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The Compact Approkimation Property
does not imply
the Approximation Property

by
GEORGE WILLIS (Canberra)

Abstract. It is shown how to construct, given a Banach space which does not have
the approximation property, another Banach space which does not have the approximation
property but which does have the compact approximation property.

A Banach space, X, is said to have the approzimation property if for
every compact set K € X and every £ > 0 there is a finite rank operator T
on X such that ||z — z|| < ¢ for every z in K. The approximation property
is weaker than ihe notion of a Schauder hasis. Classical Banach spaces have
Schauder bases but it was shown by Enflo [E] that there are spaces which do
not have the approximation property. A shorter construction of such spaces
was given by Davie [D1], [D2] (see also [LT1], Theorem 2.d.3).

A Banach space, X, is said to have the compact approximation prop-
erty if for every compact set K C X and every € > 0 there is a com-
pact operator T on X such that ||[Tz — z|| < ¢ for every ¢ in K. A finite
rank operator is compact and so the compact approximation property is
formally weaker than the approximation property. Known examples leave
open the possibility that these two properties are equivalent. Indeed, many
of the spaces which do ot have the approximation property are known
to also not have the compact approximation property (see [LT1], p. 94,
and [112), Theorem 1.g.4), However, the following construction produces
spaces which have the compact approximation property while not having
the approximation property, thus showing that the two properties are not
equivalent,

The construction is based on an argument due to Grothendieck [G] which
shows that X has the approximation property if and only if for every Banach
space ¥, every compact operator T : ¥ — X and every & > 0 there is a
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finite rank F : Y — X with ||T — F| < e. We shall follow the exposition
given in [LT1], Theorem 1.e.4.

Let X be a Banach space which does not have the approximation prop-
erty. Then there is a compact set K € X such that the identity opera-
tor cannot be approximated on K by finite rank operators, By a theorem
of Grothendieck (see [LT1], Proposition 1.e.2), it may he supposed that
K = tonv{z,}2%., where llz,]| < 1 for all n and ||z, || (1(%1'8211:5(’&1 to zero,

For each ¢ between 0 and 1, put U = E5LV pel Then Uy s
a compact, convex, symmetric subset of X. Let Y.g be l,hc linear span of Uy
and define a norm on Y; by {[|z|ls = inf{|A{: A" 1w € Ui}, @ € V). It may
be checked that (Y:, [|| - |||¢) is a Banach space with unit ball U/,. 1f s « ¢,
then U; C U, and so ¥, C V¥, and all spaces are contained in X, Denote the
inclusion map of ¥} into X by L;. Then L, is compact and has norm at most
one. It is shown in [LT1], Theorem 1.e.4, that the operator I, /2t Y X
cannot be approximated by finite rank operators.

The space to be constructed will be & space of functions on (0, 1) with
values in X. For each (s, ¢) C (0, 1) and y in ¥;, y x(4,) is such a function,
where y x(s,5) denotes the map

W_){y if r € (s, t),
0 otherwise.

Let Z be the linear span of{_;x syt 0< e <t <, y € Y,}. Note that if
f belongs to Z, then f(r) isin }’; for all r. Hence we may define a norm on
Z by

1= fFEedr  (f € 2).
0

Now let Z be the completion of Z with respect to this norm.
PROPOSITION 1. Z does not have the approzimation property.

. Proof. Define a map R:Yyg - Z by

(1) R(y) =2yxus1 (WeYipn).
Then
. 1
(2) IRzl =2 [ [lan)]. dr
1/3
1
S2 [ lealmdr,  because ||zl € [z,

1/2
< 2{l@a]?/lin |2 |
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Since ||zy | — 0 as n — oo, it follows that | R(@./l|za||Y/?)|| — 0 as n.— oo,
whence R U, ; is a totally bounded subset of Z. Since U, s, is the unit ball
in Y14 it follows that R is a compact operator.

Now define a map J: Z — X by

1
(3) IH= [fdr (fFe2),
0
where the integral may be defined in the obvious way if f is in 2 and this
definition extends to all of Z by continuity. Then JR = L, 2 and Lyp
cannot be approximated by finite rank operators. It follows that R cannot
be approximated by finite ranks. Therefore, by [LT1], Theorem l.e.4, Z
does not have the approximation property. m

PROPOSITION 2. Z does have the compact approzimation property.

Proof For each r in (0, 1) define the operator which shifts by r, S,
on Z as follows: first, for (s, t) C (0, 1) and y in Y}, define S,(y X(s, f) =
Y X (9rtr); Dext extend S, to Z by linearity; and then, since 5. is clearly
a coptraction mapping, extend to Z by continuity. As already mentioned,
|5:]| € 1for each r. Furthermore, it may easily be checked that the function
r — S, f is norm continuous, and || S, f — f|| — 0 as r — 0 for each f in Z.
However, 5, is not a compact operator.

To obtain compact operators on Z which approx1mate the identity define,
foreach n, T,: Z — Z by

1/n

(4) Tﬂf:nf Sefdr (fEZ)
0

The integral exists because r — S, f is norm continuous and ||To|| £ 1
Since the operators S, approximate the identity as r approaches zero, it
follows that |70 f — fl — 0 as n — oo for each f in Z. Hence, since
I1Tnll < 1 for every m, T, approximates the identity operator on a given
compact set when n is sufficiently large.

‘We ghall see that T}, is compact for each n by showing that T Z 1) ig
totally hounded, where Z) denotes the unit ball in Z. First note that the
functiong of the form .

P .
Z)\i(ti - 31‘)~1 Yi X(ai,81)

=] '

(where: 8) < t1 < 82 < g < ... < 8p < &y Ui € Yy, Monlls = 35
and $°F_; |As| = 1) are dense in 70, Hence, it will suffice to show that
To{(t—8) " yx(a s : 8 <t y € Us} ia totally bounded. Next, since the unit



102 G, Willis

ball in Y, is CORV{ £z /|| Tml|* 150w, it will suffice to show that
An =T {(t— 8) Hom| *Trxiey + 8 <t m=12,., -}

is totally bounded.
For each s and ¢ with s < ¢ we see that x,,, belongs to Y, for each m and

To(@m X(s,t}) =Tm b,

L/n

where b =n [ X{atrisr) @7

For functions, f and g, in L*(0,1), let f * g dencte the usual convolu-
tion product of f and g restricted to (0,1). Then A = X (.. * (7 X(0,1/n3)-
Tt follows that for each f in L'(0, 1), Tn(2m ) = @m(f * (0 Xq0,1/m)).
Now it is well known, and may easily be checked, that the map f =
f* (nx(0,1/n)) is a compact operator on LY, 1). Hence for each m the
set Tu{(t — 8) " | om| ™ B X(s,t) * § < t} i5 totally bounded. Furthermore,

1
(5) ITn(@mxea)l =7 [ Izl Xga * X(o,0m ()] dr
0
t-1/m
< oml" (6~ 8)dr
8

<t~ s} |@ml*/|In || |-

Hence, for each & > 0, [To((t ~ 8)7! |@m * m x(s)|| < & whenever
|&m|| < e ™. Since ||z,| — 0 as m — oc, this is so for all m suffi-
clently large. It follows that 4, is totally bounded as required. Therefore
{Tn}52, is a sequence of compact operators on Z such that || T, 2 = zff ~ 0
asn-— oo forevery z in Z. m

We have in fact shown by the above argument that the identity opera-
tor on Z can be approximated, in the topology of unifortn convergence on
compact sets, by compact operators of norm at most one, that is, that Z
has the metric compact approximation property.

The existence of a space with the compact approximation property but
not the approximation property raises questions as to whether resulis relat-
ing various stronger versions of the approximation property (see Section 1.e
of [LT1]) have analogues for the compact approximation property. Some of
these questions can be answered if there is a reflexive space with the com-
pact approximation property but not the approximation property [C]. For
instance, see [GW], Example 4.3, where the reflexive example constructed
below is used to answer a question which arises in that paper and also in
[S]. Now Z is not reflexive because the set x,L*[0, 1] is a closed subspace of
Z which is isomorphic to L*[0, 1]. However, the construction of Z may be
modified to produce a reflexive space as follows.
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As before, let X be a Banach space which does not have the approxima-
tion property but now suppose that X is a closed subspace of £° for some
2 < p < co. This value of p will remain fixed throughout the construction.
Set g = p/(p — 1), so that g is the conjugate of p. See [LT1], Theorem 2.d.6
for a proof that €2 has such subspaces.

Let {zn}52 be a sequence in X such that: [[z,]| £ 1 for all n; |z
decreases to zero; and the identity operator cannot be approximated on
TOAV{&n } ooy by finite rank operators. Choose integers ny < ny < ... such
that [z, || < (1/2)* whenever n > ny and define, for k= 1,2,...,

Xy =span{z, :n < ni}.
Next define, for each ¢ between 0 and 1,

o0 k-1 oo
1
'[/% = {Zakak/”ak”" D ag EEXk, ||ak|| < (E\) ) kz |an|1’ < 1}
=1

k=1

The properties of the sets V; which we will need are given in the following

Lemma 1. Let X be a Banach space, X1, Xa,... be finite-dimensional
subspaces of X, and r1,7g, ... be positive numbers such that 3 oo | ri < oo,
Define

] oo
V = {Za’kmk Loy € Xy, HZ‘;GH < Ths Z |ak‘p < 1} .
k=1 k=1
Then V is a compact, conver, symmetric subset of X.

Let W be the linear subspace of X spanned by V and define |jw|| =
inf{A>0: A" weV} (weW). Then (W, ||| |||} is @ Banach space. The
map @ 1 (Phey Xn)ew — W defined by .

o

) == Z Twk

k=1

Q(mla Ta, ..

& o quotient map.

Proof. It is clear that V is symmetric and it is compact because, as
may be shown by a diagonal argument, every sequence in V' has a convergent
subsequence, Let x s Y o0, apty and y =30~ | fuyk be in V. Then

1 = 1 =
Sty =Y slonzp Boyr) = 3 Wk,
2 2

k=1 k=1
where v, = §(|cvn|+|Bk|), 2 belongs to Xy and ||z, < rx. Since 332, |vxl?
<Y ey %(|cx;ﬂlf’ + |Be|?) < 1, it follows that V' is convex. These properties
of V imply that (W, ||| - |||} is & Banach space.
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It is clear from the definition of V that @ maps the unit ball of
(DS, Xy )er onto V, which is the unit ball of W. Therefore @ is & quotient
map. =

Let W, denote the space spanned by V; and normed so that V; is its unit
ball. Denote the norm on W; by [I| - Jlz. Then W, ¢ Wy if s < £. Denote by
@, the quotient map from (Py., Xx)er to Wi defined by

0 1 (L-t){k-1)
Qt X = Z (5) Tk,

k=1
where x = (21, T3, ...). We will require the following,

LEMMA 2. For each s in {0, 1) and x in (P, Xi)ew,
lim [[|Q:x — Qs xll, = 0.
t—rst

Proof. It is clear that the limit is zero if x is supported in only finitely
many of the Xj's and that the set of finitely supported vectors is dense in
(D5, Xi)er. The result follows because || Q| = 1 for each t. m

Let ZF be the linear span of {wx(s 0 <s <t <1, we& W,} Asin
the previous construction, ZF is a space of functions, f : (0, 1) — X, such
that f(t) belongs to W; for each t. Define a norm on 2! by

1
£ = ( f Wsezar)””
0

Let Z' denote the completion of Z! with respect to this norm.
We will show that Z¥ has the required properties. In the proofs of these
properties, A will denote the set of all functions of the form

(6) ZAt-s

where: 81 < t] < 89 <ty < .., < 8 < by Wy € Wa,, Hwillay 5 1; el
21_1 AP = 1. Clearly A is dense in the unit ball of Z¥

PROPOSITION 8, Z! is u quotient of a closed subspace of LP(0, 1). In
particular, ZV is reflexive.

Proof. Let Xg k= 1,2,..., be the subspaces of £ defined above,
Then (i le)gp isa subspace of (Brwi 2F)ie. It follows that LP((0, l)
(@k 1 Xk)er) is isometric to a subspace of LP(0,1). We will show that 2!
ls a quotient of this space.

- 'The quotient map @ : LP((0, 1}, (Drey Xu)er) — Z! will be defined
first of all on simple functions from (0, 1) to (B,e, Xi)er. Let f be such a

(f € 2.

w"‘ X(Si,”)
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function and put

(7) (@) =Qe(F(1)) (0<t<1).

Then (Qf)(t) belongs to W, for each t and it follows from Lemma 2 that
there are functions f,, n = 1,2,..., in span{w Xan  0<a<t<]l; we
W,} such that

. . i/p
Tim ( f I@HE) = fur)Zdr) =0,
It follows that: {fn},,ﬁl is a Cauchy sequence in Z¥; Q f may be identified
with the limit of thls sequence; and

o= ( [ n@nmiar)” = ( [ ieceniza)”
(4 ) =L,

Since ||@rl| £ 1 for each r, ||@Q|| < 1. Since the simple functions are
dense, @ extends by continuity to be a norm one operator from LP((0, 1),
(P2, Xp)er) to ZY. The equation (7) will hold for every f in Lr((0, 1),
(Br; Xu)er) and almost every ¢ in (0,1).

Now let

!
[= Z}\i(ti ~ 85) "M PwiX (o1.00)
=l
be in A, where wi= 3 po; @nox/llak** belongs to Vi, for each i. For each
s £t < ¢, put
wi? = (o an /a0 (1/2) D Day fag] )

in (@52 Xi)er. Then [wi?] < (T2 loal? (1/2)7¢-20¢- )17 < 1 and
Qt(wgt)) = w; for each 5; €t < 4;. Hence, if we define

;
=3 b= 80w () 0 < <),
fe],
then [[f|| < 1 and Qf = f. Therefore Q maps the unit ball of L?((0, 1),
(Do Xk)gr)) onto the unit ball of Z¥ and so Q is a quotient map. =

Since LP(0, 1) is uniformly convex, L2((0, 1), (Bj—; Xk)er) is uniformly
convex and so it follows, by [Da], Theorem 5.5, that Z! is also uniformly
convex. This theorem of Day may also be deduced from the duality between
uniform convexity and uniform smoothness (see [LT2], Proposition 1.e.2),

PROPOSITION 4. ZY has the metric compact approximation property but
does not howe the approzimation property.
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Proof. The same argument as showed that Z does not have the ap-
proximation property also shows that Z! does not have this property. It
is immediate from the definitions of these sets that Ui,z C Vi o and so
Y1/2 is contained in Wi, and the embedding is a contraction. Hence maps
RY: Y19 — Z%and J¥: Z¥ — X are defined by equations (1) and (3) respec-
tively and an estimate similar to (2) shows that B! is compact. These new
maps also satisfy J¥ Rf = Ly, and so Z*' does not have the approximation
property.

Shift operators SI : Z¥ — Z% may be defined for each r between 0 and 1
just as they were on Z and then used to define operators T} : Z% — 2V for
n = 1,2,... by an equation similar to (4). The same argument as used in
Proposition 2 shows that these operators have norm at most one and that
{T#}22 | converges to the identity operator uniformly on compact subsets
of Z}. However, to show that T4 is compact for each n requires a slightly
different argument to that used in Proposition 2. It suffices to show that
T4 A is totally bounded.

For each positive integer m define the subset, V™, of V, by

00 gy k=l o0

. 1

Vs(m) = { Z akak/||a;c|| Coay € Xy, ”Gk“ < (':‘2“) ’ Z ]aklp bt 1}'
k=m ke,

Let w = 00 agar/|lax]® be in Vi™ and suppose that |liw|l}s = 1. Then,

for r > s,

o
Ml = [[| 3 oullonl as/flas I
k=m

v

o0 (m~1)(r~a)
< (X leallatP) "< (3)

k=m
Corresponding to the estimate in (5) we now have

t-1/n 1/p
®) I8l < nit =) ([ Il ar)
< nft - s)(m— 1)~

Next, for each positive integer m denote by B{™ the subset of A consisting
of all functions of the form (6) where w; belongs to V™ for each ¢ and
by Ct™) the subset of A consisting of functions where w belongs to the
finite-dimensional space span{zy, : n < Npm_1} = Xm-1. For a general w in
Vo, w = it aan/l|ax|® +w', where w' is in Vi™ and $ T apag/l|ak]®
belongs to the unit ball of Xp,_.. It follows that A C B(% T,
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For each £ in B(™ we have, by (6) and (8),

!
ITEEN < n(m = 1)7Y2 D TNl [t = &P < mfm — 1) 7V,
i=1
because Y., AP = 1 and S [t — 5] < 1. I, given € > 0, we choose
m > 14 (n/e)?, then it follows that | T f]| < & for every f in BU™. Also,
since the map f + nf % x(,1/n) 18 @ compact operator on LP(0, 1), Tictm)
is totally bounded for each m. Therefore T1.4 is totally bounded and so T
is a compact operator. m

It may also be shown that, for 1 < p < 2, there are quotients of subspaces
of L?(0, 1) which have the metric compact approximation property but not
the approximation property. This may be shown by choosing a subspace,
X, of £7 which does not have the approximation property {such spaces have
been shown to exist by Szankowski, see [Sz] or [LT2}], Theorem 1.g.4), and
then repeating the above construction. Alternatively, the dual of the above
example has the required properties. 1 am grateful to Professor T. Figiel
for this remark and also for some other suggestions which shortened some
proofs and improved Proposition 3.

Part of this work was completed while the author was visiting the Uni-
versity of Leeds with the generous support of SERC grant GR-F-74332. It is
a pleasure to thank the members of the School of Mathematics at Leeds for
their hospitality and to thank Michel Solovej and Niels Grgnbaek for helpful
conversations concerning the subject of this paper.
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The wavelet characterization of the space Weak H*
by. ‘
HEPING LIU (Beifing)

Abstract. The speice Weak H' was introduced and investigated by Fefferman and
Scria. In this paper we characterize it in terms of wavelets. Equivalence of four conditions
is proved.

1. Introduction. When we study the boundedness on LP(R") for some
of the basic operators in harmonic analysis, the case p = 1'is often different
from p > 1. For example, if T is a Calderén—Zygmund singular integral
operator, then T is bounded from L*(R") to WL'(R"). So one finds a
smaller space H*(R") C L'(R®) such that T is bounded from H'(R™) to
LY(IR™), which is well known. On the other hand, one can also find a space
larger than LY(R™) and T is bounded from it to. WL!(R™). This space is
WH'(R™), introduced and investigated by Fefferman and Soria (see (3]).

We recall the definition of WH*(R"): Let f be a tempered distribution,
and € C®(R™) with [ (z)ds = 1. We define the maximal function

F(z) = sup |f * g (2)].
>0

Then we say that f € WH(R") provided f* € WL'(R™), i.e.
Hz e R™: f*(z) > v} £ C/u for all v > 0.

The smallest ¢ which makes the preceding estimate valid is called the “Weak
H' norm” and denoted by ||f|wa:. The choice of ¢ in the definition of
WH(R") is of no importance. The space WH'(R") is larger than L*(R™).
In fact, the space of complex measures is continuously embedded as a Bub-
space of WH Y(R™). Another basic example is the distribution p.v. % which
belongs to WH(R). o

If we proceed to characterize the function spaces in terms of wavelets,
we find ourselves in the same situation. Suppose f = 3 a(A)y» in the sense

1991 Mathematics Subject Clussification: 42B30, 42C15.
Research supported by the Postdoctoral Science Foundation of China.



