icm

STUDIA MATHEMATICA 103 (2) (1992)

Hausdorff and conformal measures for
expanding piecewise monotonic maps of the interval

by

FRANZ HOFBAUER (Wien)

Abstract. Let A be a topologically transitive invariant subset of an expanding piece-
wise monotonic map on [0,1] with the Darboux property. We investigate existence and
uniqueness of conformal measures on A and relate Hausdorff and conformal measures on
A to each other.

1. Introduction. A map T : [0,1] — [0, 1] is called piecewise monotonic
if there is a finite subset {ap,a1,...,ax} of {0,1] with 0 = ay < a; <
... < any = 1 such that T|(a;-1,a;) is strictly monotone and continuous
for 1 € i < N. The aim of this paper is to compare Hausdeorff measures
and conformal measures on 7-invariant subsets of [0, 1]. These questions are
motivated by similar investigations for Julia sets of rational maps on the
Riemannian sphere (cf. [2], [3]).

Throughout the paper T will denote a piecewise monotonic map on [0, 1]
and Z will denote the family {(0,a1), (a1,a2), ..., (an—1,1)} of intervals on
which T is continuous and monotone. Furthermore, we always assume that
the derivative of T exists on (a;-1,4;) and can be extended to a continuouns
function on |aj—1,a;] for 1 < ¢ < N. This implies that T has bounded
derivative, :

We shall investigate measures which have no atoms. Hence it does not
matter to neglect countable sets. In order to avoid discontinuities of T', we
disregard the partition points ap,ay,...,ay and their inverse images. To
this end set Ry = Uzsz Z, and for k > 2 set Fy = ;:01 T-'(Ry), which is
the set on which (T%)' is defined. Finally, set

oo oo
Re=()Ri=[)T7"R).
=0 1=0
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We consider a closed T-invariant subset A of Rz (closed with respect
to the relative topology of Rz). For t > 0 we want to investigate the abso-
lute continuity of the t-dimensional Hausdorff measure and of a t-conformal
meagure on A with respect to each other.

We recall the definition of these measures. For B C [0,1] let C(B,§) be
the set of all finite or countable covers of B by intervals of length less than 6.
Then

- . +
v(B) = %ﬂ ueg(lg,&) %'m
is called the t-dimensional Hausdorff measure of B, where |U| denotes the
length of the interval U, For fixed ¢, it defines a measure on the Borel sets of
[0,1). The Hausdorff dimension HD(B) of B is defined as inf{t > 0: v(B)
= 0}, which equals sup{t > 0: v(B) = oo} (cf. [4]). A Borel probability
measure m concentrated on A is said to be a t-conformal measure on A if

(1.1) m(I(¥))= f |T[¥dm for all ¥ C A contained in some Z € Z.
Y

The map T is said to be ezpanding if there is a k > 1 such that
infp, |(T*)| > 1, and piecewise Holder differentioble if the derivative of
T|Z is Holder continuous for all Z € Z. The set A is topologically transitive

if it contains a dense orbit, and A has the Darbouz property if
{1.2) TZNA)y=T(ZYNA forall ZeZ.

In [7] the nonwandering set of a piecewise monotonic transformation is
decomposed into topologically transitive components, The components in
this decomposition, which have positive entropy, are closed invariant topo-
logically transitive subsets which have the Darboux property. Hence, when
restricted to Rz, they can serve as examples of the sets A investigated in
this paper.

Finally, we say that T satisfies the Misiurewicz condition if the set

N N-1
Lm T (z) : j > im T9(x) : j 2
g{;;g (@):j21}U 90 {lim 9(z) : j 2 1}

has empty intersection with Uﬁsj‘(ai,uﬁé + ey U u:\;l(a.,; -~ & ag) for some
e > 0.

We begin in Section 2 with some preparatory lemmas. In Section 3 we
investigate t-conformal measures on A for ¢ > 0. For an expanding piecewige
monotonic map 1" which is piecewise Holder differentiable, and for a closed
T-invariant topologically transitive subset A of Rz which has the Darboux
property, we show that there is a unique t-conformal measure on A if ¢ =
HD(A) > 0, and that there is no t-conformal measure on A if ¢ £ HD{A)
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and ¢t > 0, The unique HD(A)-conformal measure is ergodic, has no atoms
and is positive on open subsets of A.

In Section 4 we consider the #-dimensional Hausdorff measure » on A
for ¢ = HD(A) > 0. For an expanding piecewise monotonic map T' which
is piecewise Holder differentiable, and for a closed T-invariant topologically
transitive subset A of Rz which has the Darboux property, we show that v =
em. for some ¢ € [0, 00), where m is the unique HD{A)-conformal measure
on A, If T additionally satisfies the Misinrewicz condition, then ¢ € (0, o0).

2. Volume lemmas. Set

n--1 ne-1
2, = yOT-%*:{ QT‘“’(Zi)aéw:ZiezZ},

a family of open intervals, on each of which T is continuous and monotone.
The aim of this section is to estimate the length and the measure of the
intervals in Z,. We have R, =|Jz¢ z. Z.

LEMMA 1. Let T be a piecewise monotonic map and let A be a closed
invariant subset of Rz. Let m be a t-conformal measure on A. Then

(i) fT(Y)gdm = [, [T'{geTdm f ¥ CANZ for some Z & Z and if
g is a nonnegative measurable function,

(i) m(@T™Y)) = [, (T™)itdm forn 2 14 Y < AN Z for some
ZeZ,.

Proof. (i) follows from (1.1) first for step functions g and then for all
g=0.

(ii) follows by induction, using (i} and the chain rule in the induction
step and observing that T(Y) is a subset of an element of Z3 1 if ¥ is a
gubset of some element of Zj.

Recall that the length of an interval [ is denoted by |I|.

LeMMA 2. Let T be an ezpanding piecewise monotonic map and let A
be a closed invariant subset of Rz. Let m be a t-conformal measure on A.
Then there are constants ¢ > 0 and § > 1 such that

(i) infg, [(I™)| 2 8" forn 21,

(il) supgez, 1Z] < (1/c)B™" forn 21,

(iil) supgez, m(Z) < (/)™ forn 2 1.

Proof (i) Since T is expanding, there is a k such that § :=
(infg, |(T#)|)}/*¥ > L. By the chain rule we get infg, |(T'%Y] > B for
all | > 1. Set d = infg, |T'l. If d = O then infg, [(T*)'| = 0 by the chain
rule, as T' is bounded, a contradiction. Hence d > 0. Set ¢ = min{{d/F)":
0 < i < k}. The chain rule then gives the desired result.
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(i) f Z € Z,, then |Z] < |T™(Z)|supz(1/|(T™)']) by the mean value
theorem. Hence the desired result follows from (i) and iT™(Z)| < 1L

(iii) follows in the same way as (ii) using Lemma 1(ii), since m(Z) =
m(ZNA). =

LEMMA 8. Let T be an ezpanding piecewise monotonic map. Suppose that
T is piecewise Hélder differentiable. Then there is a constant d > 0 such thai

e7d < (T (2)/ (T ()] < e
for all n > 1 if x and y are in the same element of Z,,.

Proof. We get infg, |T7| > 0 from Lemuma 2(i). Therefore p := ~ log {T"|
is defined. As T is piecewise Holder differentiable, p|Z is Hélder continuous
for all Z € Z, which means that there are an @ ¢ Rand ane > 0 such that
le(z) — o(y)| € alz —y|® if z and y are in the same element of Z. X now
Z ¢ Z, and 3,y € Z then 7%(z) and T%(y) are in the same element of Z,,_;
for 0 <1< n— 1. Hence

Llogw < 5 T @) - T ) < S a7 (=) - T
T = L <2

which is bounded by E?__fol acegen=1 from Lemma 2(ii). As @ > 1, the
desired result follows with d = ac™® 352, 7. =

LEMMA 4. Let T be a piecewise monotonic map and let A be a closed
invariant subset of Rz with the Darbouz property. If V is a subinierval of
some element of Z, then TV NA) =T™(V) N A.

Proof. For n = 1 this follows from (1.2), since T|Z is strictly monotone
for all Z € Z. We proceed by induction. Suppose that the assertion is shown
for n < k. Let V be a subinterval of some element of Zy.y. Then T'(V) is
a subinterval of some element of Z;. The induction hypothesis implies that
THT(VY N A) = TH(T(V)) N A and that T(V) N A = T(V N A). This gives
TV M A) = T (V) N A, finishing the proof. m

Now we introduce the main tool of this section, the so-called Mearkov
diagram of a piecewise monotonic transformation T' (cf. [7]). Let ¢/ be an
open subinterval of some element of Z. We say that D is a successor of €
if D#@andif D="7(C)NZ for some Z € 2. Remark that ) is an open
subinterval of Z € Z, since T|C is strictly monotone, We write C' — I if
D is a successor of C. Set Dy = Z. If D; is defined, set Dy = D; U{D:
there is a €' € D; with ¢ — D}. These sets are finite, since Z ig finite and
since the number of successors of an interval C is bounded by the number
of elements of Z. Finally, set D = | J;2, D;, which consists of subintervals of
elements of Z. We thus get a finite or countable oriented graph (D, ).
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Remember that £, is a partition of R, into intervals. For each z € R, let
Z,(z) be the unique element of Z,, which contains z. Since Z is a partition of
Ry, for € € D, we see that T(CYN Ry is the disjoint union of the successors of
(. Hence, if y € C'N Ry, there is a unique D € D with C — D and T(y) € D.
Furthermore, each z € Ry is contained in exactly one Z € Z = Dy, namely
in Zy(z). f now z € Rg, then T%(z) € Rz for all i and there is a unique path
Dy(z)Dy(z)De(z) ... in (D, ) with Do(z) = Z1(z) and T¢(z) € Di(x) for
i> 0.

For z € Rz we show by induction that

(2.1) Dy(z) = TH(Zpi(z)) for k> 0.

For & == 0 this is the definition of Dg{z). Suppose that (2.1) is shown for

ks=n—1 We have Z,.1(z) = Z,(2) NT™™(Z1(T"(z))), because the right

hand side is an element of Z,,; and contains z. Hence T™(Z,+1(z)) =

T Z(2)) N Z1(T™(z)) = T(Dp—1(z)) N Z1(T™{2)). Since T(Dyp_1(z)) N

Z,(T™(z)) is a successor of D,,.1(x) which contains T™(z), it equals Dy (x).
We show first that certain exceptional sets are small.

LemmA 5. Let T be an expanding piecewise monotonic map end let
A be o closed invariant subset of Rz. Define L; = {2 € Rz : D.(x)
€ D, only for finitely many v}. Let B > 1 be as in Lemma 2. If t >
(log 2)/(jlog ), then

(i) v(L,) = 0, where v is the t-dimensional Housdorff measure,
(ii) m(L;) = 0 for any t-conformal measure m on A.

Proof For { > 1 and E € D let M; g be the set of all # € Rz which
satisfy D)(x) = E and Dr(z) € D; for 7 > I. Then L; = |51 Upen M1z
As D is countable, it suffices to show that

(2.2) V(MI]E) =0 and m(ﬂ/ﬁ,E) =10

for all I > 1 and all E € D. For n > I let P, be the set of all paths
DoD1...Dypy of length n in (D,—) with Dy € Do = Z, D; = F and
Dy g D; for k> 1 Set

=1
Ay = { ﬂ T'"’“(D;C) Dol ... D1 E Pn} .
k=0
It follows from the definition of M g that Do(z}D:1(z). .. Dyp—y(z) € Py, for
each nn > | if # € My p. Since also z € ﬂ:’;é T-5(Dy(z)), we deduce that
X,, covers M g for each n > L.
The graph (D, —) is investigated in [7]. Lemma 9 of [7] says that each
D & D\ Dy has at most two successors in D \ Dy, and if it has exactly
two, then at ¢ach of these there starts only one path of length 7 which is
in D\ Dy. This implies that the number of paths in (D\ Dy, —) of length
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n — [ starting at E is bounded by 2("~8/9+L, Furthermore, the number of
successors of any 1) € T is bounded by card Z. This implies that

(2.3) card X, < card P, < (card Z)12ln=0/0+,

As sach element of T is contained in an element of £, we find that each
element of &, is contained in an element of Z,. Let U, be the set of all
Z ¢ Z, which contain an element of &,. Then U, is a cover of My by
intervals satisfying card U, < card A,,. Now (2.3) and Lemma 2(ii) imply

Z PR (card Z)/ (=0l Hlg=tg=tn
Zelt,
The right hand side tends to zero as n — oo, since (log2)/(flogB) < 1.
Also lity,eo maxzey, |Z| = 0 by Lemma 2(ii). The definition of Hausdorff
measure implies that v(M; g) = 0, which is the first part of (2.2).
Similarly, using Lemma 2(iii} we get

m(MlvE) < Z m(Z) < Z C_tﬂ_nt < (C&I‘d Z)I2((”“1)/j)+10—1‘;ﬁ—-tn ]
Zeldy, Z&ln
Again the right hand side tends to zero as n — co, and the second part of
(2.2) follows. =

Now we can show the main lerama. For # € Rz and n > 1 remember
that Z,(x) is the unique element of Z,, which contains z.

LEMMA 6. Let T be an expanding piecewise monotonic map which is
piecewise Hilder differentiable, and let A be g closed invariant subset of Rz
with the Darbour property. For every t > 0 there is o set L C A satisfying
the following:

(i) v(L) = 0 for the t-dimensional Hausdorff measure v,
(ii) m(L) = 0 for any t-conformal measure m on A,
(iif) for eanch t-conformal measure m on A we have

1nf 1nf (T 1 ()|t /m{ Zi () >

(iv) for eachz € A \ L there is an infinite subset I of N, depending on
x, such that

sup sup |( (2)) < o0
2EANL RET

for each t-conformal measure m on A which is positive on open subsels of A.

Proof. Fix j such that (log?2)/(jlogB) < i, where § > 1 is as in
Lemma 2. Let L; be as in Lemma 5 and set L = [, N A. By the choice
of j, (i) and (ii} follow from Lemma 5.

We have included (iii) in this lerama, although it does not depend on I,
since it can be proved together with (iv). T6 this end set a = min{m (DN A):
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D e Dy, DA # #}. Since Dy is finite, since each D & D is a nonempty cpen
interval and since m is positive on open subsets of A, we get a > 0. Fix z €
A\ L = A\ L. By definition of L; the set J := {k: Dk( ) € Dy} is infinite.
Since Di(z) = T%(Zy11(2)) by (2 1) and since A NTH(Zy11(z)) contains
T*(z) and is therefore nonempty, for k € J we get a < m(T*(Zp1(z)) N A4).
Furthermore, m(T%(Zy41(z)) N A) < 1 holds trivially for all k > 1 and all
z € Rg. Irom Lemma 1(ii) we get

m(T*(Zy41(z) N 4)) mfw (Y|

< M Ziga (@) N 4) S m(TH(Ziar (2) N 4)) sup (THY|

Zpialz)

and Lemma 4 says that T%(Zpy1(x) N A) = T*(Zpy1(z)) 0 A. Because of
m(Zys1(z) N A) = m(Zip1(z)), Lemma 3 implies that

et < (T ()17 /m(Zigi(2)) forkeNandze 4,
which is (iil), and that
(T ()| 7t /i Zesa () < €%/a forz € A\Land ke J,
which is (iv) on setting I = {k+1: k& J}. m

LeMMA 7. Let T be an expanding piecewise monotonic map which is
piecewise Holder differentieble. Then

e~? (T 1) (&) T (Zn ()] < |Za(e)] < eH(TEHY ()]
for all x € Rz and all k > 1, where d is as in Lemma 3.
Proof. The mean valug theorem implies that

[T 1 Z(2))] AL !(Tk )i

< |Zi(a)| < ITk"l(Zk(m))\;UEI;)I(T’“"l)’l‘l

As |T%~Y(Zy(2))] € 1 and as Zi(2) is contained in an element of Zy..y,
Lemma 3 gives the desired result. =

8. Conformal measures. In this section we mvestlgate the existence
and properties of conformal measures.

TuroreM 1. Let T be an expanding piecewise monotonic map and let A
be a closed invariant subsel of Rg with the Darbouz property. Let t > 0.

() Ift = HD(A), then there is a t-conformal measure on A.



198 F. Hofbauer

(ii) If m is a t-conformal measure on A then m has no atoms ond as-
signs positive measure to open subsets of A, provided that A 1s topologically
transitive.

Proof. We modify ([0,1],T) first. Set C = {ag,01,...,ax} and W =
{z & (0,1) : T¥x) € C for some i > 0}. In the interval [0,1] replace each
@ € W by two points z~ and ¢ and definey <2~ <zt <zify <z <z
holds in [0,1]. In this way [0, 1] becomes a totally ordered set X which is
compact with respect to the order topology. We cousider Rz = O, H\ W
as a subset of X. As W is countable, (0,1)\ W is dense in X, and as T
and 7' are continuous except on C, where one-sided limits exist, we can
extend T and T’ continuously from (0,1) \ W to all of X. These extendled
functions are denoted again by T and T'. If Z € Z is the interval (@i..), @)
set Z = [af,,a7] Then £ := {Z : Z € Z} is a partition of X into
intervals which are open and closed, on each of which T is strictly monotone,
and whose images under I' are again intervals in X. The partition Z, =
\/;:01 T—Z of X then consists of open and closed intervals, on each of
which 7™ is monotone. Since T is expanding, Lemma 2(i) implies that W is
dense in [0, 1]. From this it follows that {Jjo, 77'(C) is dense in X, where
C = {O,a{,af,a{,.,.,a&ﬁl,ag_l,l}, and that (X,T) is isomorphic to a
shift space and hence expansive (cf. [5] and [6]}.

Since A C Rz we have 4 C X. Let A be the closure of Ain X. Then
T(A) c A and A\ A C X \ Rz. Hence A\ A is countable, since 4 is closed
in Rg. Furthermore,

(3.1) T(VNA) =TV)N A if V is a subinterval of some Z € Z.

This follows from Lemma 4 for n = 1, since A is dense in A and since T'(Z
is strictly monotone for all Z & Z.

Now we can show (i). We apply the method used in [1]. For n > 1 we
define subsets J, of 4 satisfying
(3.2) if ZeZ,and ZNA#Q then card(B,NZ)=1,
(3.3) T™YE,) C Engr and card(Bpp \ T™HE,)) < 2N .
Choose an arbitrary set Fy such that (3.2) holds for n = 1. Suppose that ¥,
is defined and satisfies (3.2). Since 7' maps a Z € 2,4, injectively to a subin-
terval of an element of Em each 7 ¢ §n+1 containg at most one element of
T~YE,). U Z € Zy,,1 satisfies Z N ¢ = {, then T(Z) € Z,, and using also
(8.1), we deduce that Z contains exactly one element of 7—1(E,,), provided
that ZN A # (. For each Z € Zpyq with ZNA# 0 and ZNT(E,) =0
choose an arbitrary element of Z. Add these elements to T7'(F,} and call

the resulting set E,.,. Since cardC = 2N, it follows that (3.2) and (3.3)
are satisfied.
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Set f = —tlog |T"|, which is continnous on A, and

n—1
an=log 3 e®, where S.f(m) =3 F(T'(2)).
i=0

rE L,

Set~§[) s= {X} and d(z,y) = inf{27% : z and y are in the same element
of Zy} for 2 and y in X. Then d is a metric on the topolegical space X.
With respect to this metric, B, is an (n—1, 27%) separated and (n—1,27!7%)
spanning set for Tlfl‘ ifn >, and 1 is an expansive constant for 7| 4. Hence
Theorem 9.6 of [10] implies that the pressure p(T|A4, f) of f on (4, T|A)
equals limsup,, _, o, @n/m. Since { = HD(A), Theorem 2 and Lemma 2 of [9]
imply that p(T|;{, F} = 0. Hence limsup,_,., an/n = 0. By Lemma 3.1 of
[1] there is a sequence (by)n>1 of positive reals with limin—co by /bpy1 = 1
guch that

=%
M,y = E bpeln e
n=1

gatisfies My < oo for s > 0 and lim, ;g M, = co.
For s > 0 define probability measures

my = T}H i Z bnesnf(m)—qzsé‘x,

& p=1xcE,

where 6§, is the unit measure concentrated at z. Since f = —tlog|T’| and
Rz is dense in X, Lemma 2(i) implies that sup %=/ < ¢7*87" with § > 1.
Since limy o0 by /bnq1 = 1, there is a constant d with b, < dg™/? for n > 1.
By (3.3) this implies

> bpeSnf(@)=ns < aNge=tB~™M/?  for all s > 0.
WEEWH\T—I(EH) ’
Since lim,|g M, = 00, we get

1 —
S IO DY

szl mEEn-kl\Tml(En)

bnesnf(a:)’“ns =10,

This and the computation in [1] under the heading “construction principle”
show that

(3.4) lim (ma(T(Z)) - 7] efdm,) =0 forall Ze ) Z,.

n=1l

Let (8;)i»1 be a sequénce decreasing to zero and let m be a weak limit
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point of {m.,)s>1. Then m is concentrated on A and, by (3.4),

o0
(35) m@2)= [eldm 7€ |)EandZnC=0,
zZ =1
since in this case both Z and T{Z) are open and closed in X. Furthermore,

again by (3.4),
36 mT@)> [efdm #Ze | Z.and 20 C#0,
Z - n=l

since in this case Z is open and closed and T'(Z) is only closed in X,

Fix z € A. Choosing a sequence of intervals in U Z, which de-
creases to z, from (3.5) and (3.6) we get m({T'(z)}) > e~ ({x}). Hence
m{T™&)}) = e~ ~f@m({x}) for n > 1. Since infe=f > ¢!5™, we get
m({z}) = 0 and m has no atoms. As A\ A is countable, m is concentrated
on A.

Furthermore, m(T(Y)) = [, e~ dm for all subintervals V" of elements
of Z, because they are disjoint unions of intervals Z used in (3.5) up to sets
of m-measure zero. For an interval Y C [0, 1] contained in an element of Z,
we have T(Y N A) = T(Y) N A by Lemma 4, and we get

m(TYNA) = [eldm,
YNA
since m is concentrated on A. As intervals generate Borel sets and as f =
—~tlog |T’|, this shows that m is #-conformal, and (i) is proved.

If m is a t-conformal measure on A, we get 1>m({T*(z)}}>ct ¥ m({z})
for all k > 1 by Lemma 1{ii) and Lemma 2(i). Since § > 1 the first part of
(ii) follows.

In order to show the second part of (ii}, suppose that I is a nontrivial
interval in A with m(I) = 0. If J C A with m(J) = 0, we get m(T'(J)) =0
applying (1.1) with ¥’ = J N Z for all Z € Z. In particular, m(T"(I)) =
for all n. Let I be the closure of I'in A. By (3.1) we can apply Proposition 1
of [8] to (A,T|A) and get o g (1) = A, since topological transitivity
of A implies topological transitivity of A. Since A is closed in Rz, we get
AN A © U, T-YC). This implies that 4\ J2, ™) < UZ, T4,
As m(T™(I)) = 0 for all n and as m has no atoms we get m(4) = 0, a
contradiction. m

THREOREM 2. Let T be an expanding piecewise monotonic map which is
piecewise Holder differentiable, and let A be a closed inuariant topologically
transitive subset of Rg with the Darbous property. Let m be a t-conformal
measure on- A for somet > 0. Then m is ergodic.
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Proof. Let E be a subset of A satisfying m(E) > 0 and T71(EYNA = E.
Define

m(B) = m(B 0 E) for measurable B C A.
m(E)
IfY C AN Z for some Z € Z then
. _m(T(Y)NE) m(T(YNE))
PIWD === 7 )
1 /|t — LR B
= Mm(E)yaf;T It dm = Yf | T d.

This says that M is a t-conformal measure on A. Since A is topologically
transitive, m and 7 are positive on open subsets of A by Theorem 1(ii). By
Lemma 6 there is a set L € A with m(L) = 0 and a ¢ > 0 such that for
every « € A\ L there is an infinite subset I(z) of N with
e WEE)
kel () m(Zk(m))

Let B © A\ L be a Borel set. Let ¢ > 0 be arbitrary and let U be
a neighbourhood of B with M(U) £ M(B) + ¢. For each & € B choose
k(z) € I{z) such that Zyy(z) ¢ U, which is possible by Lemma 2(ii).
Since two elements of | [ ; Zn are either disjoint or one contains the other,
there is a subset C of {Zx(®) : # € B} consisting of pairwise disjoint -
intervals which cover B and are contained in /. Then

#(B)+ezmU) 2 Y Mm(C)ZecY m(C)2em(B),
Gec cel
and so M(B) > em(B). For B = A\ (EU L) we have 0 = Mm(B) > em(B).
Since m(L) = 0, this implies m(E) = 1, showing that m is ergodic. =

THEOREM 3. Let T be an expanding piecewise monotonic map which is
piccewise Holder differentiable, and lei A be a closed invariant topologically
tramsitive subset of Rg with the Darbouz property. If t > 0 equals HD{A)
then there 45 o unique t-conformal measure on A. If L > O does not equal
HD(A) then there is no t-conformal measure on A.

Proofl. Suppose that 0 < ¢ < s, that m is a t-conformal measure on
A, and that #7 is an s-conformal measure on A. Since A is topologically
transitive, m and 7 are positive on open subsets of A by Theorem 1(ii). By
Lewnma 6 there is a set L C A with (L) = 0 and a d > 0 such that for
every z € A\ L there is an infinite subset [(z) of N with

£ Ef_(_“gk_(ﬂ)_ k1 y¢ T st
Wy 2 AT @

Set B, = {Zy(x) :w € A\L, k€ I(z), k > n}.
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Let B ¢ A\ L be a Borel set. Let & > 0 be arbitrary and let I/ be
a neighbourhood of B with m(U) < m(B) - e. For each « € B choose
k(x) € I(x) such that Zy( () € Bn and Zia) (z) C U, which is possible ‘by
Lemma 2(ii). Since two elements of B, are either disjoint or one contains
the other, there is a subset C of {Zy(r){z) : © € B} consisting of paijrwise
disjoint intervals which cover B and are contained in 7.

If s =t =HD(A) then

m(B) < Y m(0) < 5 > m(C) < im(0) < Lon(®) +e),
cec cec
and so T(B) < (1/d)m(B) for all Borel subsets B of A\ L. As (L) = 0,
we see that 77 is absolutely continnous with respect to m. Let A be the
Radon-Nikodym derivative. If ¥ ¢ AN Z for some Z € Z, then (1.1)
applied to 7 yields

[ hdm= [ |T'Phdm.
T(Y) 2%

Together with Lemma 1(i) this gives that A = hoT m-almost, everywhere.
As m is ergodic, h is a constant function. Since m and 7 are probability
measures, we get 7 = m, which shows uniqueness of the HD{4)-conformal
measure. Its existence is shown in Thecrem 1.

Suppose now that 0 < ¢t < s. As above we find a subset C of B, of
pairwise disjoint intervals which cover A\ L. Since |(T*1)/(z}|""* = 4
with 7, = 24571 for k > n by Lemma 2(i), we get

125 m(C) 2 drn y_M(C) = draTi(A\ L) = drnTi(A) = dra,
cel Jec

because (L) = 0. As limy o0 7n = 00, we have arrived at a contradiction.
Hence there cannot be a t-conformal measure and an s-conformal measure
at the same time. Since there does exist an HD{A)-conformal measure on A
there is no t-conformal measure on A for t # HD(A) and £ > 0. =

4, Hausdorff measures. First we show absolute continuity of Hausdorfl
measures with respect to conformal meagures. :

THEOREM 4. Let T be an expanding piecewise monotonic map which is
piecewise Holder differentiable, and let A be a closed invariant topologically
transitive subset of Ry with the Darbouz property. For t = HD(A) > 0 let m
be the t-conformal measure on A and let v be the t-dimensional Hausdorff
measure restricted to A. Then there is a constont o such that v(B) & am(B)
for all Borel subsets B of A.

Proof. Let B be a Borel subset of A, Let § > 0 and € > 0 be arbitrary
and let U be an open neighbourhood of B in [0,1] with m(U) < m(B) +e¢.
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Since A is topologically transitive, m is positive on open subsets of A by
Theorem 1(ii). By Lemma 6 there is a subset B of B with »(B) = »(B)
and a constant b > 0 such that the set {k : [(T*=1)'(z)|"* < bm(Zx(z))}
is infinite for all « € B. Together with Lemmas 3 and 7 this implies that
for each = &€ B there is a k{z) such that Vi, 1= Zy(,(2) satisfies V, C U,
Vel < 6 and |V,[* < e‘ztbm(Vm), Set, {f = {(Vorze E}, which covers B. As
two elements of |~ 2y, are either disjoint or one contains the other, there
is a subset I of I which still covers B and whose elements are pairwise
digjoint. Since the elements V' of U satisfy V € U and [V|* < am(V) with
a = e¥h, we have

Z Vit < Z am(V) < am(U) < a(m(B) +¢).

Vel Vel
As U € C(B,6§) and as § > 0 was arbitrary, the definition of Hausdorff
measure implies ¥(B) = v(B) < a(m(B) + £), and so v(B) < am(B). =

In order to show absclute continuity of conformal measures with respect
to Hausdortf measures we need the following result, which is Lemma 3(i)
in [8)].

LumMA 8. Suppose thot 1" is a piecevwise monotonic map which satisfies
the Misiurewicz condition. Then there is a u > 0 such that | Dj > u for all
Dell TMZ): Z € Ennr}

We define a modified ¢-dimensional Hausdorff measure ¥. For B ¢ Rz
let C(B,6) be the set of all finite or countable covers of B by intervals of
length less than § which are elements of {J,,5; £«. Then set

P(B) = lim inf V.
§=0yeC(B,6) %

LeMMa 9. Let T be an expanding piecewise monotonic map which s
piecewise Hélder differentioble and satisfies the Misiurewicz condition. Let
v be the {-dimensional Housdorff measure. Then there is a constant v > 0
such that v(B) = v (B) for all subsets B of Rz.

Prool, We show first that there is a constant w > 0 such that
(4.1) \Znl)|/| Znr (@) 2w foralln>2and all z € Re.

Lernma 7 implies that

|Z0(2)] 2 e (@2 (@) 7T (R @) T (Za (2))]
and that |Z,1(2)] < e?|(T")(z)|~". Using Lemma 8 we get (4.1) with
w = e ¥hyinf (T~ :

For B € Rz and § > 0 choose an arbitrary i/ € C(B, ). Fix Ue U. For
z € Un B set n(z) = min{n : [Zp(z)[-< |U]}, which exists by Lemima 2(i1).
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We write V;, for Z,, (2 (z). Then |V5| < |U] and (4.1) implies that |V g‘w|U’.
Let Vy be a subset of {V, : x € U N B} which covers U N B and consists of
pairwise disjoint intervals. This is possible, as two elements of Unzl Z, are
either disjoint or one contains the other.

Since each V € Vy satisfies |V| > w|U|, we get cardVy < 2+ 1/w.
Since each V & Vy satisfies |V < |U], we get |UE 2 v vew, VI where
o= (24 1/w)"L. Set V = Upey Vu- Then V € C(B,6) and e U 2
v Yy ey [V, vielding that »(B) z viH(B). =

Now we can show

THEOREM 5. Let T be an expanding piecewise monotonic map which
is piecewise Holder differentioble and satisfies the Misiurewicz condilion.
Let A be a closed invariant subset of Rz with the Darboux property. Lor
¢t = HD(A) > 0 let m be the t-conformal measure on A and let v be the
t-dimensional Hausdorff measure restricted to A. Then there is a constant
b such that m{B) < bv(B) for all Borel subsets B of A.

Proof Forz € Rg and k > 2 we get | Zx(x)| > ue™*|(T"?) ()] * from
Lemmas 7 and 8. By Lemma 6(iil) there is a ¢ > 0 with [(T* 1) (2}|* 2
qm(Z(z)) for k > 2 and z € A. Hence there is an v > 0 such that | Zx(«)|* =
rm{Zy(x)) for k € Nand z € A. _

Let B be a Borel subset of A. Let § > 0 and V € C(B,¢) be arbitrary.
We can suppose that each V' € V has nonempty intersection with A and is
therefore a Zy(z) for some k € N and some © € A. Hence

STVEz Y m(V) = rm(B),

vey vey
and so ¥(B) > rm(B). Lemma 9 says that v(B} > v¥(B). The desired result
follows with b = 1/(vr). =

We can summarize Theorems 4 and 5 in the fellowing

TueorEM 6. Let T be an expanding piecewise monotonic map which i
piecewise Hélder differentiable, and let A be o closed invariant topologically
transitive subset of Rz with the Darbour property. For ¢ = HD(A) > 0 let
m be the unigue t-conformal measure on A and let v be the t-dimensional
Hausdorff measure restricted to A. Then there is a ¢ € [0, 00) with v = om.
If T satisfies the Misiurewicz condition, then ¢ 3 0.

Proof Theorem 4 implies that v is a finite measure or the zero meagure
on A. We show that v satisfies (1.1). To this end let ¥ < A be contained
in some element of Z. Choose & > 0. Let C be a fnite partition of R,
into intervals which refines Z, such that sup. |T'| ~ inf¢ |7/ £ e for all
C € C. Set gg = supg |T"] for C € C. Since s := sup |T”| exists, we have
|T(z)—T(y)| < 88 if v and y are in the same element of & and if iz —y| < §.
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Fix C' € C. Let A(§) be the set, of those covers U € C(C' NY,5) whose
elements are contained in C. Then

v(COY)=lim inf > |UJ.
§—0 UeA(§) e

Similarly let B(&) be the set of those covers V € C{T(C NY),6) whose
elements are contained in the interval T(C). For U € A(8) set TU = {T(U) :
U & U}, which is then in B(s8). Furthermore, 3y cmy, [V < g8 Tpen [U"-
Thig implies

inf V|* < gb inf I

VEB(s8) v%' "< gcué&t(m I% vl

As & — 0 we get v(T(C'NY)) < ghv(CNY). By summing over C € C, this
gives v(T'(Y)) € [-(IT"1* +€) dv. As & was arbitrary we get

() < f 1T dv.
Y
It remains to show the other inequality. Since inf|7"'] > 1, we have
@ = y| < & for & and y in the same element of Z with |T(z) - T{y)| < 6.
Hence, if C' € C is fixed and A(8) and B(8) are as above, then {(T'|C)~1(T) :
Ueld)isin A(8) for every U € B(6). A similar proof to the above, choosing
now ge = infer |T7], shows then

vT(Y) 2 [T dv.

This finishes the proof that v satisfies (1.1).

Set ¢ = v(A) < co. As the t-conformal measure m is unique, it follows
that v = em. Furthermore, Theorem 5 implies that ¢ cannot be zero if T
satisfles the Misiurewicz condition. =
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Abstract. Characterizations of Hy, BMO and VMO martingale spaces generated by
bounded Vilenkin systems via conjugate martingale transforms are studied.

1. Introduction. A theory of H), spaces of conjugate harmonic functions
on Euclidean spaces was developed by Stein [22]. In particular, H:(R") can
be characterized via the Riesz transforms:

(+) Hi={feL :Rjfel, j=1,...,m}.

Chao and Taibleson (see [6]~[10], [23]) have extended this theory to local
fieids. Moreover, for martingale spaces, Janson and Chao ([15], (8], [5]} stud-
ted transforms with matrix operators acting on the values of the difference
sequences of g-martingales,

In this paper conjugate martingale transforms with matrix operators
acting on the generalized Rademacher series of the difference sequences are
investigated. These transforms were first introduced by Gundy [13]. Con-
trary to the statement in [13] Gundy only proved (%) in the case when all
matrices and martingales are real. This theorem is here extended to the
complex case. More exactly, a necessary and sufficient condition for the
transforms is given such that (*) holds whenever the martingale H space
iy generated by a bounded Vilenkin system. Note that this space is slightly
more general than the Hy space of g-martingales. We shall prove a version of
F. and M. Riesz theorem, In the simplest case when all matrices are diagonal
the transforrs used in this paper are called multiplier transforms. Simon’s
question [20] whether Hy can be characterized via a single multiplier trans-
form if the multiplier has two values: —1 and 1, is answered. Moreover, a
necessary and sufficient condition for (+) to hold for multiplier transforms
iy also given. A family of integrable functions for which || filg, ~ | £z, is
obtained. Similarly o [4] we also introduce a transform in the dyadic case.
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