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Strictly ergodic Toeplitz flows with positive
entropies and trivial centralizers

by

WOIJCIECH BULATEK and JAN KWIATKOWSKI {Torun)

Abstract. A class of strictly ergodic Toeplitz flows with. positive entropies and trivial
topological centralizers is presented.

Introduction. D. Newton has asked in [2} if there is a coalescent er-
godic dynamical system with positive metric entropy. This problem seems
to be difficult and it has not been sclved so far. The analogous problem in
topological dynamics has been solved by P. Walters [3]. He has given an
example of a coalescent topological flow with positive topological entropy.
However, this example is not minimal. In this paper we construct a class of
strictly ergodic topological Toeplitz flows with positive entropies and trivial
topological centralizers. Of course, they are topologically coalescent.

We summarize some basic definitions and results. We shall use Z,N to
denote the integers and the positive integers respectively. By a flow we
will mean a pair (X,T), where X is a compact metric space and T is a
homeomorphism of X onto itself. A flow (X, T") is minimal if X has no proper
closed T-invariant subsets. A flow (¥, 8) is a factor of (X, T) if there is a
continuous map 17 of X onto ¥ with [TeT = Soll. If IT is a homeomorphism,
then (X, T) and (¥, ) are isomorphic as flows. Every minimal flow (X, )
has a maximal equicontinuous factor (G, g), I : (X,T) — (G, g), where G
is a compact metric monothetic group with a generator g. . {(X,7)—
(G, ¢} is another such factor, then there is a factor map ¢ : (G, g)— (&', 9)
such that 1 o IT = IT’,

By the topological centralizer of (X, T) we will mean the set of all continu-
ous maps I/ : X — X which commute with 7. We use C(T') to denote the
centralizer of T. C(T) is automatically a semigroup. We say that (X,T) is
topologically coalescent if every U € O(T) is a homeomorphism. In this case
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C(T) is a group. A flow (X, T) has trivial centralizer it C(T) = {T7 : j € Z}.
(X,T) is called strictly ergodic if it is minimal and if there exists a unique
T-invariant Borel normalized measure on X.

Let P be a finite set. Let {2 be the space of all bisequences over P
with its natural compact metric topology and let ¢ be the shift homeo-
morphism on £2. In the special case when P = {0,1,...,k -1}, k > 2,
we will write Ty instead of §2. If w € 2, then w[n] will denote the value
of w at n € Z and Ow) will denote the orbit of w. A finite sequence
B = (B[0]...Bln ~ 1)), Bli] € P, n > 1, is called a block over P or
simply a block. The number n is called the length of B and is denoted by
[B]. If w € 2 and B is a block, then w[i, k] (i € k) and Bli,k] (0<i<k <
n — 1} denote the blocks (w[él...wik]) and (B[i]... B[k]) respectively. Let
¢ = (C0]...Cm — 1]) be another block. The concatenation of the blocks
B and C is the block

BC = Bl0]... Bln - 1]C{0] ... Clm —1].

In the same manner we can define the concatenation of more than two
blocks. By (B, C), |B| < |{C], we mean the average relative frequency of B
in ¢, ie.

B(B, 0) = I.—G'T}I’E'I card{0 < i < |O| = |B|—1: Cliyi+ B —1] = B}

Now, we are in a position to define a Toeplitz sequence over P. Let
{112, be a sequence of positive integers such that

(1) p divides pyig and Mgy = Pq1/p: 22, 20, Ao =pp > 2.

Assume that blocks Ay, ¢ > 0, satisfy the following conditions:

(A) A] = p,
(B) some places of A, are occupied by elements of P (filled places) and
part of them are not filled (holes),

(C) the block Ay, is obtained as the concatenation of A,y copies of Ay,
Az ... A, where some holes are filled by symbols in P,
\——V——J

skt

(D) for every 4 € N there exists an index £ such that 4,[i] € P and
Aslps —i] € P (i and p — i are filled places in A4,).

We define bisequences wy, t > 0, over P and the symbol “~” (hole) as
follows: :

witkpy, (k+1)py —~ 1) = A, forevery ke Zand t=0,1,...
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The sequences wy, t > 0, determine completely a bisequence w such that
(2) W= liin wy .

The condition (D) implies that w € 2 (all places are filled).

A sequence w constructed as above is called a Toeplitz sequence if py is
the smallest period of wy for every t > 0. The sequence {p;} is said to be
the period structure of w.

It follows from [4] that if p; is & period structure of w then w is not
periodic. We will assume additionally that for every ¢ = 0 and every i,

0 < i< p— 1, such that 4;f] =“—" there exist two places j and §/ in w
satisfying
(3) wli] =wlf’) and =7 =i (modyps).

A sequence w is regular if
lim &k /p: =1,
Tt OO

where k; is the number of all filled places in A;. By a t-symbol of w we mean
every block of the form

wlkps, (k+ Vpr — 1], k=0,%1,%2,...
Every t-symbol coincides with A; at the filled places. A Toeplitz flow is

the pair (O(w), o), where O{w) is the orbit closure of w. It is known that
(O(w), o) is minimal [4]. If w is regular then (O(w), o) is strictly ergodic.

Tet

oo
G= {gngtptﬁll 0<g: <A -1, P—1=1},

=0
be the group of all pi-adic integers and let T be the rotation of G by 1. It is
proved in [4] that (G, T) is the minimal equicontinuous factor of (O(w), o).
To define a corresponding homeomorphism I from (O(w), o) onto (G, T)
we construct a special partition {X,}, g € G, of O{w). For fixed ¢, ¢ = 0,
and §,0<j<p— 1, weset

X! ={z € Ow) : e[l + kpy, ~L + (k + L)pe - 1]
is a t-symbol for bk =10,£1,...},

where

t
Iy = Z Fibi—1 -
=0

The sets X, j = 0,1,...,p — 1, are pairwise disjoint, closed and open.
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Define
o0
t
X, =) X}
=0

The sets X, g € @, are closed and nonempty and they form a partition of
O(w). Moreover,

o(X,) = Xy11, 9€G.

The factor map I : (O{w), o) — (G, T) is defined by
IIX,)=g.

1. Toeplitz flows with trivial centralizers. In this part we define a
special property of Toeplitz sequences which guarantees the trivial topolog-
ical centralizers for the corresponding Teeplitz flows. We say that a Toeplitz
sequence w satisfies the condition (%) if every subblock

Appalkp, (k+1)p: — 1], k=0,1,..., A3 — 1,
of A,y is either equal to A, or is completely filled (such a filled fragment is
a t-symbal).

TueOREM 1. If w is a nonperiodic Toeplitz sequence (regular or not)
satisfying the condition (x), then the topological centralizer Co) of (O(w), o)
18 trivial.

Proof Let S € C(o). § induces a continuous map 5’ of G commuting
with T because (G,T) is the maximal equicontinuous factor of (O(w), o).
It is known that S is a translation of G by an element h = 3 oo hypy—1,
0 < hy € Ay — 1. This means that

5(Xg) = Xosh,

for any g € G. In particular, S(w) = y &€ X} because w € Xj. At the same
time the mapping 5 is determined by a code f having a length k, & > 1,
ie. f:P¥— P (P* isthe set of all blocks over P of length k) is a mapping
such that

Cz[i] = fluli, i+ k~1])

for every i € Z, whenever z = S(u), z,u € O(w). Let

¢
thZhipiwh t=0,1,...
‘=0

Consider the blocks

L = wllpiyr, (1 + Dpep — 1],

I = yl—myp1 + Ipsr1, =mpp1 + O+ Dipess — 1],
1=0,=£1,%2,... (see Fig. 1). Each of them is a (t + 1)-symbol.
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Fig. 1

The block Ay in the figure is a part of I;. By A; we denote those
subblocks Ayi1[spe, (s + Upe + 1], 0 € s € Ay — 1, that are completely
filled {in Fig. 1 marked by the thick lines). The remaining such subblocks
are equal to A;. Suppose that there exists a series of successive fragments of
Ag¢y1 consisting of A, (denoted by IIT in Fig. 1) such that the corresponding
fragment B occurring in II; (in fact in As4q) under the block ' = 4.4,
is equal to A;. It u; be the number of the hole in A, nearest to the left
end. The condition (D) implies u; — oco. Then using a coding argument it
is easy to see that my < k {for ¢ large enough). In a similar way we prove
that m; > p, — k — 1 if there exists a series of successive filled fragments of
At+1 such that the corresponding fragment of II; appearing under the block
A4 =C (see Fig. 2) is equal to A;.

g
~ ™~

L ... At A A 1

—_ |

| i

| L
I = LA A

Fig. 2

It is not difficult to see that one of the cases described in Figures 1 and 2
must occur. Therefore, either my < k or my > p, — k —1 for £ large enough.
That means that k is a rational p;-adic integer and S = ol
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2. Strictly ergodic Toeplitz flows with positive entropy. We will
need a result of Grillenberger [1].

TaEOREM 2. For every positive real number E_a.nd integer k > 2 such
that 0 < h < logk, there exists a sequence z = z(h, k) € ) such that the
topological system (O(z), o) is strictly ergodic and hyop(o) = h.

In the sequel we will use two properties of the sequence z(h, k).

For any block B over {0,1,. ..,
integer Ly such that

(E) e (B,z[n,n+ L—1]} —p(B)| <e

for every L > Ly and n € Z, where p is the unique o-invariant measure on
Ofz).

For any € > 0 there exists ng such that
(F) A(n) > exp[n(h —&)]

forn > ng, where ©(n) is the number of blocks of length n occurring in x.

k— 1} and £ > 0 there ewists a posilive

The properties (E} and (F) follow from the strict ergodicity of (O(x), o)
and from the definition of the topological entropy.

First we construct blocks that will be £-symbols for a Toeplitz sequence.

Let h > 0. Let £q,£1, ... be positive real numbers such that

@ e
=0

‘We will construct positive integers Ig,ly,...
C’éf)’ . ’01(:4)»1 over {0,1,...,

i > 2, ¢ 2 0, and blocks
I‘H~I - 1} such that

B 10 =. =0 1=n A>2
6 00 =...=c =0 CPN-1=..=0

(7) m(d% £r(i, Cf)) < 4/ (4k)
for every 1= 0,1

(£}

0 -1 =1,
se-ait—landevery i, k=1,...
® #G0M) >0, 21,

(9)  lepr > gexplhe(he —¢/2)], where hg=h, by =loglh —m, t 2 1,

whexe 79,71, . -

,lt+1 a.ndtzo,

are positive numbers with
(10) N < £¢/2.

.' St art. We éh_oose a positive integer Iy > 2 such that
log(ly — 1) < h < logly
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and a sequence zp € X satisfying the conclusion of Theorem 2 with & = A
and k = Ip. Let uo be the unique o-invariant measure on O(zp). Then
applying (E) and (F) we choose gg such that

2 (] £
11 — ; - ; &0
(1) P < Tols and [fr (¢, B) — poli)| < 160

where B is any block occurring in zg with length gg. At the same time we
require Iy = G(gy) to satisfy

(12) i Z expl(go + 2)(h —e0/2)], 11 >2.

Let Blo), B(O) .- ,Bl(lo) be all blocks of length qg appearing in zo. Now, we
define

o =081, j=0,1,...,L—1.

It follows from (11) and (12) that the numbers Iy, l; and the blocks C£ ),
C'(l) satisfy (5)-{10) with Ag = ¢p + 2.

sy

Induction step. Suppose we have defined positive integers I, . .., ;
and blocks C’ (- 1) . .,C‘(f b satisfying {5)-(10). Applying Theorem 2 we
choose a sequence Egt such that (O(z;), o) is strictly ergodic and

h.

hiop (W: o) =

= logly — 4,
where
e < /2 and my <logly —log(ly —1).

Let p; denote the unique o-invariant measure on O(z;). Then fr{i,z;) =
pi(i) > 0 for every i =0,1,..., 11 — 1, because in the opposite case we would
have hyop(O(2¢), o) < log(l — 1). Applying again (E) and (F) we choose a
positive integer g; such that

2 o0 . . =

(13) g+ 2 < 16lﬁ’ |fr (Z) B) - /“’t(i’)‘ < 161, 3
(14) fr(s,B) > 0,
for ¢ = 0,1,....1; — 1 and for any block B, |B| = g, appearing in zs.
Moreover,
(15) O(g:) = lsa > expl(ge +2)(he —&:/2)] .
Of course, we can require that l¢q > 2.

Define

o™ = 0B, i=01,... hn -1,

where BF),. . Bl(i)rl

tion of G, 0 < § < hy1 —1, and (13)~(15) imply (5)-(10) for A, = g, + 2.

are all blocks of length g; occurring in 4. The defini-
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Construction of a Toeplitz sequence. To construct t-sym-
bols we use an operation over blocks. For a block B, |B| = k, over a set
of symbols § = {s3,...,5,} and blocks Ag,,..., A, over another set of

symbols S, define a block
{As,,..., A, }* B

over § to be the concatenation
ApiAbp - ABgr—-1) -

‘We will define ¢-symbols Agt), - ,Aff_)w_l, t > 0, over the symbols P = I
such that

1A§t)}:pta 7=0,1.. by — 1,
where p; = Ag... Ay, £ 2 0. Let

(16) AP =cP, j=0,..,h-1,

M J
(17 AP ={AF ™ L ALTD M, =0, b~ 1t 2 1

Using the blocks Ag-t), 0 <4 <y —1, we now define blocks Ay, £ > 0, over
P and over the symbol “~7 satisfying (A), (B), (C), (D) and |A;| = p;. Set

Po

(18) Ay=0——...—1, py=¢g+2,
gy times

(19) Apr = AP 4, 4, A t20.

gt+1 times

THEOREM 3. Let w be the Toeplitz sequence determined by the sequence
of blocks (18) and (19). Then the Toeplitz flow (O(w), o) is strictly ergodic

and higop(Hw), o) > 0.
Proof. We start with an estimation of the topological entropy. We have
hmp(O(W), CT) = thj& @t/pt )

where ©; is the number of blocks of length p, appearing in w. It follows from
(13), (14) and (17} that each t-symbol Ag.t), 0 €7 < leyr — 1, contains all
(f — 1)-symbols as subblocks. Then (18) and {19) imply that w contains all
t-symbols for ¢ =0, 1,... Therefore &; > l;,; and

(20) hiop(O(w), o) > limsup lﬂ%ﬁﬂ
t—o00 t

Then (9) and (10) give
lOng_l > )\t[ht -—5*/2] — h.t —Et/z > 10glt g

pe Dy Pi-1 T Pi-1 b
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Repeatedly using (12) and the above inequality we obtain
logl
08 41 Zh—g—...—&.
Pi

Now (4) and (20) give
htop(m: g) > h/2

It remains to show the unique ergodicity of (O{w), o). Take any block B
over P and £ > . Choose t; such that

(21) |Bl/p: <e:/4  for t >t
Define
o =8(,C7), i=01,.. L-1landj=0,.. 1 —1.
It follows from (17) that
-1
fr(B,Af) = 3" £(B, A" V) 0 dl? 4 6,
i=0
where § < |B|/p;..1, t > tg. The inequalities (7) and (21) imply
L1
(22) e (B, A7) — (B, AP < Y #(B, AL7Y) o) — oD - 25,
=0
< Et/4+ 2(5; < E¢
for j,k =0,1,..., l41 —1. Combining {22) with the fact that w is an infinite
concatenation of t-symbols for every t > 0, we conclude that for given £ > 0
there exists a positive integer L such that

[fr (B,wln,n+ L~ 1)) — fr(B,wim,m+ L -1])| <¢

for all n,m € Z. This means the unique ergodicity of the Toeplitz flow
{O(w), o). Theorem 3 is proved. =

The Toeplitz sequence determined by the blocks (18) and (19) satisfies
the condition (8). Hence Theorem 1 implies that the topological centralizer
Clo) is trivial.
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Unbounded well-bounded operators, strongly
continuous semigroups and the Laplace transform

by

RALPH DELAUBENFELS (Athens, O.)

Abstract. Suppose A is a (possibly unbounded) linear operator on a Banach space.
We show that the following are equivalent.

(1) 4 is well-bounded on {0, c0).

(2) —A generates a strongly continuons semigroup {e”m}szg suck that

{{1/6%)e™**},50 is the Laplace transform of a Lipschitz continuous family of operators
that vanishes at 0.

(3) —A generates a strongly continuous differentiable semigroup {e“SA} s>0 and M <
oa such that -

Rokak
| Halo)] = H(Zs,j )e—”*
k=0

. (4) —v'A generates a strongly continnous holomorphic semigroup {E—ZA}RE{:)D-O that
is O(|2|) in all haif-planes Ke(z) > a > 0 and

dz
Kt) = IEZte_ZA——
® R 2rizd
144

<M, ¥s>0,neNU{0}

defines a differentiable function of ¢, with Lipschitz continnous derivative, with K'(0) = 0.

We may then construct a decomposition of the identity, F, for A, from K{t) or Hn(s).
Forgoe X* ze X,

(F(t)g)(x) = (d/dt)*(S(K (1)) = Jm @(Hn(n/t)z),

for almogt all ¢.

I. Introduction. Scalar operators (see [5], [6]) with real spectrum are
a generalization, to arbitrary Banach spaces, of self-adjoint operators on a
Hilbert space. An early disappoeintment was the fact that most standard dif-
ferential operators on an LP space are scalar only when p equals 2. However,
if one weakens the definition by requiring uniformly bounded spectral pro-
jections corresponding only to closed intervals, rather than arbitrary closed
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