ergodic transformation of
o measure space (X,S, i), and let f € L{X) and f > 0. Then

(25) w(f* > 1) [ fdp—pw(f>1)y, t>B(f).
(F*>t)

c+|1—l

COROLLARY 1.9. Under the assumptions of Theorem 1.8 the function (2)
is the principal part of the distribution function t — u(f* > t).
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Proof. It follows from (10) and (25) that
o0
(26) f’ ffdu pw(f* >t)[dt< f pf>t) <
B(f) ' (Ffr>t) B(f)
Remark 1.10. It follows from (26) that if x(X) = oo (in this case
E(f)=0), then the function (2) is the principal part of t— ,u( f* > 1) also
in the neighbourhood of zero.

ffd,u<oo

From (26) immediately follows

COROLLARY 1.11. Under the assumptions of Theorem 1.8,

ff*d#+ ffd;u> f [ fan

E(f) (f>f)

{ [ flogt ‘%}‘)‘d# if W(X) < o0,

00 if W(X) = oo, p(f >0)>0.
This corollary contains the known result about the integrability of f*:

THEOREM (Ornstein {10]}. Let T be a measure-preserving ergodic trans-
formation of (XS, u), let f > 0 and suppose f* € L(X). Then:

(i) #f w(X) < oo then f € LloghL;

(1) of p(X) == oo then f =0 gimost everywhere.

ExaMmpPLE 1.12. The following example shows that if f is not nonnega-
tive, then the functionst — ¢! f(f*>t) fduandt— ¢! f(f>t)u(f*oT>t) fdp
(see (23)) may not be the principal parts of t — u(f* > t).

Let X be the interval [0,1), ¢ any irrational number in (0,1/2), T'(z) =

z+¢ (modl), x € [0,1), and f an integrable function with the properties:
flz) < Oand f{z+e)=—5f(z) for z € [0,g), flz) =0 for z € [2¢,1) and

(27) | ffif [ fdu=oo.
1 {f>t)
Then (f*)t = f* and

Jota={( [+ [ Yfau=— [jau
(F>t)U(f"oT>1) (Ff>8) T > (F>t)
Hence [ p(f* >t)dt < oo and

[ [iwme, JE | pae-
1

L (> (F>)U(f*oT>t)

icm
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Theorem 1.7 may be used to prove inequality (28) below which yields a
theorem of Vakhania and Davis.

THEOREM 1.13. Let T be a measure-preserving ergodic transformation
of a measure space (X, S, ), let f € L(X) and define '

1 N-1
M) =swp | 3 £ o176

Then

(28) 2u(7* > )= ullfl >0 2 5| [ Fdy
(17i>1)

fort > B(f).

Proof. Since

[ ogw=( [+ o+ [ )fde

(F>H)U{FroT>t) (F>1)  (fTeT>N(f<—£)  (FreT>)N(|fI<E)
> [fapt+ [ fdu—tu(f*oT >1)
(f=4) (f<—-t)
J fau—tu(f >0,
(1f1>t}

from (23) we obtain
1
2u(f*> )t u(f>0) 25 [ fdu
(If1>8)
for t > max(E(f),0). Applying this to —f we have
1
w—f) > +uf <D 2z-7 [ fdp
(If]>2)

for ¢ > max(

—E(f),0). Hence

2max(u(f* > 0, u((~F)" > )+ ullfi >D 2 5| [ fau
(1f1>¢}
for t > |E(f)| and, since f# = max(f*, (—f}*), (28) holds.

CoRrOLLARY 1.14. Under the assumptions of Theorem 1.13,

2ff#dﬂ‘|‘f|fd#> f—} ffdu’-
RIS

This corollary contains the known result about the integrability of f#:
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THEOREM (Vakhania [15], [16], Davis [2]). Let T be a measure-preserving
ergodic transformation of (X,8,p), let f € L{X) and suppose f* € L(X).
Then

() if p(X)} < 00, then

T dt

S5l T qdu] <o
(P

(ii) of u(X) = oo, then

[ fdu=0, }Of‘i—t f fd,u,‘<oo.
0 (51>t)

THEOREM 1.15. Let T be o measure-preserving ergodic transformation of
a measure space (X, S, ), let f > 0 and suppose f € Lloglog(L-+3). Then
the function (4) is the principal part of the distribution function

t— u{f*>1t), ie

o0
(29) J >0 - ffdutda@o
1 (f>f-)
Proof. Since
T dt T dt
O = J)fw=J5 [ fam
1 (F*>t)  (F>1) 1 (F*>8)N(f<t)
fr f
di dt
= gw S [iw]T
(Fr>1N{F<) 1 (£>1) !
= [ esfae [ flogkoau
(Fr=1n{f<i) (f>1)
and

[ fogfdus [ lgfrdu= [ u(f* > et

(F*>1N(F <) (1*>1) o
[s0] o o]
< [etat [ fdu< [ fdu fetat
0 (f*>e*) (£*>1) 0
f Fdp < oo

(F*>1)

icm
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(inequality (10) has been used here) we have

/ dt f)fd,u<oo

f >t) (f>1)
if and only i
(30) fflongu<m.
(f>1)
Hence, taking into account (28), we obtain

o0 . 1 "
@By [ |u > 1)~ - ffd,u’dt<oo@ fflogf—d,u<oo.
L (£>1) (f>1)
But (30) follows from a theorem of O. Tsereteli (see Theorem 2.1 in [14]):
if 4(12) < o0, f >0, f € Lloglog(L+3)(2), ¢ = f and p(p > t) < K/t,
K>0,%t >0, then [, flog(p/f)du < oo (we have to assume that {2 =
{f > 1)

Remark 1.16. For infinite measure spaces one can similarly prove that
the function (4) is the principal part of ¢ — u(f* > t) in the neighbourhood
f f dp4 dt < 00,

of zero, i.e.
/
0 (f>t)

if f >0, f € L(X) and f(f>0) floglog(1/f -+ 3}du < oo, using Re-
mark 1.10 and the following theorem of O. Tsereteli (personal communi-
cation): if u(X) = oo, f = 0, f(f>0) floglog(1/f + 3)du < oo, p > f and
e >4 < K/t, K >0,¢>0, then f(f>0) flog(e/f)du < oo.

u(f* > t)

ExaMPLE 1.17. For an arbitrary function f > 0 from L(X), (29) may
not hold. Let > 1 be a decreasing continuous integrable function on (0, 1]
such that

1
- (1/2) 5 ely) dy
J s 2L A,
(an example of such a function is given e.g. in [14], p. 72). Setting anx =
<,o(1—~k/n),n=12 k=01...n—1wehave

_Za'”k_’ f:,a(a:)clm<oo,

k=0

dr =0

—E anklog "kam — 00 asm— 00.
TL k)a,nk .
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Let (£,)2%, be a sequence of positive numbers such that > oo, &, = 1 and

oo -
E Enzan,k, < oQ,
n—1

fe O
50 S anatog Dhres
n=1 k=0 )ank

Write Ay = (0,e1] and Ay, = (X5l er, Sopei &kl 7= 2,3,

Let X be the set ., Anx{0,1,...,n—1}, let z2 be the measure whose
restriction to the Borel o-algebra of An x{k},n=12,...,0< k<mn,is
the Lebesgue measure and let T : X — X be defined by T'(2, k) = (z, k+ 1)
ifzedpand 0 <k <n~1, and T(z,n — 1) = (T"(z),0), z € A,, where
T’ is an arbitrary Lebesgue measure-preserving and ergodic transformation
of (0,1]. Then T is p-measure-preserving and ergodic (see [11], p. 56). Let
f X — R be defined by f(z,k) = ang, z € Ap, 0 < k < n. Then

oo n—1
ffdﬂzzenza’n,k<oo
X el k=0

and since

[z, k) > tE€A,, 0<k<n,

'h-Ji:
we have

fflog?dﬂ>zsnzanklog "=’,;)a:;

{f>1)
Thus, on account of (31), inequality (29) fails for f.

2. Let y1,y2,... be a sequence of independent random variables on a
probability space (£2, F, P). It is well known (see, e.g., [1], I, §1) that from
the viewpoint of measure theory it can be identified with the sequence of
coordinate functions my,7ry,... on R® = [J2% R, ]R’.ﬂ =R, n=12,...,
defined by 7 (T) = €m, = (21, %2,...), m = 1,2,..., when the measure
# on the o-algebra B® = P77 B, B, = B (B is the Borel o-algebra
of R) is defined as the product Do tn, where u, : B — R is the measure
tn(e) = P(y;(e)), e € B. (In this case my, 7o, ... are independent random
variables and for any set of integers 1 <47 < ... < ?}n the joint distributions
of yi;,..-,¥z, and m;,,...,m;, coincide.) Note that mp, = my o ™, m =
1,2,..., where T is the shift operator defined on R™ by

(32) T(ml,ivg,.‘IL‘3,...) = (a’,'g,mg,...).

icm
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At the same time, if the random variables have the same distribution, then
Bn =1, n=1,2,..., and T is a p-measure-preserving ergodic transforma-
tion. Consequently, all the theorems proved in §1 are true for this particular
situation. Hence they are also true for a sequence of independent equidis-
tributed random variables y1,y, ... if (X,§, i), f and f* are everywhere in
the assumptions replaced by (2, F, P), 31 and y* = supy(1/N) N _ v,
respectively.

In particular, if y1,%2,... i3 a sequence of independent equidistributed
random variables with finite expectation and if y; > 0, then the prin-
cipal part of the distribution function ¢ — Ply* > #), t > 0, is t —
tt f (y*>t) Y1 dP. However, in the case under comsideration it is possible
to obtain much more exact results.

THEOREM 2.1. In o probability space (£2,F,P), let y1,ys,... be a se-
quence of independent equidistributed random wvariables with finite expecta-
tion. Then

(33)  |Py" > 1)

ﬂ-!l—l

fylclPl Egj’l') J ndP+ Py > 1)

(11>1) (y1>>t)

fort > 2B(y]).

Proof. By the reasoning given at the beginning of this section, we may
assume that (2, F, P) = (R, @@, By, i) and y1, Y2, . . . are the coordinate
functions 71, ms,... For convenience 7y will be denoted by f. Then =, =
foT™ 1, m=1,2,..., where T is the measure-preserving ergodic shift (32)
and 7* = f*.

It h € L{R*) only depends on the first coordinate and A € @7
then h and 1p-104) are certainly independent and therefore

Br.,

n=1

(34) [ hdu= [ 1r-rahdp=u(A) [ hdu.
Twl(A) RPe B>

Taking into account (1), (24) and {34), we have

(88)  w(fr>1) 5"{ ffdu<— [ it
>t} (f>)0(f"oT>t)
1 +
<3 ffduf; [
(f:-t) (f eT>t) -

ffd,u—k-—p,(f > 1) ff"'d,u, > 0.
f>t) : S
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If t > 2 fpoo fT dp, then it follows from (35) that

. 2

(36) pfr >t < [ fap.
(F>1)
Also,
[ tdu= fidut+ [ Ly<nfap
(F>t)U(f oT>1) (£>1) (f*oT>1)
= [ rdutp(s >0 [ 1yenfdn.
(f>1) e

Thus, on account of (23) for ¢ > max(E(f),0) we have

O AP PR ML LU
(f>t
It follows from (35) and (37) that
(38) ‘u(f* > t) —% [ faul < E(UD#(JC* > )+ u(f >1),
(£>1)
for £ > max(E{f),0). Substituting (86} in the right side of (38), we obtain
>0 [ ran <P f paur s s,
(f>t) (f>1)

Thus (33) holds and Theorem 2.1 is proved.

CoOROLLARY 2.2. Under the assumptions of Theorem 2.1 the principal
part of the distribution function t — P(y* > t) ist — (1/1) f(ypt) y1 dP.

Proof. Just note that the right side of (33) as a function of ¢ is integrable
in the neighbourhood of infinity. Hence

(39) [P > 1) f y1dP‘dt<oo
1 (’&‘1>t)

Inequality (39) contains the known result about the integrability of y*:

TueoreM (Doob {4], Davis [3], McCabe~Shepp [8]). Let 41,v2,... be a
sequence of independent equidistributed random variables with finite expec-
tation. Then y* € L if and only if y; € Llog™ L.

In conclusion, the author wishes to express his gratitude to Professor
O. Tsereteli for the formulation of the problems and valuable remarks.
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