

## STUDIA MATHEMATICA 103 (2) (1992)

## Factors of ergodic group extensions of rotations

by

## JAN KWIATKOWSKI (Toruń)

Abstract. Diagonal metric subgroups of the metric centralizer  $C(T_{\varphi})$  of group extensions are investigated. Any diagonal compact subgroup Z of  $C(T_{\varphi})$  is determined by a compact subgroup Y of a given metric compact abelian group X, by a family  $\{v_y:y\in Y\}$ , of group automorphisms and by a measurable function  $f:X\to G$  (G a metric compact abelian group). The group Z consists of the triples  $(y,F_y,v_y),\,y\in Y$ , where  $F_y(x)=v_y(f(x))-f(x+y),x\in X$ .

Introduction. Lemańczyk and Mentzen [4] have proved that all factors of group extensions of dynamical systems with discrete spectra are completely determined by compact subgroups of their metric centralizers. If  $T:X\to X$  is an automorphism with pure point spectrum and  $\varphi:X\to G$  (G a metric compact abelian group) is a cocycle such that  $T_\varphi$  is ergodic, then the metric centralizer  $C(T_\varphi)$  can be identified with a closed subset of  $C(T)\times \mathcal{M}\times \mathrm{End}(G)$ , where  $\mathcal{M}$  is the set of all measurable functions  $F:X\to G$ , and  $\mathrm{End}(G)$  is the set of all continuous epimorphisms of G. A triple  $(S,F,v)\in C(T)\times \mathcal{M}\times \mathrm{End}(G)$  determines an element of  $C(T_\varphi)$  if and only if

(\*) 
$$F(Tx) - F(x) = \varphi(Sx) - v(\varphi(x)), \quad x \in X.$$

One can distinguish a special class of compact subgroups of  $C(T_{\varphi})$ , namely the so-called diagonal compact subgroups. We say that a compact subgroup  $C_0$  of  $C(T_{\varphi})$  is diagonal if S runs over some compact subgroup Y of C(T) and there is only one function  $F=F_S, S\in Y$ , satisfying (\*) (it is known [2] that if (\*) can be solved for some S, then v is determined univocally). In this way the diagonal compact subgroups of  $C(T_{\varphi})$  are of the form

$$C_0 = \{(S, F_S, v_S) : S \in Y\},$$

where Y is a compact subgroup of C(T).

<sup>1991</sup> Mathematics Subject Classification: Primary 28D05.

Key words and phrases: group extension.

Research supported by RP.I.10.

The main result of this paper says that the families  $\{F_S\}$  and  $\{v_S\}$ ,  $S \in Y$ , are connected in the following way: there exists a measurable function  $f: C(T) \to G$  satisfying the additional condition (see Theorem 1)

$$F_S(U) = v_S(f(U)) - f(U \circ S),$$

for  $U \in C(T), S \in Y$ . As a consequence we obtain a necessary and sufficient condition for the cocycle  $\varphi: X \to G$  to be a coboundary. Namely,  $\varphi$  is a coboundary if and only if  $\varphi^{(n)}$  (see Section 1) is close to 0 in measure whenever  $T^n$  is close to the identity in the weak topology of C(T). This was proved by Veech [8] for X and G being the circle and T an ergodic rotation of X. Another proof of Veech's theorem was given by Rychlik [7]. L. Baggett [1] has given other criteria for circle-valued cocycles to be coboundaries.

I express my thanks to M. Lemańczyk for many stimulating discussions.

1. Notations and definitions. Let  $T:(X,\mu)\to (X,\mu)$  be an ergodic automorphism with discrete spectrum, and let G be a metric compact abelian group with the normalized Haar measure m. Given a cocycle  $\varphi:X\to G$  one can define an automorphism  $T_\varphi:(X\times G,\mathcal{F},\mu\times m)\to (X\times G,\mathcal{F},\mu\times m),$ 

$$T_{\varphi}(x,g) = (Tx, g + \varphi(x)),$$

where  $\mathcal F$  is the product  $\sigma$ -algebra. The automorphism  $T_\varphi$  is ergodic [6] if and only if for every  $\gamma \in \widehat G$  (the dual group of G),  $\gamma \neq 1$ , there is no measurable function  $f: X \to K = \{z: |z| = 1\}$  such that

$$f(Tx)/f(x) = \gamma(\varphi(x))$$
 for  $\mu$ -a.e.  $x \in X$ .

By the metric centralizer  $C(T_{\varphi})$  of  $T_{\varphi}$  we mean the set of all measure preserving transformations  $\widetilde{S}: X \times G \to X \times G$  commuting with  $T_{\varphi}$ . It is known [5] that if  $T_{\varphi}$  is ergodic then every  $\widetilde{S}$  has the form

(1) 
$$\widetilde{S}(x,g) = (Sx, F(x) + v(g)),$$

where  $S \in C(T)$ ,  $F: X \to G$  is a measurable function, and  $v: G \to G$  is a continuous epimorphism satisfying

(2) 
$$F(Tx) - F(x) = \varphi(Sx) - v(\varphi(x)) \quad \text{for } \mu\text{-a.e. } x \in X.$$

Moreover,  $\widetilde{S}$  is an automorphism if and only if so is v. We will write  $\widetilde{S}=(S,F,v)$ . The set  $C(T_{\varphi})$  is a topological semigroup with the weak topology. Lemańczyk and Liardet [3] have shown that the weak topology of  $C(T_{\varphi})$  coincides with the corresponding product topology, i.e.  $\widetilde{S}_n=(S_n,F_n,v_n)$  converges to  $\widetilde{S}=(S,F,v)$  if and only if  $S_n\to S$  in C(T),  $F_n\to F$  in measure and  $\|\gamma\circ v_n-\gamma\circ v\|_1\to 0$  for every  $\gamma\in\widehat{G}$ .

We will assume that X is a monothetic group and let  $x_0$  be an element of X such that the set  $\{n \cdot x_0 : n \in \mathbb{Z}\}$  is dense in X. Put  $T(x) = x + x_0$ . For every  $y \in X$  we define  $S = S_y$ , S(x) = x + y. It is known that  $C(T) = \{S_y : y \in X\}$ , so C(T) can be identified with X. Then (1) and (2) can be rewritten as

(3) 
$$\begin{cases} \widetilde{S}(x,g) = (x+y,F(x)+v(g)), \\ F(x+x_0) - F(x) = \varphi(x+y) - v(\varphi(x)). \end{cases}$$

We say that  $y \in X$  can be lifted to  $C(T_{\varphi})$  if there exist a measurable function F and an epimorphism  $v: G \to G$  satisfying (3). If  $y \in X$  can be lifted, then there exists exactly one  $v = v_y$  satisfying (3), and if  $\overline{F}$  is another function satisfying (3) then, for some  $h \in G$ ,  $\overline{F}(x) = F(x) + h$  for a.e.  $x \in X$  [2]. Of course, each element  $y = n \cdot x_0$ ,  $n = 0, \pm 1, \ldots$ , lifts with  $v = \operatorname{id}$  and the functions  $\varphi^{(n)} + h$ , where

$$\varphi^{(n)}(x) = \begin{cases} 0, & n = 0, \\ \varphi(x) + \ldots + \varphi(x + (n-1) \cdot x_0), & n \ge 1, \\ -\varphi(x - x_0) - \ldots - \varphi(x - n \cdot x_0) = \varphi^{(-n)}(T^n x), & n \le -1. \end{cases}$$

In particular,  $(0, h, id) \in C(T_{\varphi})$  for every  $h \in G$ . We will write  $\sigma_h$  instead of (0, h, id) so that

$$\sigma_h(x,g) = (x,g+h).$$

The compact subgroups of  $C(T_{\varphi})$  play an important role. It is known [4] that there is one-to-one correspondence between such subgroups and the factors of  $T_{\varphi}$ . Given a compact subgroup  $C_0 \subset C(T_{\varphi})$  we define the corresponding factor  $\mathcal{A} = \mathcal{A}(C_0)$  (a  $T_{\varphi}$ -invariant sub- $\sigma$ -algebra of  $\mathcal{F}$ ) as follows:

$$\mathcal{A} = \{ A \in \mathcal{F} : \widetilde{S}^{-1}(A) = A \text{ for every } \widetilde{S} \in C_0 \}.$$

Now, we want to describe all compact subgroups of  $C(T_{\varphi})$ .

Let  $C_0$  be such a subgroup and let Y be the projection of  $C_0$  on X, i.e.  $Y = \{y \in X : (y, F, v) \in C_0 \text{ for some } F, v\}$ . It is clear that Y is a compact subgroup of X. It follows from [4] that  $v = v_y$  is an automorphism of G for every  $y \in Y$ . Given a compact subgroup Y of C(T) and a family  $\{v_y\}$  of automorphisms of G we say that Y and  $\{v_y\}$  can be lifted to a compact subgroup  $C_0$  of  $C(T_{\varphi})$  if Y is the projection of  $C_0$ . Put

$$H = \{ h \in G : \sigma_h \in C_0 \}.$$

Then H is a closed subgroup of G. If  $\widetilde{S} = (y, F, v_y) \in C_0$  and  $\widetilde{U} = (y, \overline{F}, v_y) \in C_0$ , then  $\widetilde{S} \circ \widetilde{U}^{-1} \in C_0$ . But

$$\widetilde{U}^{-1} = (-y, -v_y^{-1}(\overline{F}(x-y)), v_y^{-1})$$

and

$$\widetilde{U}^{-1} \circ \widetilde{S} = (0, v_y^{-1} \circ F - v_y^{-1} \circ \overline{F}, \mathrm{id}).$$

Therefore, there exists  $h \in H$  satisfying

$$(4) F = \overline{F} + h.$$

Moreover, if  $h \in H$  then  $(y, v_y(h) + F, v_y) = \widetilde{S} \circ \sigma_h \in C_0$ , which gives  $v_y(h) \in H$ . Thus  $v_y(H) = H$  and  $v_y$  induces an automorphism of G/H. Denote it by  $v_y$  again.

In the case when  $H=\{0\}$ ,  $C_0$  has a special form. Namely, for every  $y\in Y$  there is exactly one function  $F_y:X\to G$  such that  $C_0=\{(y,F_y,v_y):y\in Y\}$ . This kind of compact subgroups of  $C(T_\varphi)$  will be called diagonal compact subgroups. It turns out that to describe all compact subgroups of  $C(T_\varphi)$  it is enough to examine the diagonal compact subgroups. In fact, the condition (4) means that the function  $\widetilde{F}:X\to G/H$ ,  $\widetilde{F}(x)=F(x)+H$ , does not depend on the choice of F and we can denote it by  $F_y$ . Thus

$$\widetilde{C}_0 = \{(y, \widetilde{F}_y, v_y) : y \in Y\}$$

is a compact subgroup of  $C(T_{\varphi})$ , where  $\widetilde{\varphi}: X \to G/H$  is induced by  $\varphi: X \to G$ . The subgroup  $\widetilde{C}_0$  determines  $C_0$  completely. It is evident that  $\widetilde{C}_0$  is a diagonal compact subgroup of  $C(T_{\varphi})$ . Therefore, in order to describe all compact subgroups of  $C(T_{\varphi})$  it suffices to describe all diagonal compact subgroups of  $C(T_{\varphi})$ .

- 2. Diagonal compact subgroups of  $C(T_{\varphi})$ . Now we are in a position to formulate the main result of the paper. Let Y be a compact subgroup of X and let  $\{v_y : y \in Y\}$  be a family of automorphisms of G satisfying
- (5)  $v_{y+y'} = v_y \cdot v_{y'}, \ y, y' \in Y$ , and the mapping  $M(y) = v_y, \ M : Y \to Aut(G)$ , is continuous

(Aut(G)) is the group of all automorphisms of G). Denote by d a distance in X. We will assume that d is invariant under the rotations of X.

THEOREM 1. The subgroup Y and the family  $\{v_y : y \in Y\}$  can be lifted to a diagonal compact subgroup of  $C(T_{\varphi})$  if and only if there exists a measurable function  $f: X \to G$  such that

(6)  $v_y[f(x+x_0) - f(x) + \varphi(x)] = f(x+x_0+y) - f(x+y) + \varphi(x+y)$ for a.e.  $x \in X$  and every  $y \in Y$ .

Proof. Sufficiency. Let f satisfy (6). Put

(7) 
$$F_y(x) = v_y(f(x)) - f(x+y), \quad x \in X, y \in Y.$$

Using (5) it is not hard to check that

(8) 
$$F_{y+y'}(x) = v_y(F_{y'}(x)) + F_y(x+y')$$

for a.e.  $x \in X$  and all  $y, y' \in Y$ , and

(9) 
$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall y, y' \in Y)$$
  

$$d(y', y) < \delta \Rightarrow \mu\{x \in X : d(F_{y'}(x), F_y(x)) > \varepsilon\} < \varepsilon.$$

Now define

$$C_0 = \{(y, F_y, v_y) : y \in Y\}.$$

The conditions (5), (8) and (9) guarantee that  $C_0$  is a compact subgroup of  $Y \times \mathcal{M} \times \operatorname{Aut}(G)$ . In this case (6) implies (3) so that  $(y, F_y, v_y) \in C(T_{\varphi})$  and using Lemańczyk and Liardet's result [3] we see that  $C_0$  is a compact subgroup of  $C(T_{\varphi})$ . Of course,  $C_0$  is a diagonal subgroup.

Necessity. Suppose that  $C_0 = \{(y, F_y, v_y) : y \in Y\}$  is a diagonal compact subgroup of  $C(T_\varphi)$  over Y. It is obvious that (5), (8) and (9) are satisfied. We will show (Lemma 1 below) that  $F_y(x)$  is measurable as a function of x, y. Let Z = X/Y and let  $L: X \to Z$  be the natural projection. There exists a measurable set  $X_0 = \{x_z'\}_{z \in Z} \subset X$  such that  $L(x_z') = z$ . The measure space  $(X, \mu)$  can be identified with the product measure space  $(Y \times Z, \mu_Y \times \mu_Z)$  by the mapping

$$l(y'',z) = y'' + x'_z, \quad y'' \in Y.$$

Rewrite (8) as

(10) 
$$F_{y+y'}(x'_z + y'') = v_y(F_{y'}(x'_z + y'')) + F_y(x'_z + y'' + y'),$$
$$(y, y', y'', z) \in Y \times Y \times \underbrace{Y \times Z}_{X}. \text{ If we set}$$

$$V = \{(y, y', y'', z) \in Y \times Y \times Y \times Z : (10) \text{ is satisfied}\}\$$

then  $(\mu_Y \times \mu_Y \times \mu_Y \times \mu_Z)(V) = 1$ . Further, let  $Y_0$  be the set of all  $y_0 \in Y$  for which

$$(\mu_Y \times \mu_Y \times \mu_Z) \underbrace{\{(y, y', z) : (y, y', y_0, z) \in V\}}_{V_{y_0}} = 1.$$

We have  $\mu_Y(Y_0) = 1$ . For  $\mu_Y$ -a.e.  $y'' \in Y$  we have

$$(\mu_Y \times \mu_Z)$$
  $\{(y,z) : F_y(x'_z + y'') \text{ is defined}\} = 1$ ,

so we can choose  $y'' = y_0 \in Y_0$  such that

$$(\mu_Y \times \mu_Z)(U) = 1, \quad U = U_{y''} = U_{y_0}.$$

Put  $x_z = x'_z + y_0$ ,  $z \in Z$  and let

$$X_1 = \{x_z + y : (y, z) \in U\}.$$

Then  $\mu(X_1)=1$ . Now, we define a function f on  $X_1$  by taking a measurable function  $\bar{f}:Z\to G$  and putting

(11) 
$$f(x_z + y) = v_y(f(x_z)) - F_y(x_z), \quad (y, z) \in U, \ f(x_z) = \bar{f}(z).$$

Of course, f is measurable. We will show that f satisfies (7) for every  $y \in Y$  and a.e.  $x \in X$ . Let

$$V_{y_0,y} = \{ (y',z) \in Y \times Z : (y,y',z) \in V_{y_0} \}$$
  
= \{ (y',z) : F\_{y+y'}(x\_z) = v\_y(F\_{y'}(x\_z)) + F\_y(x\_z + y') \}.

For  $\mu_Y$ -a.e.  $y \in Y$  we have

(12) 
$$(\mu_Y \times \mu_Z)(V_{y_0,y}) = 1.$$

Fix y satisfying (12) and put  $U' = \{(y',z) : (y+y',z) \in U\}$ . Then  $\{y+y'+x_z : (y',z) \in U\} = X_1-y$  and  $U' = l^{-1}(X_1-y)$ . That gives  $(\mu_Y \times \mu_Z)(U') = 1$ , which implies  $(\mu_Y \times \mu_Z)(V_{y_0,y} \cap U \cap U') = 1$ . For  $(y',z) \in V_{y_0,y} \cap U \cap U'$  we have

(13)  $F_y(x_z)$  and  $F_{y+y'}(x_z)$  are defined and

$$F_{y+y'}(x_z) = v_y(F_{y'}(x_z)) + F_y(x_z + y').$$

Take  $x = x_z + y'$ . Using (11) we obtain

(14) 
$$\begin{cases} f(x) = f(x_z + y') = v_{y'}(f(x_z)) - F_{y'}(x_z), \\ f(x+y) = f(x_z + y' + y) = v_{y+y'}(f(x_z)) - F_{y+y'}(x_z). \end{cases}$$

Now, (13) and (14) imply

$$\begin{aligned} v_y(f(x)) - f(x+y) &= v_y[v_{y'}(f(x_z)) - F_{y'}(x_z)] - v_{y+y'}(f(x_z)) + F_{y+y'}(x_z) \\ &= F_{y+y'}(x_z) - v_y(F_{y'}(x_z)) = F_y(x_z + y') = F_y(x). \end{aligned}$$

We have shown (7) for  $\mu_Y$ -a.e.  $y \in Y$ . In particular, the set of such y's is dense. Now, take an arbitrary  $y \in Y$ . There exists a sequence  $y_n, n \geq 1$ , such that  $y = \lim_n y_n$  and each  $y_n$  satisfies (7). Then  $f(x + y_n) \to f(x + y)$  in measure and (9) implies  $F_{y_n} \to F_y$  in measure. We will show in Lemma 2 below that  $v_{y_n} \to v_y$  uniformly. Hence  $v_{y_n}(f(x)) \to v_y(f(x))$  for a.e.  $x \in X$ . The above properties imply (7) for every  $y \in Y$ . In this way we have proved the theorem because (3) and (7) imply (6).

Let  $\xi = (D_1, ..., D_k)$  be a finite measurable partition of Y. By the diameter of  $\xi$  we mean the number diam $(\xi) = \max_{1 \le i \le k} \sup_{y,y' \in D_k} d(y,y')$ .

LEMMA 1. If a family of measurable functions  $F_y: X \to G$ ,  $y \in Y$ , satisfies (9), then  $F_y(x)$  is a measurable function of two variables x and y,  $x \in X$ ,  $y \in Y$ .

Proof. Take a sequence of finite measurable partitions  $\xi_n$  of Y such that  $\xi_n \prec \xi_{n+1}$  and  $\operatorname{diam}(\xi_n) \to 0$ . Let  $\xi_n = (D_1^{(n)}, \dots, D_{k_n}^{(n)})$  and choose

 $y_i^{(n)} \in D_i^{(n)}, i = 1, \dots, k_n$ . Define

$$F_n(x,y) = F_{y_i^{(n)}}(x)$$
 if  $y \in D_i^{(n)}$ .

The functions  $F_n: X \times Y \to G$  are measurable and the sequence  $F_n$  satisfies the Cauchy condition for convergence in measure. Hence  $F_n(x,y) \to F(x,y)$  in  $\mu \times \mu_Y$ -measure for a measurable function F(x,y). Taking a subsequence we can assume that  $F_n$  converges to F for  $\mu \times \mu_Y$ -a.e. (x,y). Thus for  $\mu$ -a.e.  $x \in X$  and  $\mu_Y$ -a.e.  $y \in Y$ 

$$\lim_{n} F_n(x,y) = F(x,y) .$$

At the same time  $F_n(\cdot,y) \to F_y$  in measure for a.e.  $y \in Y$ . Consequently,  $F_y(x)$  is a measurable function of x and y.

LEMMA 2. Let  $v_n, v$  be automorphisms of G such that  $\gamma \circ v_n \xrightarrow{L_1} \gamma \circ v$  for every  $\gamma \in \widehat{G}$ . Then  $v_n \to v$  uniformly.

Proof. For every  $n \geq 1$ ,  $\gamma \circ v_n \in \widehat{G}$  and  $\gamma \circ v \in \widehat{G}$ . Since

$$\int_{G} |(\gamma \circ v_n)(g) - (\gamma \circ v)(g)| \, m(dg) \to 0,$$

we have

$$\int\limits_{G} (\gamma \circ v_n)(g) \cdot \overline{(\gamma \circ v)}(g) \, m(dg) \neq 0$$

for sufficiently large n. Thus for every  $\gamma \in \widehat{G}$  there exists a positive integer  $n_{\gamma}$  such that

(15) 
$$\gamma \circ v_n = \gamma \circ v \quad \text{if } n \ge n_\gamma.$$

Consider the following distance  $d_G$  in G:

$$d_G(g,h) = \sum_{\gamma \in \widehat{G}} a_{\gamma} |\gamma(g) - \gamma(h)|,$$

where  $a_{\gamma} > 0$  and  $\sum_{\gamma \in \widehat{G}} a_{\gamma} = 1$ . Then, for each  $\varepsilon > 0$ , (15) implies  $d_G(v_n(g), v(g)) < \varepsilon$  for n large enough and every  $g \in G$ . Therefore  $v_n \to v$  uniformly.

THEOREM 2. Suppose that  $C_0 = \{(y, F_y, \mathrm{id}) : y \in Y\}$  and  $C_1 = \{(y, \overline{F}_y, \mathrm{id}) : y \in Y\}$  are diagonal compact subgroups of  $C(T_\varphi)$  over Y. Then there exists a continuous homomorphism  $a: Y \to G$  such that

(16) 
$$\overline{F}_{v}(x) = F_{v}(x) + a(y)$$

for a.e.  $x \in X$ . Conversely, if  $C_0$  as above is a diagonal compact subgroup of  $C(T_{\varphi})$  over Y and  $\overline{F}_y$  satisfies (16) then  $C_1$  defined as above is a diagonal compact subgroup of  $C(T_{\varphi})$  over Y.

Proof. We have  $\overline{F}_y(x) = F_y(x) + a(y)$  because

$$F_y(x+x_0) - F_y(x) = \varphi(x+y) - \varphi(x) = \overline{F}_y(x+x_0) - \overline{F}_y(x)$$

and  $T(x) = x + x_0$  is an ergodic transformation of  $(X, \mu)$ . Using (8) for  $F_{y+y'}$  and  $\overline{F}_{y+y'}$  and (16) we obtain

$$\begin{split} F_{y+y'}(x) + a(y+y') \\ &= \overline{F}_{y+y'}(x) = \overline{F}_{y'}(x) + F_y(x+y') \\ &= F_{y'}(x) + F_y(x+y') + a(y) + a(y') = F_{y+y'}(x) + a(y') + a(y) \,. \end{split}$$

Hence a(y+y')=a(y)+a(y'). It follows from (9) and (16) that  $a(y)\to 0$  whenever  $y\to 0$ . We have proved the first part of the theorem. The second part is evident.

Theorem 3. Let  $\varphi:X\to G$  be a cocycle. Then  $\varphi$  is coboundary if and only if

(17) 
$$(\forall \varepsilon > 0)(\exists \delta > 0)$$
  
 $d(n \cdot x_0, 0) < \delta \Rightarrow \mu\{x \in X : d_G(\varphi^{(n)}(x), 0) > \varepsilon\} < \varepsilon$ .

Proof. Necessity. Suppose that  $\varphi$  is a coboundary. Then there exists a measurable function  $F:X\to G$  satisfying

$$F(x+x_0)-F(x)=\varphi(x)$$
 for a.e.  $x\in X$ .

This implies

$$F(x+n\cdot x_0) - F(x) = \varphi^{(n)}(x)$$

for every  $n \geq 1$ . It follows from Lusin's theorem that given  $\varepsilon > 0$  there exists  $\delta > 0$  such that  $d(n \cdot x_0, 0) < \delta$  implies  $\mu\{x : d_G(F(x+n \cdot x_0), f(x)) > \varepsilon\} < \varepsilon$ . In this manner (17) is proved for  $n \geq 1$ . If  $n \leq -1$  then (17) follows from the equality  $\varphi^{(n)}(x) = -\varphi^{(-n)}(T^n x)$ .

Sufficiency. Assuming (17) we will construct a family of measurable functions  $F_y: X \to G, y \in X$ . Put

$$F_{x_0} = \varphi, \quad F_{n \cdot x_0} = \varphi^{(n)}, \quad n = 0, \pm 1, \dots$$

Take  $y \in X$ . There exists a sequence of positive integers  $\{n_m\}$  such that  $d(n_m \cdot x_0, y) \to 0$ . The sequence  $F_{n_m \cdot x_0}$  satisfies the Cauchy condition for convergence in measure. In fact, for s > l we have

$$\varphi^{(s)}(x) = \varphi^{(l)}(x) + \varphi^{(s-l)}(x+l \cdot x_0).$$

Taking  $s = n_m$ ,  $l = n_k$ , m > k, and using (17) we obtain for sufficiently large k and arbitrary m > k

$$\mu\{x: d_G(F_{n_m,x_0}(x),F_{n_m,x_0}(x))>\varepsilon\}<\varepsilon.$$

We have shown  $F_{n_m \cdot x_0} \to F_y$  in measure. The condition (17) implies that  $F_y$  does not depend on the choice of  $\{n_m\}$ . Since

$$F_{n \cdot x_0}(x + x_0) - F_{n \cdot x_0}(x) = \varphi(x + n \cdot x_0) - \varphi(x)$$

for every  $n = 0, \pm 1, \ldots$ , taking  $n = n_m$  and letting  $m \to \infty$  we obtain

$$F_y(x+x_0)-F_y(x)=arphi(x+y)-arphi(x)$$
 for  $\mu$ -a.e.  $x\in X$  ,

because  $\varphi(x+n_m\cdot x_0)\to \varphi(x+y)$  in measure. It is evident that the family  $\{F_y\},y\in X$ , satisfies (8) and (9) with  $v_y=$  id. It follows from Theorem 1 that there exists a measurable function  $f:X\to G$  such that

$$F_y(x) = f(x) - f(x+y)$$
 for  $\mu$ -a.e.  $x \in X$ 

and for every  $y \in X$ . Taking  $y = x_0$  we get  $f(x) - f(x + x_0) = F_{x_0}(x) = \varphi(x)$ , i.e.  $\varphi$  is a coboundary.

## References

- L. Baggett, On circle-valued cocycles of an ergodic measure-preserving transformation, Israel J. Math. 61 (1988), 29-38.
- A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynamical Systems 7 (1987), 531-557.
- [3] M. Lemańczyk and P. Liardet, Coalescence of Anzai skew products, preprint.
- [4] M. Lemańczyk and M. K. Mentzen, Compact subgroups in the centralizer of natural factors of an ergodic group extension of a rotation determine all factors, Ergodic Theory Dynamical Systems 10 (1990), 763-776.
- [5] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. (2) 19 (1979), 129-136.
- [6] W. Parry, Compact abelian group extensions of discrete dynamical systems,
   Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113.
- [7] M. Rychlik, The Wiener lemma and cocycles, Proc. Amer. Math. Soc. 104 (1988), 932-933.
- [8] W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2, Trans. Amer. Math. Soc. 140 (1969), 1-33.

INSTITUTE OF MATHEMATICS NICHOLAS COPERNICUS UNIVERSITY CHOPINA 12/18 87-100 TORUŃ, POLAND

> Received June 21, 1990 (2700) Revised version November 8, 1991