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I dedicate this paper to my Mother and Father,
who as well as introducing me to mathematics
at an early age, shared the arduous task of bringing me up

Abstract. Orlics~Lorentz spaces provide 2 common generalization of Orlicz spaces
and Lorentz spaces. They have been studied by many authors, including Mastyto, Ma-
ligranda, and Kamifska. In this paper, we consider the problem of cornparing the Orlicz—
Loventz norms, and establish necessary and sufficient conditions for them to be equivalent.
As a corollary, we give necessary and sufficient conditions for a Lorentz-Sharpley space
to be equivalent to an Qrlicz space, extending results of Lorentz and Raynaud. We also
give an example of a rearrangement invariant space that is not an Orlicz—Lorentz space.

1. Imtroduction. The most well known examples of Banach spaces are
the Ly spaces. Their definition is very well known: if (2, F, p) is a measure
space, and 1 < p < oo, then for any measurable function f : 7 — C,
the Ly-norm is defined to be |fl, = (f |f(w)?® dp(w))MP for p < oo, and
Ifllee = e85 sup,eq |f(w)| for p = co. Then we define the Banach space
L,(£2,F, 1) to be the vector space of all measurable functions f : 2—-C
for which {{ f|, is finite.

Tt is natural to search for generalizations of these L, spaces. The first
examples are the Orlicz spaces. These were first studied by Orlicz [O] and
Luxemburg [L]. We say that F : [0,00) — [0,00) is an Orlicz function if I
is nondoecreasing and convex with £(0) = 0. Now we define the Luzembury
norm by '

(e =int {e: [ PGFW)I/Q) dulw) <1},
n

whenever f is a measurable function, and define the Orlicz space L F(02,F, 1)
to be those measurable functions f for which || f|| » is finite. The Orlicz space
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Lp is a true generalization of Ly, at least for p < oo: if F(t) = P, then
Lg = L, with equality of norms.

The other examples are the Loreniz spaces, These were introduced by
Lorentz [Lol], [Lo2]. If f is & measurable function, we define the nonin-
creasing rearrangement of f to be

f(w) = sup{t: u(lf| 2 t) z 2}
If1 < g < oo, and if w: (0,00) — (0,00) is a nonincreasing function, we
define the Lorentz norm of a measurable function f to be
< 1/q
Wi = { f wle)f*(2)7 da)
0
We define the Lorentz space Ay, 4(92,F, ) to be the space of those mea-
surable functions f.-for which || f|w,q is finite. These spaces also represent
a generalization of the L, spaces: if w(z) = 1 for all 0 € z < oo, then
Awp = Lp with equality of norms.

There is one, rather peculiar, choice of the function w which turns out
to be rather useful. If 1 < ¢ < p < 00, we define the spaces L, to be Ay,
with w(z) = (g/p)z%P~1. A good reference for a description of these spaces
is Hunt [H]. By a suitable change of variables, the L, , norm may also be
defined in the following fashion: '

”f“p,q _ ( j‘of*(mp/q)q dm)l/q -
0

Thus Ly, = Ly with equality of norms. The reason for this definition is
that for any measurable set A € F, we have ||xa/lp.e = [xallp = n(A4)/7.
Thus Ly, is a space identical to L, for characteristic functions, but “glued”
together in an I, fashion.

In all the spaces defined above, if we only desire to study quasi-Banach
spaces rather than Banach spaces, we may remove some of the restrictions
placed upon the defining parametexs. Thus with the L, spaces, we need only
have p > 0. With the Orlicz spaces L and the Lorentz space Ay, We may
weaken the restrictions that F be convex and that w be nonincreasing (we
omit details). The spaces A, 4 so obtained were studied by Sharpley [8], and
so we might call them Lorentz-Sharpley spaces. With the L, , spaces, we
need only have 0 < p < oo and 0 < ¢ < oo, where if ¢ = oo, we define the
Lorentz norm by

Hf”p,oc = sup wl/pf*(m)-
: 220

Now we come to the object of the paper, the Orlicz—Lorentz spaces.
These are a common generalization of the Orlicz spaces and the Lorentz
spaces. They have been studied by Mastyto (see Part 4 of [My!]), Maligranda

icm

Comparison of Orlicz-Lorentz spaces 163

[Ma], and Kamifska [Kal], (Ka2], [Ka3]. If G is an Orlicz function, and if
w 1 {0, 00) =+ [0, 00) is & nonincreasing function, we define the Orlicz-Lorentz
norm of a measurable function f to be

[ llw,c = inf{c : Tw(a:)G(f*(m)/c) dz < 1} :
v

We define the Orlicz-Lorentz space Ay, (82, F, u) to be the vector space
of measurable functions f for which || f{l.,,q is finite. If we do not require
that the space be a Banach space, but only a quasi-Banach space, we may
weaken the restrictions placed upon @ and w as we did for Ly and Ay,
above. .

We shall not work with this definition of the Orlicz-Lorentz space, how-
ever, but with a different, equivalent definition that bears more resemblance
to the spaces Ly ,. This definition is given in the following section.

2. Definitions. Pirst we define e-functions. These replace the notion of
Orlics functions in our discussions.

DEPINITION. A @-function is a function F : [0,00) — [0, co} such that

(i) F(0) = 0;

(i1) it oo F'{1) = 20;

(iil) F is strictly increasing;

(iv) F'is continuous.
We will say that a @-function F' is dilatory if for some c1,c2 > 1 we have
Fept) = epF'(t) for all 0 € ¢ < oo. We will say thai F satisfies the Ap-
condition if F~1 ia dilatory. N

If F is a p-function, we define F(¢) to be 1/F(1/f) if ¢ > 0, and 0 if
t= ),

The definition of a p-function is slightly more restrictive than that of an
Orlicz function in that we insist that F' be strictly increasing. The notion
of dilatory replaces the notion of convexity. The Orlicz spaces generated
by dilatory [unctions are only quasi-Banach spaces, in contrast to those
genorated by Qrlicz functions, which are Banach spaces. The Ag-condition
appears widely in literature about Orlicz spaces.

DurINrrion. IF (62, F, g} is a measure space, aud F is a g-function, then
we define the Lugemburg functional by :

1Al =int{e: [ FOf@I/dute) <1},

for every measurable function f. We define the Orlicz space, L F(02,F, 1)
(or Lp(u), Lp{f2) or Ly for short), to be the vector space of measurable
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functions f for which ||f||r < oo, modulo functions that are zero almost
everywhere.

Now we define the Orlicz-Lorentz spaces.

DerNITION. If (2, F, 1) is a measure space, and F and G are -
functions, then we define the Orlicz-Lorentz functional of a measurable
function f by

Iflre =1 e FoG g
We define the Orlicz-Lorentz space, Lp (2, F,u) (or Lpa(p), Lra(2) or
L ¢ for short), to be the vector space of measurable functions f for which
If|[F.¢c < oo, modulo functions that are zero almost everywhere. Similarly,
by means of the (weak-) Orlicz—Lorentz functional

17l Fo0 = sup F~(2)f"(=),

we define the Orlice-Lorentz space Ly oo (02, F, 11}

We see that Lp p = Lp with equality of norms, and that if F/(t) == P and
G(t) =9, then Lpg = Ly, and Lp oo = Ly o, 8180 with equality of norms.
Thus, if F(t) = t?, we shall write L, & for Lpg, and Lg,, for L p. Also, if
A is any measurable set, then [|xallr.e = |lxalree = |xallr = F~ (1{A)).

The Orlicz-Lorentz spaces defined here are equivalent to the definition
given in the introduction, as we now describe.

DEFINITION. A weight function is a function w : (0,00) — (0, 00) such
that W(t) = fotw(s) ds is a @-function,
Then if w is a weight function, and G is a @-function, then A, g =
4
100 o Where W(t) = Jow(s)ds.

Now let us provide some examples. We define the modified logarithm and
the modified exzponential functions by

L

1+1logt ift > 1,
Im(t) = { /{L+1og(L/8)) if0 <t <,
0 if t =0,
‘ exp(t — 1) if ¢t > 1,
em(t) = lm ™' () = {exp(l —(1/t)) f0o<t<,
0 ift =19

"These functions are designed so that for large ¢ they behave like the loga-
rithm and the exponential functions, so that Im1 = 1 and em1 = 1, and
s0 that Im = Im and ém = em. Then the functions ¢?(Imt)* and em(")
are w-functions whenever 0 < p < o0 and —00 < a < co. If the mea-
sure space is a probability space, then the Orlicz spaces created using these
functions are also known as Zygmund spaces, and the Orlicz~Lorentz spaces
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Ly (lm 1) g and Lign(ir),q are known as Lorentz-Zygmund spaces (see, for
example, [B-S]).
Finally, we define the notions of equivalence.

DEFIUTION. We say that two p-functions F' and G are eguivalent (in
symbols I? > @) if for some number ¢ < co we have F(c™1t) < G(£) < F(ct)
for all 0 < ¢ < .

We say that two function spaces X and ¥ on the same measure space
are equivalent if for some ¢ < oo we have f € X & f € Y with ¢ Y| fl|x <
Ifllv = ellflx for all measurable functions f.

3. Survey of known comparison results. There are at least four
obvious questions about Orlicz-Lorentz spaces.

(i) For which @-functions F' and & is Lp ¢ equivalent to a normed space
(or p-convex, or g-concave)?
(i1) What are the Boyd indices of the Orlicz-Lorentz spaces?
(ili) What are necessary and sufficient conditions for Ly ¢, and Ly, o,
to be equivalent?
(iv) Ts every rearrangement invariant space equivalent to some Orlicz—
Lorentz space?

The first and second questions are intimately related, and will be dealt with
in another paper [Mo2]. In general, they are very hard to answer. The third
question is the subject of this paper. As a corcllary, we will also be able to
angwer the fourth question.

There have already been many comparison results for Lorentz spaces.
Indeed, Lorentz himself provided one of the first in 1961 [Lo3]. He found
necessary and sufficient conditions for A, 1 to be equivalent to an Orlicz
space.

DEFINITION. A weight function w is said to be strictly monotone if either

(i) w is strictly increasing, w(t) — 0 as ¢ — 0 and w(t) — oo as
L 00, or

(ii) w is strictly decreasing, w(t) — o0 as t — 0 and w(t) — 0 ast — oo,

A strietly monotone weight function is said to satisfy condition (L) if
there is a nunber ¢ < oo such that

Pt
: w{ew(t))
TrnorEM 8.1, Let w s (0,00) — (0,00) be a decreasing, strictly mono-
tone weight function. Then the following are equivalent.

(i) Aw1 48 equivalent to an Orlicz space.
(ii) w sotisfies condition (L),
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The kinds of weight functions that satisfy condition (L) are slowly in-
creasing or slowly decreasing functions. An example that Lorentz implicitly
gave is

_ t“lf log(1-+log ¢) ift> 1’
wlt) = {tl/“’g(l”bg” ifo<t<l.

Recently, Raynaud [R] noticed that the above result is also true if w is
strictly increasing. He then went on to show the following result.

THEEOREM 3.2. Let w be o weight function, and 0 < p < co. If there are
strictly monotone weight functions wy and wi satisfying condition (L) and
o number ¢ < oo such that

T gy <

then Ay, p s equivalent to an Orlicz space.

It may seem that the scope of these results is limited, but this iy not
really the case, Using Lemmas 5.1.2 and 5.1.3 below, one can apply these
results to find sufficient conditions for equivalence of two Orlicz-Lorentz
spaces that are no stronger than the conditions given in this paper.

There are also results due to Bennett and Rudnick [B-R| (see also
[B-5]). They proved the following results for probability spaces, but us-
ing their methods, it is not too hard to see that these results are true for all
measure spaces.

THEOREM 3.3. For every 0 < p < oo and every —oco < @& < 00, the spaces
Lti’(lmt)‘" and Lﬂ(lmt)‘-“,p are eguival@nt.

THEOREM 3.4. For every 8 > 0, the spaces Loypey and Lew(i8),00 0TE
equivalent.

4. Comparison of Orlicz—Lorentz spaces. In this section, we state
the main results of this paper, and give necessary and sufficient conditions
for which, given certain restrictions upon G1 and Gy, we have | f||ra, <
c[|fll r.e,- Thus we find necessary and sufficient conditions for L g, and
Lp, i, to be equivalent.

We first notice that || f|l,.q, < [|fllp.g. Whenever gy > g2 (see [H]). This
suggests that we have a result something like: if G ],oG';l i a convex function,
then || fllpa, < - And this is indeed the case. However, rore is true.
For example, if G(t) = tlmi, then it follows from Theorem 3.3 that Le g
is equlvalent to Lg . Thus, it would seem that we only need to know that
Gy oGyt is “close”, in some sense, to a convex function.

In th1s paper, we establish precisely what this notion of closeness is. But,
before stating the conditions, we first give a little bit of motivation. We note
that a dilatory @-function G is completely determined, up to equivalence,
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by its values G(a™), where ¢ > 1 is any fixed number, and n ranges over
all integers. Thus, we note that a p-function @ is equivalent to a convex
function if and only if for seme g > 1 and N ¢ N, and alln ¢ Z and m € N,
we have G{a™*™) > o™~ NF(a") (see Lemma 5.4.2 below).

In all that follows, we take the natural numbers to be N = {1, 2, 3,...}.

DEerINITION. Let ¢ be a p-function. We say that G is

(1) almost convex if there axe ¢ > 1, b > 1 and N € N such that for all
m & N, the cardinality of the set of n € Z such that we do not have

G(an-MrL) 2 am—-NG(an)

iy less than b™;
(i) almost concave if there are @ > 1, b > 1 and N € N such that for all
m € N, the cardinality of the set of n € Z such that we do not have

G(an-i-m) S am+N@(ajn)
is legs than 0™;
(ii) almost linear if there are @ > 1,6 > 1 and N & N such that for all
m & N, the cardinality of the set of n € Z such that we do not have

NG € Gla™™) € o™V G(a™)

ig less than b™; _
(iv) almost constant if there are @ > 1, b > 1 and N € N such that for
all m & N, the cardinality of the set of n € Z guch that we do not have

G(avn-i—m) S QNG(CLn)

is less than ™
(v) almost vertical if G~ is almost constant.

We will also express our results in terms of what we shall call condi-
tion (J).

Drmnrrion. IF P and G are p-functions, then we say that F is eguiv-
cale’m’:l(tj less conver than G (in symbols F' < G) if Go F-1 is equivalent to

a convex function. We say that F' is eguivalently more conver than G (in
syml)ols F = @) if G is equivalently less convex than F.

A p-function F is said to be an N-function if it is equw&lent to a -
function £y such that Fy(f)/¢ is strictly increasing, Fo( )t — oo as t— 0,
and Fo(t)/t — 0 as t— 0.

A w-function F is said to be complementary to a - functlon G if for
some ¢ < oo we have

cHSFTH) G <t (0Kt < 00).

If Fis an N-function, we will let F* denote a function complementary to F.
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The notation F* makes sense if F is an N-function, because then there
is always a function G complementary to F, and further, if Gy and G4 are
both complementary to F, then Gi and G are equivalent.

Our definition of a complementary function differs from the usual defini-
tion, If F is an N-function that is convex, then the complementary function
is usually defined by F*(t) = sup,so(st — F'(s)). However, it is known that
t < Fi{t) - F*1{t) < 2¢ (see [K-R]). Thus our definition is equivalent.

DEFINITION. An N-function H is said to satisfy condition (J) if
|1/ EH* | g < 0.

The kinds of N-functions that satisfy condition (J) are slowly rising
functions. These are essentially the kinds of Orlicz functions that Lorentz
describes in Theorem 1 of his paper [Lo3].

We also describe our results in a third fashion. The following definitions
are motivated by the fact that G = G5 if and only if for some ¢ < oo
and all s > 1 and t > 0 we have Gi{st)/G1(t) = ¢ Ga(st) /G2 (¢) (see
Lemma 5.4.2).

DerFmviTiON. Let Gy and Gp be p-functions. We say that

(i) G1 is almost less convex than Gy if therearea > 1,0 > 1 and N ¢ N
such that for all m € N, the cardinality of the set of n € Z such that we do
not have

Gy(am™™) _ y Gala™™)
Gia™ =7 T Galam)

is less than b™;

(i) G1 is almost more conver than Gz if (3 is almost less convex
than Gy

(iii) Gy is almost equivalent to Gy if there are a > 1,6 >1and N N
such that for all m € N, the cardinality of the set of n € Z such that we do
not have

Y Gﬂ(awm) Gl(am}-m) N GQ (an-l—m)
Golam) = T Ghle™) = T Galan)

is less than b™.

Now we collect together the comparison results. For all these results, we
will assume that the measure space is [0, 00) with Lebesgue measure. Tn fact,
any nonatomic infinite measure space will do. There are also similar results
for nonatomic probability spaces, and for N with the counting measure (i.e.
sequence spaces). We do not give details for these cases. However, the idea is
that for nonatomic probability spaces, we need only consider the properties
of the relevant -functions G(¢) for large ¢, and for sequence spaces, their

icm

Comparison of Orlicz-Lorentz spaces 169

properties for small £. Obviously, if one is only interested in sufficient con-
ditions for Orlicz~Lorentz spaces to be equivalent, one can use any measure
space. (Recall that < means equivalent to, see Section 2.}

PropoSITION 4.1. Let Fy, Fo, G and Ga be p-functions.

(i) If FLo GI_J" = o G’z_TL and Gy = Gy, and if one of Gy or Gy is
dilatory, then Lp, ¢, ond Lp, @, are equivalent.
(i) If Fy = Fy, then Lp o and Lip, o are equivalent.

THROREM 4.2, Lel F, (1 and Gy be p-functions. Congider the following
statements.

(i) For some ¢ < co, we have | flra, < cl|fllra, for all measurable f.

(i) Gyo Gé’l 15 almost convex.

(iii) There is an N-function H satisfying condition (J) such that Gy o
Gyl = HL

(iv) Gy 45 almost more convex than Ga.
Then, if one of Gy or Gy is dilatory, we have (i)=(i). If one of G or
Gy 48 dilatory and Gy sotisfies the Az-condition, or if G2 satisfies the Ag-
condition, then ()=(i1). If Gy is dilatory and satisfies the Ag-condition,
then ()< (iv). We always have (1i)<(iii).

TuROREM 4.3. Let Fi, Fa, Gy and Ga be yp-funciions such that one of
Gy or Gy 48 dilatory, and that one of Gy or Gy satisfies the Aa-condition.
Then the following are equivalent.

(1} Lp, ., and Lp, @, ore equivalent.
(i) i < Fy, and Gy o Gz"l is almost linear.

(i) £y = Fo, and there exist N-functions H and K satisfying condition
(J) such that Gyo Gyt =Ho KL,

(iv) Fy = Fy, and there exist N-functions H and K satisfying condition
(J) such that G1o Gyt =H o K.

(v) Fy = Fy, and Gy is almost equivalent to G. _

(vi) Fy x Iy, and there exist N-functions H and K satisfying condition
(I} and a number ¢ < oo such that e G /Gy < HIK < cGy/Ga.

(vii) Fy = Fy, and there exist strictly monotone weight functions wo and
wy satisfying condition (L) and a number ¢ < oo such that ¢c1G/Go £
woth < ¢G/ . '

(viii) Fy = By, and there ewists an almost linear p-function F.and a
number ¢ << 0o such that ¢ F(t) < tG1(t)/Ga(t) < cF(t) for allt > 0.

The condition that one of the p-functions Gy or G2 satisfy the As-
condition is necessary, as is shown by the following example. Let & 1(2) =
emt and Ga(t) = emt?. By Theorem 4.6 below, L1,g, and Lyg, are both
equivalent to Ly oo. But it Is clear that G0 Gy 1 is far from being almost
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linear. The author does not know whether the condition that one of Gy or
G2 be dilatory is needed.

We are also able to obtain certain results stating that in order to compare
Lr ¢, and Lp, a,, we need only compare the norms for a certain class of
test functions.

DEFINITION. Let 7; be the set of functions £ : [0, 00) — [0, 00) such that
for some 0 =ap < a1 < ... < a, we have
1/0:,z ifa1<zr<aorandl <ign,
otherwise.
If F is a e-function, 1et’Tp—{F lof:fen}= {fOF :feTi}

THEOREM 4.4. Let F, G1 and Gy be @-functions. Suppose that Gy s
dilatory, and that one of Gy or Gy satisfies the Ag-condition. Then the
following are equivalent.

(i) For some ¢ < 0o we have |f||ra;, < clfllrg, whenever f* € Tp.

(i) For some ¢ < co we have ||fllrc, < c||fllrq, for all measurable f.

THEOREM 4.5. Let By, Fy, G and Go be -functions. Suppose that one
of Gy or Gy is dilatory, and that one of Gy or Gy sotisfies the Ag-condition.
Then the following are equivalent.

A

(i) For some ¢ < oo we have ¢! f|r,c:
whenever f* & Tp,.
(ii) For some ¢ < oo we have ¢ || fllr.c. < IfliF,c.
whenever f* € Tg,.
(ii) Ly, g, end Lp, a, are equivalent.

s H-f”F’-?:G?( - CHIfHFleGI

c”f“FnG:.

N
IA

Finally, we give a result for the weak-Orlicz-Lorentz spaces.

THEOREM 4.6. Let Iy, Fa and G be w-functions. Then the following are
equivalent.

(1) Lp,,¢ and Lp, o are equivalent.
(ii) Fy = Fy, and G is almost vertical.
(iii) F1 = Fa, ond [|1/G7 e < oo,
(iv) Py = Fy, and G~ satisfies condition (L.).
It is clear that all the results given in Section 3 follow from these results,

We are also able to answer a question of Raynaud, and prove the converse
to Theorem 3.2.

THEOREM 4.7. Let w be ¢ weight function, and 0 < p < co. If Ay,
s equivalent to an Orlicz space, then there are strictly monotone weight
Junctions wg endwy satisfying condition (L) and a number ¢ < oo such that

c—th(t) < wo(tw(f) < e W(*)
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Proof. This follows immediately from the implication (i)=>(vii) in Theo-
rem 4.3, and from the observation that a strictly monctone weight function
w satisfies condition (L) if and only if w? satisfies condition (L) for any
J<p<eoo m

5. The proof of the results of Section 4. The proofs of the results
of Section 4 are rather long. We will split the proof into many lemmas
that are grouped into several subsections according to their nature. Many
of the lemmas, if not obvious, are at least “believable without proof”, and
the reader m&w pass over them guickly. The key results are contained in
Sections 5.3, 5.5 and 5.6.

These proofs could be shortened considerably if we assumed throughout
that all @-functions were dilatory and satisfied the As-condition, but then
our results would be correspondingly weaker. In particular, Theorem 6.1
helow would be much less general.

5.1. The elementary propositions. The first result is obvious, and requires
no proof.

LeomMma 5.1.1. Let G be ¢ w-function.
(i) If G s dilatory, then for all ¢; < oo there is cy < oo such that if

fGo Ydpw) < ey,

(il) If G satisfies the Ag-condition, then for all ¢y < co there is ¢y < co
such that if ||f|la < c1 then :

f Go flw)du(w) < ca.
n

Now we have the fArst result from Section 4.

Proof of Proposition 4.1. This is a simple consequence of Lemma
5l m

The following results deseribe the basic “algebra” that the Orlicz-Lo-
rentz spaces satisfy. Essentially, they allow one to reduce comparison of
Orlicz Loventz spaces to the problem of comparing Ly, to Ly. The proofs
are straightforward, so we omit them.

LuMMA 5.1.2. Suppose that F, Gy and Ga are p-functions. Then for
any ¢ < oo we have || fllre, < clfllme, for all measurable f (respecm:'vely,
f e Tp)if and only if | Fllue, < c|| flli,qs for all measurable f (respectively,
fe ).
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LEMMA 5.1.3. Suppose that G, Go and H are p-functions.

(i) If H is dilatory, then if for some c1 < oo we have Nfllen <
c1llfllia, for all measurable f (respectively, f € T1), then for some ¢y <
oo we have ||f|l1.gion < callfll1,cror for all measurable f (respectively,
feny)

(ii) If H satisfies the Ag-condition, then if for some ¢ < oo we have
I Fl1.cuorr < cillflnGa0m for all measurable f (respectively, [ € Ty), then
for some ¢z < oo we have ||fl|1,gy < call fllne, for all measurable f (respec-
tively, f € T3).

5.2. Conditions for functions to be dilatory, efe. Here we collect the
results that pertain to when a p-function is dilatory or satisfies the Ao-
condition. The first result is obvious.

LeMMA 5.2.1. Let G be o @-function.
(i) If there are a > 1, ¢y > 1 and ¢y > 1 such that e;G(a") < G(e2a™)
except for finitely many n, then G is dilatory.
(ii) If there are a > 1, ¢1 > 1 and ¢z > 1 such that c;G(a™) = G(coa™)
except for finitely many n, then G satisfies the Ay-condition.

Now we show how the property of & being dilatory or satisfying the
Ag-condition may be captured by the properties of Ly e

LeMMA 5.2.2. Suppose that G is a w-function. Then the following are

equivalent.
(i} G is dilatory.
(ii) There is ¢ < oo such that ||fll1,¢ < ¢ for all f: R — R of the form
a”l if0<z<a,
fEY=4¢b"t ifage<h
0 otherurise,
where b>a > 0.

Proof Pirst we will show that (i)=-(ii). Given a function f of the ahove
form, we note that

' :FG o f*e G a) dz < G(a)G(a™ ) + GB)G(™) = 2.
0

Then the result follows immediately from Lemma 5.1.1.
To show that (ii)=(i), we will consider functions of the form
' GTi3™) if0<z<1/GTH3™),
flz)=¢ G738 f1/G71(3™) <z < 1/G(3"),

0 otherwise,
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where m > n are integers. Then | fil1.g < ¢, and so
ee)
L2 f Gle tf*o é“l(m)) dx
0

> 3"mG(c"1G’”l(3m)) - % 3TG(eTTGTHE™M).
Therefore, for all except one n € N we have

237G e (3™) < 4,

that is, ¢~*G(3") < ¢"1(2 - 3"). By Lemma 5.2.1, G~ satisfies the Ag-
condition, and hence @ ig dilatory. a '

LEMMA B.2.3. If F, (1 and G2 are p-functions such that Gy is dilatory
and for some ¢ < 0o we have || fl|ra, < ¢ fllre for all f € Tr, then G2
is dilatory.

Proof. This follows immediately from Lemmas 5.1.2 and 5.2.2. =

LeEMMA 5.2.4. Suppose that G is a @-function. Consider the following
statements.

(i) G satisfies the Ag-condition.

(ii) Given ¢ > 1, there are d > 1 and N &€ N such that ||f|j1,c = ¢ for
all f: R — R of the form

f(z) = dh qfdhi-r <x<dMoandl1<i<N,
0 otherwise,

where k1 < ... < kn are integers, and ko = —00.

Then (ii)=>(i). Furthermore, if G is dilatory, then (i)=-(ii}-

Proof. First we will show that (i)=>(ii) when G is dilatory. Choose d
so that G(d™) > 2G(d™!) for all n € Z. Then if f is of the above form, we
have

o N
[ Cof oG ia)daz Y (B(d) - G )GE™) = N2,
0 deml

Thus iff ¢ satisfies the Ag-condition, then by Lemma 5.1.1, there is some
N & N such that for all f of the above form, we have | f|1,¢ = ¢
To show that (ii)=+(i), pick ¢ > 2. Then for any f of the above form,

i=1

iy N
1 < f G(Z“lf* Q é""l(m)) dg; S E é(dki)g(z_ld_ki) '
0

Therefore, the cardinality of the set of n € N such that é(d“)G(z‘ld‘”) <
N-1 ig less than N. By Lemma 5.2.1, this shows that G satisfies the Ap-
condition. &
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LEMMA 5.2.5. Suppose that F, G1 and Gy are @-funclions such that one
of Gy and Gy is dilatory. If Gy satisfies the Ag-condition, and for some
¢ < oo we have |f|lra, = cllfllme, for all f € Tr, then Gy satisfies the
Ag-condition,

Proof. By Lemma 5.2.3, Gy is dilatory. Now, the result follows imme-
diately from Lemmas 5.1.2 and 5.2.4. =

5.3. Comparison conditions for Ly . In this subsection, we give the key
lemma that demonstrates the relationship between the almost convexity of
@, and the comparison between Ly ¢ and Li. As a corollary, we will also
obtain results that show that in the definition of the “almost” properties we
can take the value of o to be arbitrarily large.

LeMMA 5.3.1. Suppose that G 15 a @-function. Then the following are
equivalent.

(i) For some ¢ < oo, we have | f1.g|| < ¢l fll1 for all measurable f.

(il) For some ¢ < 0o, we have |[f1,a| < cliflly forall f €Ty,

(iil) For all sufficiently large a, there are b > 1 and N € N such that for
all m € N, the cardinality of the set of n € Z such that we do not have

G(an+m) 2 ammNG(an)

is less than b™.

(iv) G is almost conver.

The proof will require the next lemma.

LemMmA. 5.3.2. Let G be a @-function. If G is almost conver, then given
o' > 1, therearea >1,b> 1, ¢ <oc and N & N such that a > max{a’, b}
and such that for allm € N, the cardinality of the set of n € Z such that we
do not have

Gla™t™) > a™ N G(a™)
is less than cb™.
There are similar results if G is almost concave or almost constand.

Proof. There are o >1,b>1and N € N such that for all m € N, the
cardinality of the set

A = {n€Z: Q™™ < a™ N G(a™)}
is less than b™. Pick ¢ € N such that a® > b and a® > o', and let
A:-n. = {TL c7 G(ac(n+m)) < ac(m—N)G(arm)}_

Then, if n € Af,, then at least one of en, en+m,..., or en+ (e~ L)m € A,
and hence |A] | < cb™. m
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Proof of Lemma 5.3.1. Clearly, (i)=-(ii) and (iii)=(iv). We will show
(ii)=>(iil). By Lemma 5.2.3, we know that G is dilatory. Thus we suppose
that a > 2 and G(at) = 2G(¢) for all t > 0. Choose N so that ™V ~! > ¢. We
will prove the result by showing that there cannot be numbers m € N and
ny < Ny < ... < Nym-~1 SUCh that

Gla™) < o™ N@{am ™).
For otherwise, consider the function

fla) = a™ if g™ < g <o ™ and 1 <5< oML
0 otherwise,

where we take ngm-~42 = 0o. Clearly, ||fll1 € a™N*1. But also, we have
the following inequalities:

oo am N+ a(a_“i)

[ oG a)de> Y [ Gla™f* oG ) do

h -

=l Fammi)

1 gm— N+l G( —m+n-)

a' T
> = —_———t > CL/2 > 1,
2 ; G(am)

where the penultimate inequality follows because @(a"”‘i) > 2G(a~™+1).
Thus i|f|li,¢ = ™ = ¥~ f|l1, which is a contradiction.
Now we show that (iv)=(i). By Lemma 5.3.2, therearea > b > 1, ¢ < o0
and N € N such that for all m'e N, the cardinality of the set
Am={ncZ: @) <a™ YG(" ™)}

i less than ¢b™. Let {ky,ks,...} be the (possible finite or empty) set of
integers not in Uz‘;l A, Define the sequence of sets B, by setting By = Ay,
and

B, = {km-1}UAn\ | ] Am

m!i<m

for m > L Then [Bp| < eb™.
Choose ¢ = (a — 1)/a*. Suppose [ is a measurable function such that

Ifla= [ fla)dz <.
0

For each n € Z, let m, € ZU {oo} be such that

g~ e < a—-nf*(aan) < al—mn .
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n=—co j=n~l = —0
> 2= ! i a”mn
B a n=—=00
Therefore,
(=]
z a =a7%,
=== 00
In particular, we note that mn > 3 for all n € Z.
Then

oo s G N
[GofoGimda= ), [ GoftelGta)de
0 ’n-_-—oca( —n—l)

o)

< 3 GG (e < Z Gla2Hrme) G a").

=—00 N=—00

Nowlet V={ne€Z:n¢ Bn for all m < mypq1 — 2}. Then

[ Gof oG z)da
o]

<ZG i mn_!.l /G +Z Z G 2ef g1 /G n)

ngV m=1 neBm\V
If n € V, then either n §Z Arnpg1—2, OF Mpy1 = 00, and g0
| G( 24 m““)/G n) < aN-i—Z Matl
Ifn € B, \V, then m < mpyy — 2, and 50
G(a*Tm M) /G(a™) < Gla™ ™) /G(a™).
If we also know that m > 1, then n & Ay —y, and s0
Gl ) [G(a") < Gt ™) Gla”) € oV

Therefore,

oo

f Gofro é"l(m‘)dw

0

oC
< Z GN+2 Mot Z G(an 1 /G + Z Z aN+].~'rn
neV neB\V m=2ngB,\V
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<oVt 4 2 Gla™ 1Y /G(a™) + Z chMgNFTLI-m
ne By m=2
which is a finite number whose value does not depend on f. However, by
Lemma 3.2.1, & is dilatory, and hence by Lemma 5.1.1, || f|i1,¢ is bounded
by some number that does not depend on f. m

5.4. Converxity and concavity conditions. In this subsection, we give basic
results about convexity and concavity, and their “almost” equivalents. First,
we give a technical lemuna whose proof is cbvious.

LemuMa 5.4.1. Let G be a p-function. Define o map 1 2 — Z s0 that
for all n € Z we have

afM=t < @) < of ™).
() If G is dilatory, then there is L € N such that f(n1) # f(ng) if
|n1 - ?’L21 > L. .
(i) If G satisfies the Aq-condition, then there is M € N such that
\f('n,l) - f(?’bz)] < M N1 —’i’!.z! fO'I‘ all T, Ng € Z.
Next we give some results about convexity.

LeMMA 5.4.2. Let Gy and Gy be p-functions. Consider the following
statements.

(i) Gy 1s equivalently more convex than Gy.
(i1) There is ¢ < oo such that Gy o Gyt (st) > ¢ 1sG 0 Gy L) for all
sz landt = 0.
(i) There is ¢ < 0o such that Gy(uv)/Gh(v) = ¢ G2(uv)/Ga(v) for all
uw>1 andov>0.
(iv) There are a > 1 and N € N such that for allm € N and n € Z,

i@ ™) |y Gala™™)
> .
Gi(a™) Ga(a™)
Then we have (1)e(ii)e(iil)=(iv). If one of Gy or Gy satisfies the Ag-
condition, then (iv)=>(iii).

Proof. The implications (i)=+(ii) and (iii)=>(iv) are obvious. The irpli-
cations (i) (iii) follow by setting ¢ = Ga(v) and st = Ga(uv).
To show (ii)=>(1), we let

G o G'gl(st)

S

Hy(t) = inf

and H(t) =
a1l

o

Then it is easy to see that H is convex, and that H is equivalent to Gy oG2 .
Now suppose that G satisfies the Ag-condition. We show (iv)=>(iii). Let
I € N be such that G{at) < XG4 (t) for all t > 0. Suppose that for some
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w>1 and v > 0 we have
Gy (uv) a—N-8L Gy (uv)
G1{v) Ga(v)

Let mn and n be such that o™ < u < ™™ and a™ < v < a™t!. Then

_aL Gl(anz+n+2) Gl(am—l—n) - a»—N—3L GZ (a'rr:,-o-n+2)
Gl(a“) - Gl(ﬂn+1) Gz(&n)
which is a contradiction.
The argument for G satisfying the Ag-condition is similar. =

Now we start looking at the “almost” properties. First we relate almost
convexity to almost concavity.
LEMMA 5.4.3, Suppose that G is o @-function.

(i) If G is almost convez and satisfies the Ag-condition, then G is
almost concave. :
(i) If G is almost concave, then G~ is almast convex.

This will follow from the next lemma.

LEMMA 5.4.4. Suppose that G is a w-function and that a > 1. Consider
the following statements.

(i) There are b > 1 and N € N such that for allm €N, the cardinality
of the set of n € Z such that we do not have
G(aﬂ’+m) Z am—NGv(a'n)

is less than b™.

(ii) There are b>1 and N & N such that for oll m € N, the cardinalily

of the set of n € Z such that we do not have
G—l (an+M) < am+Na-—1(a‘n)
is less than ™.

Then (ii)=>(1). If, in addition, G satisfies the Ay-condition, then ()=
(it).

Proof We will show that (i)=»(ii) when G satisfies the Ag-condition.
Let f : Z — 7 be defined so that o/ "= < G-} (a") < o/™, Since G is
dilatory, by Lemma 5.4.1, we know that there is L such that |f~1({n})| £ L
for every m € Z. Let

A = {n € G»»l (a-n+m) > am-}-l-lnNGa——l(an)} .
Then it can easily be shown that
fAn) S {neZ: Gla™T™ VY < o™ G(a™)},
and hence [A,| < IB™HN < b7, where by = LV L.
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To show (il)=-(i) is similar. Let g : Z — Z be defined so that a9 <
G(a™) < a¥™7, Since G is almost convex, it follows that G is dilatory.
Now the proof proceeds s in (1)=(ii). =

Next, we deal with the composition of the “almost” properties. One of the
main problems here is that given two p-functions, each with an “almost”
property, the a from the definition of the “almost” property for each -
function could be different. Fortunately, we have already developed the tools
to deal with this. irst, for “almost convexity”, the implication (iv)=(iii)
in Lemma 5.3.1 tells us that the o may be any arbitrarily large number.
If the e-function s dilatory, then Lemma 5.4.4 also allows the a to be any
arbitrarily large number for the “almost concavity” property. Finally, for
other “almost” properties, Lemma 5.3.2 allows us to choose the a to be
larger than any given number.

Thus we have the following result.

LemMA 5.4.5. Let G be o @-function. If G is almost conver and almost
concave, then G is almost linear.

Lumma 5.4.6. Let Gy and Ga be p-functions.

(1) If Gi ond G2 are almost convez, then Gy o Ga 4s almost convez.
(i) If Gy and G ore almost concave, and if G s dilatory, then G0 Gy
18 almost concave.

Proof First we will prove part (ii}. By the explanation given above,
we may suppose that for one o > 1, there are by > 1, Ny € N, bg > 1 and
Ny € N such that for all m € N, the cardinality of the set of n € Z such that

Gy (a™™) > g™tV (a™)
is less than 0%, and the cardinality of the set of n € Z such that
Gala™™) > a2 Gy (a™)

is less than bt Define f : Z — Z so that o/ (M1 < Ga(a™) < o™ for all
n & 7. Then by Lemma 5.4.1, there is L € N such that |f~1({n})| < L for
all m & Z. Then we gee that for all m € N, the cardinality of the set of n € Z
such that

le o G‘z{arw‘m) o a'n’!«+N1+N2+101 o Gy (an)

is legs than by NVetNatly ppm-eNatl For, if the above holds, and Ga(a™™™)
< a™tNa@y(a™), then

G, (af(n)—l-i—n'»ul-Na-l-l) 5 gMNz+LNL o (a-f(n)—l) .
The result follows.

To show (i), we note that as Gz is almost convex, we already know that
@y is dilatory. Now the argument follows as in part (ii). =
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Now, we prove two lemmas that are “almost” analogues of Lemma 5.4.2.

LEMMA 5.4.7. Let (1 and Gy be @-functions such that Gy is dilatory
and satisfies the Aq-condition.

(i) Gy 0 Q5" is almost conves if and only if Gy is almost more conver
than Gy.

(ii) Gy o G5 ' is almost concave if and only if Gy is almost less concave
thon Gl

Proof We will show that if G1oGg ! is almost convex, then Gy is almost
more convex than Gy. All the other assertions follow similarly.

So, there are @ > 1, b > 2 and N € N such that for all m € N, the
cardinality of

={neZ:G oGy (a™™) <a™ VG0 Gy (a™)}

is less than b™. Define f : Z — Z so that /™~ £ Gy(a™) < af™ for all
n & Z. Then, by Lemma 5.4.1, there ave L, M € N such that f(n+L) > f(n)
foralln€ Z, and f(m+n) — f(n) < Mm for all m e Nand n € Z.

Now, for each m € N, consider the cardinality of the set

Gl(aL(wm)) P GZ(aL(n+m))
Gl(aLw.) Gz(aLn)
If n € By, let ' = f(Ln) and m' = f(L(m+n)) —n'. Then

G0 G;—l(a‘n'%-m'—l) < am’wl—NGI o G——l(an') )

Clearly, this is 1mp0351b1e if m" < 1, and otherwise, thls implies that n' €
Api_1. Since m' < Mm, we see that | Br| < E%:”] b < b3, where by =
WML /(b—1).

LEMMA 5.4.8. Let Gy and Gy be w-functions such that one of Gy or Gy
is dilatory and one of Gy or Ga salisfies the Aq-condition. Then Gy c:~(fr’§"1
ie almost linear if and only if G is almost equivalent to Gg.

Bmz{n.EZ:

Proof. We note that if one of (¢4 or (s is dilatory, then both are, and
if one of 1 or G2 satisfles the Ap-condition, then both do. Now the proaf
proceeds as in Lemma 5.4.7. ®

5.5. Condition (L) and condition (J). In this subsection, we describe
how the notions of satisfying condition (L) or condition (J) relate to the
“almost” properties.

LEMMA 5.5.1. Let G be a ¢-function. Then the following are equivalent.

" (i) G is almost constant.
(i) 1/ 8 g < oo.
(iii) G' satisfies condition (L).
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Proof. This proof is very similar to the proof of Lemma 5.3.1, and so
we will omit many details. First we show that (i)=(ii). Following the same
argument as the proof of (iv)=+(i) in Lemma 5.3.1, we constriuct numbers
a >b>1,c<ocand N €N and a sequence of sets B,, such that
| By | < ¢b™, and such that if n € By, for m > 1 then

G Ha V@) € an ML

Hence,

[ @ N Geds= S [ 6 Na /@) de
0

1M
™
7
9;—‘
3
(0
i
Z
2

m=lneB,,
< Z LLl e NGf(a'n))
nEBy
oa
_|_ Z cbmal—nan—m+l’
m=2

which is a finite number. By Leroma 5.2.1, G~ is dilatory, and so the result
follows by Lemma 5.1.1.

That (il)=>(iii) is straightforward. To show that (iii)=(i), choose a > 2,
and note that for some N, M € N we have

fc: o™ /G(z)) dz < o™

Then following a similar line of reasoning to that of the proof of (ii)=-(iii)
in Lemma 5.3.1, it is possible to show that there cannot be numbers m € N
and ny <y < ... < Ngmestar such that G(a™) > a¥Gla™ ™).

LeMMa 5.5.2. Let H be an N-function. Then the following are equivalent.
(i) M 19 almost concave,

(il) I satisfies condition (J).

(iil) £ satisfies condition (L},

Proof. By Lemma 5. 4'3 H is almost concave if and only if ™

almost convex. Clearly, H ' is almost convex if and only if H*~1 is almost
congtant. Now the result follows by Lemma 5.5.1. =

5.6. Condition (J) and the “almost” properties. Now, we are ready to
establish the relationship between being almost convex or almost concave,
and being more or less convex than some N-function satisfying condition (J).
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LEMMA 5.6.1. Let G be a p-function.

(i) G is almost convez if and only if there is an N-function H satisfying
condition (J) such that G = H™Y,

(i) If G ds almost concave, then there is an N-function H satisfying
condition (J) such that G < H.

(iii) If there is an N-function H satisfying condition (J) such that G < H,
then G~ is almost conves.

Proof. We first note that if there is an N-function H satisfying condition
(J) such that either G » H~! or G7! < H, then by Lemma 5.4.2, G s
almost convex. We will prove the other implication of part (i),

If G is almost convex, then there are @ > 1, b > 2 and N € N such that
for all m € N, the cardinality of the set of n € Z such that

G(a™t™) < a™ Y @ (a™)

is less than b™. Now we define a function L: {a" : n € Z} — (0, 00) by

K T
inf ] a" min {a”“‘”“—‘, —g—(ci-—)—} if n >0,
L{a™) = R Glame-1)
B K Ga™)

! G(a’nk,.l)
We may extend the domain of L to [0, oo) “log-linearly”, that is, by setting

L(0) =0, and
L{a™) = L(a") exp (11;’52 log (%‘E:Z; )>) ,

for n € Z and 1 < ¢ < a. We notice that L(a™*!) » L(a™) for all n € Z, and
hence L i8 a p-~function. _
Now, we note that if m € N and n € Z, then

L(a™™) . o Ga™) }

1 I N Mgy~
< inf a’ mm ¢ g’k L2 I, R
L(ﬂn) ﬂz'ﬁlo<...<ﬂ.m:ﬂ-}-mk 1 ! G(a“’c"'l-)

sup H o~V max {a"’“‘”k“
O=ng>. . .>ng=n kel

} if n < 0.

Thus, L(e™*™) £ a™t¥ L(a"), and so, by Lemma 5.4.2, L~! is equivalent
to a convex function. We also have
L{a™™) _ yG(a™™)
Ly =% "G
and therefore, by Lemma, 5.4.2 and since L satisfies the Ay-condition, G » L.
~ We also notice that, since

. ng —ng G’(aﬂz_) ) na—n G(ﬂ‘nz) s -ty G(am)
mm{a _ ,—G(ano)}zmm{a 2T G(wl)}mm{afrL D,W}
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for ng < ny < ng, we have

L(a”+m) -N . K N . P G(G-nk)

L((J,”‘) 20 nmng<...n<1£x—mn+m};r[la min {a' P, G(anh~1)} )
Therefore, if L{a"*™) < a™ ™ L(a"), then for some n < n’ <n'+m’ <n+
m, we have G(a™+™) < o™ =¥ G(a"'). Therefore, the cardinality of the set
of n € Z satisfying L(a"+t™) < o™~V L(a") is less than m(b+b%-+...+d™),
which is less than bY* for by = 26%/(b ~ 1).

Therefore, L is almost convex. Now, we define the p-function H(t) =
L~Y(tlm¢). It is clear that L » H~!, and hence G > H 1. Since tlmt is
easily seen to be almost concave, it follows by Lemmas 5.4.3 and 5.4.6 that
H is almost convex. Clearly H is an N-function, and so by Lemma 5.5.2, H
satisfies condition (.J).

The proof of part (i) is similar. We know that there are a > 1,6 > 2 and
N € N such that for all m € N, the cardinality of the set of » € Z such that
Gla™™) > o™tV G (a") is less than b™. Now we define L : {a™ : n € Z}
— (0, 00) by

K

sup o™ max {a“’“ k-1
Q=np <, SNK =N )

L(a™) = =
inf H oY min ¢ g"e e _Gla™) ifn<0
O=ng>...>ng=n foier ! G(aﬂk-1) ?
and extend L “log-linearly”. By the same methods as in the proof of part (i},

we see that L is convex, that G < I, and that L is almost concave. Finally,
we set H(t) = L(£)1lm L(t) to obtain the result. =

G(a™)

—_— ifn >
’G(a“k-l]} ifn>0,

LEMMA 5.6.2. Let G be a @-funciion. Then the following are equivalent.

(i) G is almost linear.

(il) There are N-functions H and K satisfying condition (J) such that
Q=HoK"

(i) There are N-functions H and K sobisfying condition (J) such that
G=H'oK.

(iv) There are N-functions H and K satisfying condition (J) ond a num-
ber ¢ < oo such that ¢™ (1) /t < H(t)/K(t) < cG(t)/t for all £ > 0.

(v) There are strictly monotone weight functions wo and wy satisfying
condition (L) and o number ¢ < oo such that TG/t < wo(t)we(t) £
cG(t)/t for all t = 0.

Before proving this result, we will require a couple of technical lemmas.
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LEMMA 5.6.3. If Gy and G are equivalent o-functions, and if one of Gy
or Gy satisfies the Aq-condition, then there is ¢ < oo such that cIG (1) £
Gz(i) < CGl(t) fOT‘ allt > 0.

LEMMA 5.6.4. Suppose that F' : [0,00) — [0,00) is a function such that
for some ¢, > 1 and ca > 1 we have F(eit) = o F(t) for allt > 0. Then
there is a number ¢ < oo and a dilatory p-function G such that G(c™'t) £
F(t) < G(ct) for allt 2 0.

Proof. We that F(cit) > cjF(t) for all n € N and ¢ > 0. Then it is
clear that
G(t) = sup s~ 1982/ 108 01 pi( g
21
satisfies the conclusion of the lemma. =

Proof of Lemma 5.6.2. The implications (ii}=>(i) and (iii)=-(i) follow
from Lemmas 5.4.5 and 5.4.6. The implications (iv)=-(i) and (v)=>-(i) are
obvious. '

To show that (i)=>(ii}, we note that, since & is almost convex, by Lemmma
5.6.1(1), there is an N-function K satisfying condition {J) such that G »
K7t Tfwe let K(t) = Ko{tlmt), then H = Go K is an N-function. Since G
is almost concave, it follows by Lemma 5.4.6 that H satisfies condition (J).
The implication (i)=-(iii) is similar, using Lemma 5.6,1(ii).

To show (i)=-(iv), we note that since G is almost concave, by Lemuma
5.6.1(ii), there is an N-function Hy satisfying condition (J) such that G <
Hp. Then, from Leramas 5.4.2 and 5.6.4, it follows that tH(t)/G(t) is equiv-
alent to a convex function Ky. Since G is almost convex, K¢ is almost con-
cave. Now we let H(f) = Ho(t)lm? and K(¢) = Ko(t)lmt, and the result
follows by Lemma 5.6.3.

To show that (iv)=>(v}, by Lemma 5.4.2, we may assume that H and K
are convex. Thus, if we let wo(t) == (lm¢)H(t)/t and w1 {t) = ¢/(Im ) K (2),
then Wy and 1/w; are both almost constant ¢-functions. Then it follows
from Lemma 5.5.1 that wy and wy satisfy condition (L). =

5.7. The proof of the results in Section 4. Now we are ready to piece
together all the lemmas we have just proved,

Proof of Theorem 4.2. First we will show that (ii)=-(i). By Lemma
5.2.1, we know that Gy ¢ Gi‘l is dilatory, and hence if &y is dilatory, then
g0 is G'y. Therefore, we may assume that G4 is dilatory.

By Lemma 5.3.1, there is ¢; < oo such that ||f\}1,G1°G;1 < eyl flly for
all measurable f. Since G5 is dilatory, the result follows by Lemmas 5.1.3
and 5.1.2. .

Now we show that (i)=(ii). By Lemma 5.2.5, G satisfies the A-
condition. Therefore, by Lemmas 5.1.2 and 5.1.3, there is ¢; < oo such
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that |[fllye,06yt S c1|l£]ly for all measurable f. Now the result follows by
Lemma 5.3.1.

The implication (ii)<>(iv) follows from Lemma 5.4.7(1), and (i)« (iii)
follows from Lemma 5.6.1. &

Proof of Theorem 4.3. First we show that (ii)=(i). if Gy o G3" is
almost linear, then by Lemma 5.2.1, G, o G5 ' satisfies the As-condition.
Therefore, by Lemma 5.4.3, Gy o Gy* is almost convex. Hence, by Theo-
rem 4.2, Lp, @, and Lp g, are equivalent. Clearly, both G1 and Gp are
dilatory, and by Proposition 4.1, L#, ¢, and Lp, g, are equivalent. The
result follows. 5

Next we show that (i)=-(ii). First notice that, since F]_—l(t):HX[U,t] e
and 17’2" (t) = |Ix(0,4 || Fa,car we have Fy x Fy. Now suppose without loss of
generality that G is dilatory. Then by Proposition 4.1, Lp, ¢, and Lp, 4
are equivalent, and hence Lp, g, and Lp, ¢, are equivalent. Now, by Lem-
mas 5.2.3 and 5.2.5, both G and Gy are dilatory, and both satisfy the
Ag-condition. Therefore, Gy o Gfl and G o Gy ! satisfy the Ag-condition.
By Theorem 4.2, both Gy o G5 and Go 0 G are almost convex. Now the
result follows by Lemmas 5.4.2 and 5.4.5.

The implications (i)« (v) follow from Lemma 5.4.8, the implication
(v)=+(viii) follows from Lemmas 5.6.4 and 5.6.3, and the implication (viii)=>

v) is obvious. Finally, (viii}e(iil) & (iv)«(vi) +(vii) all follow from Lemma
56.2. =

Proof of Theorem 4.4. The implication (ii)=-(i) is obvious, so we
show that (i)=-(ii). As in the proof of Theorem 4.2, we may suppose that
('3 satisfies the As-condition. By Lemma 5.1.2, we may assume without
loss of generality that F(t) = ¢. Now the result follows by Lemmas 5.1.3
and 5.3.1, in the same manner as in the proof of Theorem 4.2. =

Proof of Theorem 4.5. The implications (ili)=(i) and (iii)=-(ii) are
obvious. We show that (i)=>(ii). First notice that X € 7, and so as
BV = |lxomlim.e, and FH(t) = Ixio. || 72,Ga» we see that F1 and By
are equivalent. Then it is clear that there is ¢ < oo such that f* e_?‘ Fu 1?? and
ouly if there is g* € T, such that el f* < g* < cf*. Similarly, (il)=().

Now we show that (i) and (il)=>(iii). Suppose, without loss of generality,
that G4 is dilatory. Then by Proposition 4.1, Lr, ¢, and Lp, g, are equiv-
alent, and hence Lg, ¢, and Lp,q, are equivalent. Now, by Lemma 5.2.3,
it follows that if one of G or Gy is dilatory, then both are. Then the result
follows by Theorem 4.4. =

Proof of Theorem 4.6. We show that (i)<>(iii). By Proposition 4.1,
if £, and F, are equivalent, then Lp, 00 and L{z,oo are equivalent. Also,
if Ly, and Lp, 00 are gquivalent, then since Fy Lt} = ||x[0,ﬂ |l F,c and
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ﬁi—l(t) = ||X[0,4) |72 00, We see that Fy and Fy are equivalent. Thus, without
loss of generality, we may assume that F = Fp = F.

Now we note that we always have || || 7,00 < || f[{F,¢- This follows because
f* > f¥(2)Xp,«) for ail z = 0, and hence

Iflire = 1F @)X lne 2 F(2)F(z).

Now we show that Ly ¢ is equivalent to Ly if and only if |1/ F pa
< o0o. That the frst statement implies the second is obvious, because
11/F~ | po = 1. To show the converse, note that if | f{|ze < 1, then
F(z) <1/F-1

But [1/F Y| pqe = |1/G~||g, and the result follows. The other impli-
cations follow by Lemma 5.5.2. =

6. Is every r.i. space equivalent to an Orlicz-Lorentz space? We
can answer the question in the negative easily, as follows, Tt is well known
that L; o is not separable. Then it is not hard to see that Li”m, the closure
of the simple functions in Ly o, is not an Orlicz-Lorentz space.

However, the reader may consider this cheating. So to avoid all this
“infinite-dimensional nonsense”, we might ask the following question. Is
there a rearrangement invariant space X such that for all Orlicz-Lorentz
spaces Ly g, the norms | - ||x and || - | e are inequivalent on X N Ly e:?
We answer this question in the positive by the following example.

THECREM 6.1. There is a rearrangement invariont Banoch space X,
where the measure space s [0, oc) with Lebesgue measure, such that for every
Orlicz-Lorentz space Lr,g, the norms |- ||x and || |p,¢ are inequivalent on
the vector spuce of simple functions.

Proof, We define the following norm for meagurable functions f:

1F]x = sup{l[#*glla/llgll2 : g € T}

We let X be the vector space of all measurable functions f such that || f||x <
0o, modulo functions that are zero almost everywhere. Then it is an easy
matter to see that X is a rearrangement invariant space such that | gl|x =
llglle for all g € T;2. Thus, if for some p-functions F and G we have

T HIflx < 1fllme < alifilx

for all simple functions f, then by Theorem 4.5, there is a constant ¢y < oo
such that

ey fllx S HSle < callFllx
for all simple functions f. We will show that this cannot happen.
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Define 77 to be the set of functions & : [0,00) -3 [0,00) such that for
some integers ki < ... < ky, and setting ky = —oo, we have

h(z) = {Q_ki if4bi-r <z < 4% and 1 <4 < m,
0 otherwise.

Then it is an easy matter to see that if g € T;2, then there is b € 77 such
that h{4z)/2 < g(x) < 2h(z/4). Therefore,
il 71x < sup{[[f*hlla/|hl2: h € T'} < 4llfllx -
Now, for each N € N, let £ be the simple function

1 i 0<t <4,
Jule)== ¢ k~t/22-k if 4% <t < 4%+ and 1 <k < N,
0 otherwise.

Then it is easy to see that ||y ||z — co as N — oo. However, a simple, but
laborious, calculation shows that there is ¢ < oo such that || f 5|1 /||h|l2 £ <
for all h € 7', and hence ||fx|lx < 4c =

7. The definition of Torchinsky and Raynaud. The definition of
the Otlicz-Lorentz spaces presented here is not the only possible definition.
In fact, given any weight function w and any p-functions H and G, one can
form the functional

£ llwm,e = lw- (f* o H)le -

We have investigated the case when w(z) = 1. However, Torchinsky [T]
gave the following definition for the Orlicz-Lorentz functional. If F' and G
are w-functions, then we define

kel T -1 * d
Il = 1F @)@l =ini fe: [ GE @ 9 T <1,
: 0

and call the corresponding space LF o (my notation).

These spaces were investigated by Raynaud [R]. He showed that if Fis
dilatory and satisfies the Ag-condition, and if G is dilatory, then I A“.%;,G o
P Hu(A)) for all measurable A. Thus, LEC and Lpg are equivalent if
GE) me 47,

The comparison results for these spaces are much more straightforward.
Raynaud [R] showed that if Fy and Fy are dilatory and satisfy the A,-
condition, and if Gy and Gy are dilatory, then L%:l,G] and ng,c; , AI8 equiv-
alent if Jy and F are equivalent, and the sequence spaces Iy, and ey, are
equivalent. The converse result is also easy to show. _ '

We also comment that the Boyd indices of these spaces are much easier
to compute. This will be dealt with more fully in [Mo2].
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Also, unlike the Orlicz—Lorentz spaces we have used here, Lﬁ, p is not
always equivalent to the Orlicz space L. For example, if F(t) = tlmt,
then Lp is equivalent to ngl by Theorern 4.3, and since [r and ! are not
equivalent, this is not equivalent to LE P

We finally add that we may define the spaces Lp x, where X is a re-
arrangement invariant quasi-Banach space on R satisfying certain mild re-
strictions. Corresponding to the definition used in this paper, we may define

£l rx = 1F* o Fodxlx,

where ¢x (t) = |xi0.4/lx is the fundamental function of X". Corresponding
to the definition used by Torchinsky and Raynand, we may define

1715 x = |F 1) £ (e)x -
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