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Proof By Lemma 2.1 we have

7 =}
ErrX,py=n] [e™o(X du) (n=12..).
j=1 0
Hence for I{X, h) and I(Y, k) identically distributed,

o™X duy= [e™o(Vidu) (n=12.),
0

which yields o(X, -} = o(Y, -} ([3], Chapter XIII, 1). Thus X ~ Y".

THEOREM 3.3. A process X is h-stable if and only if either X is deter-
ministic or X € Poiss{g, P,) for some positive g and 5.

Proof. The sufficiency follows from Examples 3.1 and 3.2. To prove
the necessity suppose that X is a nondeterministic h-stable process. By
Theorem 3.1 and Proposition 3.1 the random variable I(X, &) bas gamma
distribution with parameters (p(X,{0})™%, w) for some w > 1. Put g =
o(X,{0})" and s = w — 1. It was shown in Example 3.2 that for ¥ €
Poiss(g, P;) the random variable I{V,h) has gamma distribution with pa-
rameters (o(X, {0})71, w). Hence and from Lemma 3.2 it follows that X ~
Y, which yields X & Poiss(g, P;). This completes the proof.
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Maximal functions related to subelliptic operators
invariant under an action of a nilpotent Lie group

by

EWA DAMEK {Wroclaw)

- Abstract. On the domain £2; = {(2,b) 12 € N,b € R*,b> a}, where N is a simply
connected nilpotent Lie group and a > 0, certain N-invariant second order subelliptic
operators L are considered. Every bounded L-barmonic function F' is the Poisson integral

Flz,b) = f *p5(z)

for an f € L°°(N). The main theorem of the paper asserts that under some assumptions
the maximal functions

Mif(@)= sp |, Mofle)= e |+ (@)
a<b<a+l

are of weak type {1,1). Some results about moments of the harmonic measures pb are
also inclhuded.

1. Introduction. The aim of this paper is to study some maximal func-
tions naturally associated with differential operators invariant under an ac-
tion of a nilpotent Lie group N and defined on N x R*. Suppose that for
every o € R we have left-invariant vector fields Y1(a),...,Yx(a), Y(a),
depending smoothly on a, such that ¥i(a),...,Yi(a) genera,te n as a Lie
algebra and for every a, Yi(a), ..., Yi(a) belong to the same linear subspace
v of n. We consider the opera,tor

(1.1) flz,0)= (ZY V{a) + ad? - m%)f(m,a)

im=1
on the domain
Qaﬂ:ﬂ{(ma:weNa>aﬂ}: ap 2 0,

and so we go a step further than in [DH], where operators invariant with
respect to a solvable group structure on V RT have been considered.
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Let 28 be the family of harmonic measures assoclated with L, ie. the
function
Flz,b) = J * [ig, (2]
solves the Dirichlet problem for 2., with the boundary data f € C,(NV).
We prove that under some natural assumptions on L the maximal functions
(12) Mif(z)= suwp (F*pl ()], Mof(z)= sup |f=pd ()|
bZag+1 ag<hagtl
are of weak type (1,1).

Maximal functions of this type have been studied by many people in
different contexts. The classical example is, of course, a half space R™ x R+
and the Laplace operator [SW]. Also they have been considered in the case of
rank one symmetric spaces (for a review see [St]). Then ag = 0, 2y = NxR*
is the group § = NA coming from the Iwasawa decomposition G = NAK
of a semisimple Lie group and L is the Laplace-Beltrami operator.

Recently the maximal functions (1.2) have been studied in the context
of a left-invariant operator L on § = N x R™ which is a semidirect product
of a nilpotent group N and RT = A acting on N by dilations

Ba(Z1, ..y 2n) = (a¥2y,. .., 0% e,)

where z = exp(z_‘,;“=l z; X;) and Xy,..., X, is a basis of the Lie algebra n
(D], [DH]). Such an operator L can be written in the form (1.1) with

k n
Y}(a)zZaijadej, i=1,...,k, Y(a,):chjad"Xj.
j=1 F=1

Both when ay = 0 (the whole group situation) and ag > 0 a number of results
concerning Poisson integrals on 842,, have heen established. In particular,
if ag = 0 and & > 0 then both M, f, Myf are of weak type (1,1) [D]. If
ap > 0 and the group structure is broken, the situation is slightly different.
M, is of weak type (1,1) whenever x > 0 but for weak type (1,1) of Ms, in
addition to & > 0, we have to assume that

Yia) € in{Xy,. .., Xp, [Xi, X5] 1 4,5 < k)

(IDH]; for a counterexample see {Z]). One of the main tools used in [DH]
to prove weak type (1,1) when ap > 0 is the decomposition of the diffusion
generated by L into the “vertical component” a(t) generated by ad2 — xd,
and the “horizontal component” for which the transition probability condi-
tioned on the trajectory a(t) of the vertical component satisfies the evolution
equation

kb

(1.3) Byu(z,t) = ( S Yila(t)? + Y(a(t)))u(x, ).

i=1

icm
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This holds in a much more general situation (cf. e.g. [T]). For this and
other reasons it seems very likely that the fact that A = RY acts on N
by dilations and that L is left-invariant on S is not very essential. What is
really crucial for this analysis is that the space §2,, is foliated by the action
of N and that 8£2,, can be identified with N. This observation and the idea
of dropping A-invariance belongs to A. Hulanicki, to whom the author is
grateful for the suggestion to study the operators (1.1).

In the present paper we assume that if X;,...,X, is a basis of b,
X,y Xk, o, Xy & basis of noand L is written in the form

k n
L= Z ﬁz‘j(ﬂ.)Xin - Zﬂj (a_)Xj + anL — kO,
Bg=1 i=1
then the quotient of the upper bound of the coefficients 8;;(a), 8;(a) by
the lowest eigenvalue of [8;;(a)] is bounded whenever @ > 0. If ¥{(a) = 0
this is enough to prove (1.2} (Section 6) and in fact this case is fairly easy.
For ¥(a) # 0 the method we use requires some additional assumptions (see
Theorems (6.3} and (6.5)). Throughout the paper most complications come
from the fact that we do not want to restrict ourselves to the case ¥ (a) =0
and so estimates on the related evolution both for large and small times
become more difficuls.

One should perhaps mention that without any group invariance the maxi-
mal function M is not bounded even on L? in general, In [FKP] it is shown
that for uniformly elliptic operators in divergence form M; may be un-
bounded on L? even if the coefficients of the operator are bounded together
with all derivatives.

The results about the maximal functions are based on some estimates
on the evolution (1.3) formulated in Section 3 and coming from [DII]. Also
most of the methods we make use of have already been applied in [DH].
Sections 4 and 5 deal with properties of the harmonic measures % (intro-
duced in Section 2). We prove that the measures 2% have some moments;
the results depend on the growth of coefficients at oo (bounded, polynomial
or exponential). In the case of bounded coefficients the moments we obtain
are the best possible in this generality.

The author would like to express her gratitude to A. Hulanicki and
J. Zienkiewicz for their helpful remarks.

Preliminaries. We follow the notation of [DH]. Throughout the paper
N is a nilpotent Lie group and 7 a left-invariant Riemannian distance from
the identity. If 7 is a function on N then we will write

1£l = sup [f(=}].
zEN
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Bp(z) denotes the ball of radius R and centre z, i.e.
Br(z) = {y: m(z" 'y} < R}.

We will also use some smoothing of 7. If $ € C°(By(e)) is a nonnegative
function such that { @(z)dz = 1 then 7+ § has the following properties [H1]:

r(z)-1<r«P(z)<r(z)+1, z€N,
[X(r*@)]| <00, [XY(r#d)] < co.

Moreover, 7 is subadditive, and (1 + 7)%, 7 are submultiplicative (for defi-
nitions see [H1]). For every subadditive function ¥ on N we have (see [H1])

V(z) < C(r(z)+1), =zeN.
Analogously if ¥ is submultiplicative then
F(z) < S pe N,

Sometimes our group N will be homogeneous [F'S]. This means that there

is a basis Xy,..., Xy of n and a sequence of numbers 1 =dy < ... < d,
such that for every a € R* the mapping
Xj — adj Xj

extends to an automorphism 8, of n. A homogeneous normon N is a function
Nsz—lg/eRT

which is C°° outside z = ¢, |§,2| = a|z|, and {z| = 0 if and only if z = e.
There is always a subadditive homogeneous norm [HS], i.e. such that

(1.4) ley] < Jo] + [ -

2. The Dirichlet problem and harmonic measures. In this sec-
tion we study the Dirichlet problem for subelliptic second order N-invariant
operators

(2.1) L=Y2+.. +Y2+Y,
on domains
oo ={(z,a): 2 €N, a >a} C N xRF.
That Is, we assume that
(2.2) Yi,...

and for every z € N,

» Ym generate the tangent space to S at every s € §,

Yif(@,0) = Y;(af)(e,a)
where . f(y,a) = f(zy,a).
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Let Xy,..., X, be a basis of n and X = 8/8a. Then by N-invariance

(2.3) L= Z Bii (@)X X; +Zﬁz

ij=D
with smooth f;;, 8; and with the matrix [Bi;(a)] being positive semidefinite.
By (2.2) for every a > 0, Bap(a) > 0, so in what follows we assume

Bagla) = 1.
Also, we assume that
Bole) <0  fora>0.

The following maximum principle is valid for I being degenerate elliptic
(without Hérmander’s condition) so we formulate it as follows:

(2.4) TumorREM (MAXIMUM PRINCIPLE). Let I defined on 2,, be as
in (2.3) with fyo{a) = 1. Given R,r > 0 we define a domain D(R,r) by
D(R,r)={(z,b) : 7(z) < R, ap <b<ay+r}.

For every b > ag and & > 0 there are R,r > 0 such that if F € C2(D(R,r))n
C(D(R,m)), |F| €1, LF > 0 and F(z,aq) <0 for z € Br{e) then

Fle,by<e.

Proof. Let
Gz, 0) = ~ela—a0)"/(b—a0)"—(#72(1-7)/ (20 M (b~a0)2)) (r+8(z)+1)
z&N,a>aq where ) < v < 1and

M = max{|8;,(a)| |/3 ()] ap < a < ag + (b —ag)e™ 7,0 < i, 5 < n},

C = Z}[XX T*@||+Z||X (7% ®)] .

ii=1 i=1
First we notice that LG{z,a) > 0 whenever z € N and ay < o < ap +
(b — ag)e~ /7. Indeed,
(97 + Bo()8a) Gz, 8) 2 ¥(1 = 1)e¥7 (b — ag)™”
and
|L(rx®+ )| < MC.
Now let
R=2CM(®b —ag)?/(e¥ (1 =), r=(b—ag)e /7,

Then G(z,aq) < 0 and G < —1 on the remaining part of the boundary 8D
of D. Hence F+ G < 0 on 8D. The weak maxirmum principle for degenerate
elliptic operators (Proposition 1.1 in [B]) implies F + G < 0 in D and the
proof is complete. m
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(2.5) CoroLLARY. If F € C*(2,)N C(2,), LF = 0 and F is bounded
then for every b > a and z € N,
F(z,b) < sup F(y,a). =
yeN
(2.6) COROLLARY. For every b > a and & > 0 there is a compoet set
Kle,bya) such that if F € C*(2,) N C(R2,), LF = 0, F is bounded and
Flz,a)> 1 forz € K(e,b,a) then F(b) > 1~¢c. m

Now we are going to show that if ¥3,...,V,, generate the tangent space
to S at every s € S then for every o the Dirichlet problem for 2, has a
unique solution.

(2.7) THEOREM. For every bounded continuous function f on N there is
a unigue bounded L-harmonic function F' (i.e. LF = 0) on {2, continuous
on 2, and such that F{z,a) = f(x) forz € N.

For operators (2.1) Bony’s version of Harnack’s inequality [B] is avail-
able and also the Dirichlet problem can be solved in every set from a basis
R of open sets in S. Therefore the proof of Theorem (2.7) is a standard
application of Perron’s method ([GT], see also [DH]) provided we establish
the following two facts.

(2.8) THE MAXIMUM PRINCIFLE FOR 2. Let F' : (2, — [—o00,00) be
a subharmonic function in £2,, upper semicontinuous and bounded on 7,
Then

sup F(x,b) < sup F(z,a)
(m,b)ef2

(2.8) can be proved in the same way as Theorem (2.4). We just notice
that F + & is subharmonic and apply Bony's maximum principle [B] for
subharmonic functions on compact sets. =

(2.9) Bristence of a barrier function at every point of &£2,. A barrier
function at (zp,a) € 042, can he constructed for example as in [DH] by
means of the function

Wi(z,b) = b7+ (v(1 — )/ (MC))P (a5 " z)

where ¥ is a Hunt function on N, i.e. W, X;¥, X; X;¥ are bounded, ¥(e) = 0
and ¥(z) > 0 for z # e (cf. e.g. [HQ}) 0<'y<1

C= ZHXX!I’IHZIX&”II

7,J=1
and

M = max{|8;(b)|,|6:(B)| :a <0 <a+1, 4,5=1,. ,n}

icm
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It is easy to notice that W & C(f2,), W > 0 if 2 # ¢ or b # a, W (zg, a) = 0
and LW < 0in {(z,b):a<b<a+1}. u

Let H, be the space of bounded harmonic functions on 2, contmuous
on {2,. By the previous theorem and Corollary (2.5) for every s = {z,b) In
12, the mapping

me(f) =F(s), FeHs, Flv=Ff,

is a well defined continuous functional on Cy,(N) with ||ms| = 1 and by
Corollary (2.6)

Sup{‘ms(- )l f € C : ”fH = 1} =1.
Hence there exists a probability measure ¢2* on N such that
F(z,b) = (f, 2%, «€N, a,beRY, a <b,

for fin Cp(NV). Since L commutes with left translations we see that

(2.10) F(z,b) = f Fley) dugly) = f * ia(e),

where u® = pb di(z) = cl;,t(m ). Then it follows irmmediately from (2.10}

that
(2.11) pl=pc«pd fora<ce<h.
Moreover, % is an approximate identity as b — a.

(2.12) PROPOSITION. For every right-invariant differential operator 8 on
N, 8ul € L3(N) and consequently pb is smooth and 8ub is bounded.

This follows from Sobolev’s lemma (cf. e.g. [D]). By Proposition (2.12),
fin, € LA(N), pz1,
and if f € LP(N), p > 1, then f* i} is L-harmonic on {2;.

As another application of the maximum principle we cbtain the following
characterization of bounded L-harmonic functions on {2,.

(2.13) THEOREM. Let F' € C(2,) N C?(12,) be a bounded L-harmonic
function., Then

(2.14) F(z,b) = f+ i (z)
Jor a unique f € L>®(N). '

Proof. Let Fy(z) = F(z,b). There is a sequence a4, — a and f €
L®(N) such that F,,_ converges weak* to f. In particular, for ¢ € C(IV),

F™(2,b) = * Fo,, % Jib(®) — @+ f * jig(2)
38 G — @. Thus it is sufficient to show that
F™(e,b) — o x Fy(e).
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For that we evaluate
(2.18)  |F™(x,am) — ¢ * F,, (3]

< [ lo# Fu(ay™) — o x Foy, (2)| dputm(y)
N

when z belongs to a compact set K. Let U be a neighbourhood of e in N.
Then

S lo% Fu(ey™) = 0 % Fop ()] diim () < ol e[ Fll oot (N \ T,
NA\U
which is smaller than 6/2 for a, sufficiently close to a. For every § > ( we
can find U7 such that for all a,,
| * Fam(m?fhl) —p* Fy ()] < 6/2

whenever z € K, y € U. Hence the right-hand side of (2.15) is not greater
than 8. Applying now the Maximum Principle (2.4) to the harmonic fanc-
tions F™(x,b) — @ # Fy(z) — § and i * Fy(x) — F™(z,b) — 6 on {2, and to
K sufficiently large we obtain

[F™(e,5) = o % Fy(e)| <,

which proves (2.14). Uniqueness of f follows from the fact that i is an
approximate identity. m

[

3. Evolutions associated with operators with homogeneous sec-
ond order part. Let N be a homogeneous group [FS]and let Xy, ..., X, be
a homogeneous basis of the Lie algebra n of N, i.e. for the group of dilations
8-, r > 0, we have

EX;=r%X,,  j=1,...,n.

Let @ = di + ... + d,. We assume that X1,..., X, generate n and dy =
L= dk Let

k 2
Vi)=Y oy(t)X;, i=1,....k V()= > ay(t)X;
J=1

J=1
Wwith a5, @ continuous and with the matrix A(t) = [a4;(t)] being nonsin-
gular for every t. We consider the operator
(3.1) L=Ly+ 1,
on N x Rt where
k

Lof(x,'ﬁ) == Zx(t)zf(xst)a Llf(mzt) = Y(t)f(ﬂ:,t) .

i=1 .
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Let
(3.2) 7 =max{|a;(t)|: £ >0, §=1,...,n},
(3.3) A =max{|oy;(t)] 1 £ >0, i, =1,...,k},
(3.4) A=inf{||[A(t)v| : £ >0, |lv]j = 1}, _
where || || is a fixed euclidean norm in n. We assume that 5, 4 < co and
A> 0. Let

(3.5) m =max(1l+n,4%) k*A"2+1, M = max(n, A).

Remark. Every operator

ke k

L= 85X+ 3 Bi(8)X;
ig=1 j=1

with continuous §i;(t), §;(t) and positive definite matrix [B;;(¢)] can be

written in the form (3.1). Then A% and A? are the smallest and the largest

eigenvalues of the matrix [§;;(f)], i.e.

k
NP < 3 Byt < AL, €eRE.
iyi=1
For a multiindex I = (i1,...,{,) we shall write
‘I‘:d1i1+...+dnin.
Let X! = X! ... Xi» denote a left-invariant and X7 = X .. Xi» a right-
invariant operator. We start with the following pointwise estimate.

(3.6) THEOREM. Let P(s,t,z) be the fundamental solution of L — &,
(transition probability function [SV]). Then for every multiindex I there are
constants C, K, o 2 —Q/2~ |I|/2 and § < ~Q/2 — |1|/2 such that

Cm*(t~8)* fort—s>1
I ] Ten 7
(3.7) | X5 P (s, t)]| o= < {ka(t ~s5)f fort—s<1.
Moreover,

(88) || XTP(s,8)||poe € OmI (- 5) 92 fort—5>1
provided a; (1) =0 forj =1,...,k, and
(3.9) | XTP(s,8)||ze < O (1 - 8)"YI2 fort s <1
provided o; (1) = 0 for § such that
X; @ WnfXy, ..., Xp, (X5, Xp) 1 < 4yp < K}
Remark Unlike (3.8) and (3.9), the estimate (3.7) is not optimal but we

write it out because we will need it later. In what follows we will say that L
satisfies condition i if oy (t) = 0 for y = 1,..., k, and respectively, condition
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W if a;(t) = 0 for j such that X; ¢ lin{Xy,..., Xy, [X;, X,]: 1 < j,p < k}.
In particular, when L is homogeneous (Y (f) € lin{[X;, X;] : 1 < 4,5 < k})
then (3.8), (3.9) hold.

The proof of Theorem (3.6} is contained in the proofs of Theorems (5.3)
and (5.14) of [DH]. But since we want to write in a more explicit way the
dependence of the relevant constants on 7, A, A, we formulate here a few

lemmas as the main steps of the proof.
Let

B={(zt):|z| <1,1/2<t <1},
(fo0)= [ fla.dglt)dedt, |13 = (£ ).

We denote by C°'(B) the set of functions defined in B which are />
with respect to z and once continuously differentiable in t.

(3.10) LemmMA ([DH]). Let p € C°(B), 0 < ¢ < 1. Thereis a C = C{y)
such that for every u € C°1(B) satisfying (L —0;)u = 0 in a neighbourhood
of the support of © we have

[{(Lo(pu), pu)| € Cmax(l + 1, Az)ﬂuHLz(B). m

(3.11) Lemma ([DH]). Let p € C°(B), 0 < ¢ < 1. For every I there
are constants C = Clp,I) and K = K(I) such that if u € C>*(B) and
(L - &)u =0 in a neighbourhood of the support of © then

(8.12) X7 (0wl 2 < CmX w2z,
and the same with X7 in place of X1.

Proof For ¢ > () we define a Sobolev norm on functions supported in
B putting

AN =11+ AP F|3.,  fec=i(B),

where A = X7 +...+ X2, By Kohn’s lemma [Ko] there are ¢ and ' = C(g)
such that for every f € C2'(B)

k&

1712 < O (321X 713 + 1£13)

J=1
and so by (3.4)

k
nX@fN%srzk(Z f m(z)f(w,t)|2dmdt).
i=l
Therefore

k
1712 < (X223 I I3 + 11713)

j=1
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Taking f = pu, by Lemma (3.10) we have for a C = Cle, ¢),
leow|2 < Omufpags) -

Proceeding further as in [DH] we deduce that for every N, g, € there is a
C = C{p, N,&) such that if % is as above then

11+ A% (pu) 12 < CmN||ull gy -
Therefore (3.12) follows. m
(3.13) LEMMA. Let By C B, and let I be a multiindex. There are ¢ =

C{I,B1,B), K = K{I) such that if u € C°°=l(B) and (L — 8;)u =0 in B
then

(3.14) sup | XTu(z,t)| < CmE Myl g2z »
(m,t)EBl
and the same for XTu.
Proof. Let ¢ € CF(BN(N % (1/24 6,1 - §))), 0 < ¢ < L. Obvicusly
it is enough to prove (3.14) for X1, X%u is (L — & )-harmonic and so

1
X u(z, )| < [ |8e(0X u)(z, 1) dt
0

1 i
< [ o XTu(z, ) dt+ [ lpLeXTu(z,t)] db
[} 0
1—-8
< iiple [ X ulz, b))l dt
1/2+4&
1-8§ &k
+42 [ 3 XXX u(a, ) dt
1/2+464.5=1 _
1-4 n
+7 fZ|XiX'Iu(:c,t){dt.
1/2+8 i=1

Now applying the Sobolev inequality with respect to the x variable and the
previous theorem we obtain (3.14). u
Proof of Theorem (3.6). Let u be (L— 8;)-harmonic and D, (z,t) =
(6pz,7%t). Then
r2((L — 8 u) o Dy = (L7 — 8;)(uo D),

where
b

n
(3.15) M =S Y )2+ ) o (rP)r =4 X;

=1 J=1
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Therefore (L" — 8;)(uo D,) = 0 and applying the previous lemma to wo D,
for some K = K(I'} and C = C(By, B, T}, we get

sup [(XTu) o D,| < CmEMC(ryr ¥ luo Dyllr2s) .
By
where

P 2> 1,
ot ={15. 131

with ¢ = o (7) nonnegative and f; = £1(I) nonpositive. Moreover, g = 0
(respectively 81 = 0) if the operator satisfles condition i (respectively ).
Now substituting

u=f*Pz), [felLP, 1<p<Loo,
where P, = P(0,t) and proceeding as in [DH] we obtain
(316) |XI(f * Pr)(e)l
K() ypnmlIi/2=Qld o2y L T , 2 M
< Om¥I My C(r )(ZT.f [ 1F xR dmdt)

2rg ‘m‘<1.1/2

and so

(3.17) X2 (f % B)(e) € Om* D Mp=TE=QRO 27| s
In particular,

(3.18) IPrline < CmXO pr—QAC (112,

Assume now that L satisfies condition 4 {and r > 1} or ¥ (and r < 1).
Then by (3.18) there is a C' such that

1 2r .
(3.19) o [ IF * Pillds dt < CmAK @O a0 £,

ore
Finally, putting (3.16) and (3.19) together we get

|XT(f % P)(e)] s O (DHRO 2= /2= Q7 1)),
and replacing f by . f,

|f + X2 Py(a)| < OmE IO 2 /3= Q8 )

Taking an approximate identity in L' we arrive at (3.8) and (3.9) for 5 = 0
and if we now consider the operator L' with
!

oyt = ai(s+1), d,i=1,... .k
a;(t) = aj(s'i_t)a

we obtain (3.8) and (3.9). For (3.7) we have to take into account C(r*/?)
and proceed as above,

i=1...,n,
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Later we will use the following simple property of the evolution [SV]:
(3.20) P(s,t} = P(s,u) * P(u,t) foreverys<u<t,
and also the fact that thereis a C = C(Xy,..., X, ) such that if s < ¢ and
Rz COM(t — 5) then
(3.21) P(s,t, Bg(e)®) < 2dim N e~ R*/(C*M{t—s))
([S], see also [DH]).

The following lemma has been proved in [DH] {Thecrem (5.18)) for
(1+7)¥ instead of 7@ /€ byt the proof iz essentially the same.

(3.22) LeMMA. Let M, m be as in (3.5), and C as in (3.21). Then for
every multiindex I there are @ = B(I) > |I|/2 and C(M, m} such that

(7 /UM | xTpis ) < C(M,m)(t—s)™P  fort—s<l.

Moreover, when L satisfies condition T or I = (0,...,0) then g = |I|/2.
The same holds with o subadditive homogeneous norm | - | instead of T and
with another constant C{M,m). =

From now on we will assume that our homogeneous norm | -1 is sub-
additive. Let P7(s,t, &) be the evolution associated with L™ and let 7. be
defined as in (3.2) for L*. Then

(3.23) X'Pr(0,t,z) = @ XTI P)(0,+%,6,2), =z€EN, t>0.

If I, satisfies conditions i or U then 7, is bounded independently of » for
r > 1 in case i and for r € 1 in case V. Therefore by Lemma (3.22) for
1/2<t—-s<1,

(3.24) (el X TP (s, 4)])

is bounded independently of » for » > 1 in case &l and r < 1 in case =
respectively, '

(3.25) TuEOREM. Let L satisfy condition U or . There is a C{M,m)
such thai

(3.26) | XTP(s,t,2)| < C{M,m)(t— s)‘Q/E“m/ze“lrlzf(mczb”f‘“”
fort—s>1in case 8, andt —s < 1 in case V.
Remark. In particular, (3.26) holds if L is homogeneou,:s) ie.
Y(t) € in{[X;, X;]: 1 <4,5 < k}.

Proof of Theorem (3.25). Let £ = 4C2M. By our assumptions on
L and Theorem (3.6) there is a ¢’ such that

(3.27) |X1P" (s, )| e < C'mH MP
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for 1/2 <t s <1 and every r. Therefore by (1.4),

el2 /4O xTpr (0, 1,2)| = [ ele* /4 prn, 172, 2y Y XT P (1/2,1, %) dy

N
< [ eI P (0, 172, ay )/ PO XTPT(1/2,1, )| dy
N

1/2
e'“’ "PEP(0,1/2, 2y 1))2dy)

. 1/2
X ( f eV X TP (12,1, )2 dy) <",
N

Now by (3.27) and Lemma (3.22) we obtain (3.26} for s = 0, and considering
L= Y (s+t)+Y(s+1)
forevery 5. ®

(3.28) CorovLrary. If L satisfies condition 4 or U then there is a
C(M,m) such that

P(s,t,z) < C(M,m)(t — 8) " 2/3(L+|6,_gysaz) 97"
fort—s>1 ort— s <1 respeclively. u

(3.29) THEOREM. For every K > 0 there are constants C = C(K, M, m)},
a=a(K) >0 and 8= B(K) > 0 such that

Cle—s)*(1+]2))7%, t—s>1,
(3.30) P(s,t,z) < {G(t —8) P+ 2%, t-s< 1L

Moreover, C(K, M, m) depends polynomially on M, m.
Proof. Let t — s < 1. Then there is a O = C{K, M) such that

J @+ 1)XP(s,t,z) de < 0{7“”6, r2 1,
N rT L £,

forsome o’ = o/ (K} >0, 8" = §(K) > 0 ([9], see also [DH)]). Using estimate
(3.7) for || P7(s,1t}| L and proceeding as in the previous theoren we obtain
(3.30). &

In what follows we will need some estimates on (e®", X' P(s,%)) and
(¢, X7P(s,1)) as formulated in the following two theorems,

(3.31) THEOREM. For every £ > 0 and every multiindexr I there are
B =pB{I) = |I/2, Ca, C1 = C1(&, M, m) such that

(3.32) (5 1 XTP(5,)]) < Oyt — 5)~PeCali=a)ME+E%)

icm
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and the same with X7 in place of X1. Moreover, when L satisfies condition
Y orl=(0,...,0) then 8 = |I|/2.

Proof. Fort—s <1, (3.32) follows from Lemma (3.22). If T = (0,...,0)
then (3.32) is a consequence of (3.21). Since €47 is submultiplicative [H1], in
view of (3.20), we have

(5, IXTP (s, 1)) < (e, |1 X P(s, 5 + 1)) (e
for t — s > 1 and (3.32) follows.

Ps+1,8)

Remark. If L = 82—, and P(0,¢) = t~1/2e—2"/(41) 3 simple calculation
shows that

(e57, 18" P(0,)]) 2 (6, m)t /e
Analogously using ¢ in place of €™ we derive from Theorem (5.16) of
[DH] the following

(3.33) THEOREM. For every & > 0 there is a C = C(M) such that
(3.34) (7%, P(s,1)) < C'max(t*/%t%).

Moreover, for every multtindex I # 0 there are f = (I) = |I|/2 and
Cy = C1(&, M, m) depending polynomially on M, m such that

g I Olt—s)ﬁ t—s <1,

(3.33) {rs,| X P(s,0)]) < {Cl(t—s) f—s>1

and the same for X7 in pluce of X1. If L satisfies condition U then ﬁ =
/2.

For our maximal functions we will also consider operators (3.1) with
unbounded coefficients. Let
k

L= Yt +Y()

and
(L} ma’x{la_’i(t)i:j:l!"wn}:
A = max{los; ()] 6,5 = L., K},
A(t) = inf{[|A()v]| : ol = 1}.
We assume that thereis a D < oo such that
(3.36) max(A(£)2/ M), n(#)/A8)?) < D
Let

Aty = [ Au)du.
[
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X is an increasing bijection of [0,00) onto [0, 7], where T = Jo° A(w)? du.
The image of A({)"%(L — 8;) via the map (z,t} — (z, A1)} = (=z,s) is the
operator

(3.37) (L 8.)f(z,s)
k
= M) 2 (VT () + Y (RN - ) £y )
=1

on N x (0, 7). For the fundamental solution ﬁ(u, ne),0<su<s < T, of
L—8, we have the estimates given by Theorems (3.25) and (3.29). Moreover,

(3.38) Plu,t,z) = P(\(u), A(t), z)
for0<u<t, z€N.
Assume now that there is a d such that A(t}* > d for every ¢ > 0. Then
(3.39) Nt) > df, t>0,
T = o, and Theorem (3.29) implies

(3.40) CoroLLARY. If L satisfies (3.36) and (3.39) then for every K >0
there are constants C = C(K,D,d), B = f{K) > 0 such that

Pls,t,2) <Ol =814 2% fort—s<1.

4. Moments of harmonic measures (bounded coefficients case).
In this chapter we are going to prove some properties of the harmonic mea-
sures ji} (defined in (2.10)) corresponding to the operator
k
(4.1) L= ¥i(a)* +Y(a) + adl — kd,
i=1

defined on N x R, where
ke [
Vi) =3 o(a)X;,  Y(a)=) o;(a)X;,
i=1 =1

Xy, ., Xy Is an arbitrary basis of n such that Xy, ..., X\ generate n (with
no assumptions on homogeneity of n and Xi,...,Xk), oy(a), a;(a) are
smooth functions and the matrix A(a) = [a;(a)] is positive definite. We
assume that

= I;Ilgg({laj(ﬂ)l :i=1,...,n}, A = %138(‘{1@!'}‘(@)‘ thi=1,...,k}
are finite and

lA(a)v] > 0.

inf
a>0,]v] =1

Muozimal functions velated to subelliptic operators 255

As before
M = max(n, A%),  m =max(1+n, A2k +1,

Let first ¢ = 0 and consider the free group & with the Lie algebra
generated by X;, s =1,...,k. To avoid any confusion we will denote these
vector fields on G by X;, i.e. we have the homomorphism ¢ : G — N such
that

oX; =X, J=1,....k.
The dilations on G are defined by
5,«Xj = TXJ' .

Let Y;(a) = Ef:l oy (0}, V() = Z?:I a;(a)X;. If P%(a,d) and P(a,b)
are the fundamental sclutions of

k
(4.2) L= Z Yi(a)? + Y(a) — K8,

i=1

and of L (with & = 0) respectively then for every Borel set V C N,
(4.3) Pla,b,V) = P%(a,b,a (V)
and in view of Theorem (3.31) we have the following

(4.4) COROLLARY. For every £ > 0 and every multiindexr I there are
Cy = C1(§, M,m), Ca, B8 = F(I) > 0 sych thot

(57, | X T P(a, B}y < C1(b - a)—ﬁec'z(b—ﬂ)M(E-l—éz) ,

and 3 =0 for I =(0,...,0). u

If @ s 0 then without loss of generality we may assume that o = 1,
Given a continuous function a : [0, c0) — RT we look at the operator

k

(4.5) L*="Yi(a(t)® + Y(a(t) - &.

=1
Let P(a; s, t, ) be the fundamental solution of L* and T, (a) = inf{t : a(t) <
a}. Then as in [DH] for a < b we have

(46)  F(V)= [P(a0,T., V)dW(a) = BP(;0, s, V),
where W, is the Wiener measure associated with 8?2 — kB, starting at b. (For
the proof of (4.6) see [T].) The distribution of T}, is given by

¢

(4.7) W {T, <t} = f (4w)"l/2(b - c&)s_g/2 exp[—(b—a— ns)Q/(4é)] ds.
: .
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‘We will also need the operator

k
(4.8) L2 =" Vi(alt))® + Y(a(t) - &

==
on (3 x R, As before
(49) P(a; Sati V) = PG(a; 5,'/5, a—l(V)) *

where P%(a; s,t) is the fundamental solution of (4.8).
Now we consider separately the cases & > 0 and x = 0.

(4.10) THBOREM. Let k£ > 0 and Oy be as in Corollary (4.4). For every
€ satisfying £ + €% < k2/(4CoM) there are C = C(€, M, m) and 8 = F(I)
such that

(4.11) (X7 hg), ") S Clo~ G)_ﬁe"(b"“)
and the same with X' in place of X1, If I = (0,...,0) then 8 = 0.
Remark. If L = 02 + 82 — 8, and n > 1 then for every ¢
(4.12) (a8, 81"y = 0o
Indeed, by (4.7},
(e, ")

o0 o0
=2b [ (4m)7 2200 0 ([ (o) 13T ) gy
0 : 0

and
o N o0
f (2mt) =1/ 2= [0+ gy — (/) /2 f g HE T g
0 0
Let
wy = (pé)LBmyn/E-m)
wy = (2n§)1/(2—n)tn/(2(2-n))
Oy = e¥/ @ (gqn/ 2-n) _ /2=y
Co = /=) ((ap)2/(2-n) _ pt/ (2=
Then
Wa
f e—m2+4§'t"/2m" dr 2 Cgt'r;/(2(2—1}))6011}"”2"7") ’
wy

which proves (4.12). =

Proof of Theorem (4.10). By (4.6) and Corollary (4.4),
(57, 1 X al) < Byfe®, [XTP(a50, T.)))
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o0
< 01(47r)‘1/2(b - a) f 1B CotM(E+E2) 1 ~8/2 ,—(b—a—kt)?/(41) gy
0

< Cy(4m) V3 (b — a)e®- m/z( ft B=3/2 ,MCa(6+€%) - (b—a)?/ (41)
0
j‘ 2 2 )
[ CatMEER) - sRt/a gy )
1
Now if CoM (£ + £%) < x*/4 then (4.11) follows. =

(4.13) THEOREM. Let k = 0. If £ < 1/2 then there are C = C(§, M, m}
and 3 = B(I} such that

Y Clb-a)? ifb—a<l,
(4.14) (X gl m8) < {C(b—a)2€ ifb—a>1,
and 8 =0 for I =(0,...,0).

Remark I L = 8249, +6? and§> 1/2 then (71, ] - |¢) = co. Indeed,
by (4.7),

#‘D:l |£>
o0 0o
= (4m) ™2 [ 432 N[ (omt) =12 affem (o0 do ) it
0 — O
and
f (2mt)~1/2|z S~ (=04 g > > [ (emt) 2 (z +1)fe= /40 dg > ¢6/2
] 1}
Therefore

—

(/18=|'F> =(4x) 1/2b ft—3/2+£ —02/(48) 31 — oo .

)

Proof of Theorem (4.13). By (4.6), (4.9) and the fact that (1 +
7o 0)¢ is a submultiplicative function on G,

UX Tkl 78y = By{(r 0 o)t |XTP¥(2;0, Tu))
< By({(r 0 0)%, |2 PE (2,0, T,)]), 1o £ 1)
+ Ey({(r0a)5,|¥TPC(2;0,1)]) - (70 0)%, PO (21, Tu)), Ta > 1.
But in view of (4.7) and Theorem (3.33),
Ey{{{r o)t | X P%(a;0,Ta))), Tu < 1)

1
< Cy(4m) V(b a) [ £/ me) ) g
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and
Eo({(7 0 )5, 14T P (a;0,1)) - (70 0)*, PC(; 1, 1)), To > 1)

oQ
< Ci(dn) V2 (b —a) [ 45732700 gy
1

Now substituting ¢ = (b — a)?s we obtain (4.14). =

5. Moments of harmonic measures (unbounded coefficients
case). Now we are going to prove that the derivatives of the harmonic
measures (2.10) corresponding to the operator

(5.1) L_ZB” )X X; +Zﬁz )+ 82 — 2k8, ,

i,j=1 i=1

with coefficients growing at most as e as g —+ oo, have some moments.
Our main tools here are appropriate maximum principles {compare Theo-
rems (2.5) and (2.6) in [DH]). We also consider the case when |#;;(a)], 18:(a)|
grow at most polynomially to show that then we can, of course, obtain bet-
ter moments. Corollary (5.11) of this chapter is used in proving the weak
type (1,1) of the local maximal function M f (see Chapter 6).

(5.2) THEOREM. Let fB;;{a), Bila), a > 0, be smooth Junctions such that
the matriz [8;;(a)] is semipositive definite and let 2 be the harmonic mea-
sure corresponding to L defined on N x RT,

(a) Suppose |B;;(a)l, |Bi(a)] < de™.
(5.3) If &> 0 then for every & < 2i/n there is a constant C independent
of b such that |
(Tg, ,Ezg) < (et

(b.4) If k=0 then for every £ < 1 there is a constant C' independent of

b such thot
(log(1 + T)F, 7)< C(1+15).

(b) Suppose |B;;(a)l, |Bi(a)] € d{1 +a)™.
(5.5) If & > 0 then for every £ there is a constant C independent of b
such that
(%, 15) € O+ BN D),
(5.6) If k=0 then for every £ < (24 m)~! there is a constant C inde-
" pendent of b such that

(78, i) < C/(1 - b)Ei2+m)

icm
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Proof The proofs of (5.3) and (5.4) are the same as the proofs of
Theorems (2.5) and (2.6) in [DH]. For (5.3) we use the function

Gz, a) = —(ee”®™® L "7 (1 « B(z) + 1)Re™™)7,

where

zeN,a>0,

o<y wor<2k =1, <1,

(67 Ci= Z(iXX (r DY + [ Xalr * B)| X (r + 2)[))

if=1
+ 3B,

R=0c(k—v0)/(2(v+ 1)dCy) .
For (5.4) the appropriate function is
Gz, a) = —ea’ /b7 — e¥/7(r + &(z) + 1)Re™ "™

where v < 1, R = (1 —+)y/(2dC1} and C; as in {5.7).
The proof of (5.5) follows from the following maximum principle:

Let ¢ » max(x, 2™2d/k), ¢ < min(b~1,1), Cy as in (5.7) and
D={(za):r(g) SeT™HC, 0<a<e ).

[FFec¥D)nC(D), |F| <1, LF > 0 in D and F(z,0) <0 for 7(a) <
g_m‘—l&Cl then

T2z e N,a>0,

Fle,b) < ef(b+ &/ r+ 1)%.
To prove this maximum principle we consider the function
G(z,a) = —Go(z,0)t, zE€N,a>0,
where
Go{z,a) = ela+ &/k) + ™ (7 B(z) +1)/(£C1) -
First we notice that LG{z,a) > 0 whenever x € N, 0 < a < £71. Indeed,
with our assumptions

—260,G = 2ket Gy,

ﬁjﬁi(a)xic:[ NE‘fa‘f ! }Zﬁw (a)X: X;@ <E§Gf !

f==l

162G < KetGy",

Moreover, G(z,0) < 0 and G < —1 on the remaining part of the boundary
oD of D. Hence F - G < 0 on 8D. The weak maximum principle for
degenerate elliptic operators (Proposition 1.1 in [B]) implies F+ G < 0 in
D and in particular

FPb) < —G(b) b+ E/p+1)5.
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Hence
(e 2 A} < XG4 1)
for A > £C1b™ 1!, which gives (5.5).
For the proof of (5.6) we use the function
G = —ea" /b7 — 2T V(4 B(z) + DREZ™, z€N,b>0,
where R = (1 —v)/(2dC,), C1 isasin (B.7) and y < 1. =
Remark. It seems that there is no hope for a better moment when

k = 0 using this method because then —G must be a nonnegative, increasing
function with a negative second derivative with respect to a.

(5.8) THEOREM. Let

i n
L= Z Bij(a) X:X; + Z Bi(a) X + 82 — 2x8,

iy=1 i=1
where Bi;(a), Bi(a), a > 0, are smooth functions such that
|8:5(a)l, Bi(a)| < de™

and the matriz [Bi;(a)] — oI is positive definite for some ¢ > 0. Let i =
(1+47)¢ or o = (1+log(1+7))4. If o, iB) < co then for every multiindes I,

(5.9) (g, |X7 b)) < oo,
(5.10) g, [ XTRE]) < o0

Proof (5.9) follows from Harnack’s inequality that is uniform with
respect to z, i.e. since i%(z) is L-harmonic as a function of z, b we have

| X7 b ()| < Ca, b, 1)l (z)

The proof of (5.10) is the same as the proof of Theorem (6.10) in [DH] and
follows from the following facts.

a) The constant € in (3.35) depends polynomially on M, m.

b) (p, it} as a function of b is dominated by Ce2<b.

¢) For a given trajectory a: [0,00] — R,

max{lﬁﬁ(a(t))‘: |ﬁp(a)i nLi=10k, p=Ll...,n 0<t< 1}
<dexp(p{maxalt): 0 <t < 1}).

(5.11) COROLLARY. (a) Suppose |Bi;(a)],|Bi(a)| < de™. Then for x> 0,
every £ < 2k/n and every multiindex I,

(X R, (%, 1 X TR < oo,
while for k =0, every £ < 1 and every I,
(log(1 +7)*, | X" iz ); (log(1 + )%, | X7 b)) < oo

icm
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(b) Suppose |Bi;(a)l,iBi(a)] € d(1 + o)™. Then for & > 0, every £ and
every I,

(61X ), (L 1XT R < o0,
while for k =0, every £ < (2+m)~! and every I,
{8 X, (8 1 X)) < o0

6. Maximal functions. Let L be as in (4.1) and
n(a) = max{|a;(a) : 7 =1,...,n},
Ale) = max{jay;(a)] 14,7 =1,...,k},
Ma) = inf{[|A(a)v]| : |lv]| = 1}.
For such operators we consider the maximal functions

Mif(z) = S |f * i ()], Maf(z) = sup |F * ph (),
<b<a-tl

(6-1) Y .,,sup|f* () MuF(e) + Mo 2),

where pu are the harmonic measures (2.10) corresponding to L.

(6.2) THEOREM. Assume that A(a)/M a) is bounded and Y(a) =0, i.e.

k
L=>Y Y(a)?
i=1

Then M is of weak type {1,1).

Proof If @ = 0 then the thecrem follows immediately from Corol-
lary (3.28) and Proposition (2.4) in [HJ]. Obviously we may assume that
ain (6.1) s 0 and f > 0. Let P(a;0,¢,z), P(a;0,t,), PC(a;0,t, ) be
the fundamental solutions associated with L* (see (4.5)), £* (see (4. 8)) and
£* (see (3.37)) respectively. For a function f on N, 2 measure 4 on G and
z € N we define

+ aﬁi — KOq -

f#q n(z f Flo(y™")) duly) -
By (4.6),
Mf(z) = iulgEb(f* P(2;0,To)(z)), z&N,
>
where Ty(a) = inf{t : a(t) = 0}. But in view of (4.9) and (3.38),
sup f * P(2;0,1)(z) = sup [ #g P (a;0,1)()
£>0 t>0

= sup f*g P%a;0,1)(z),
0<t<T
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where T' = [ Ma(t))? d¢, and by Corollary (3.28) there is a C' such that
PC(a;0,t,2) < he(z) = Ct™9%(1 4 16,022))" 9, 2z €N,
Therefore

M f(z) < sup Ey(sup f * P(a;0,£)(x)) < sup fxg ki),
b0 0<t 0<i<T

which by Proposition (2.4) of [HJ] is of weak type (1,1). =

Remark. In the previous proof we in fact changed sup to E; and so we
only require that the function

Xt)= [ Ma(s))?ds
0

is increasing. If we also admit a first order part in the operator then we
proceed differently for small and for large times and so we have to know

something more about the behaviour of A. That is the reason for assunmp-
tion (6.4) helow.

(6.3) THEOREM. Assume that A(a)/A(a), n(a)/N?(a) are bounded and
(6.4) May >e>0.

Ifaia)=0fori=1,..k ie Y(a)e in{ Xy 1,...,X,}, then My f is of
weak type (1,1).

Remark. If @ = 0 then the theorem follows from Corollary (3.28) and
Proposition (2.4) in [HJ]. Moreover, an easy calculation shows that M f is
neither of weak type (1,1) nor bounded on L7, p > 1, for L = 82 + 8, — 4.

Proof of Theorem (6.3). We proceed as in the previous theorem.
Let

Mif(z) = iupEb(f* P(a;0,To)(z), Ty > 1), z€N,
: >1
M f(z) = iupEb(f* P(a;0,To) (=), Ty <1), zeN.
>1

Then My f(z) < M{f(z) + M f(z) for every x. In view of (4.9) and (3.38),
sup f % P(a;0,¢)(z) = sup f #¢ P%(2;0,4)(x) < sup f *¢ P%(a;0,1)(z) .
t>1 t>1 t>e

By Corollary (3.28) there is a ' such that

P%(a;0,t,2) € ku(2) = Ct/2(1 + |6,-./02]) 9"

Therefore as before

Mif(z) Siupf*g ki(z), zeN,
ptal
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which by Proposition (2.4) in [HJ] is of weak type (1,1). Obviously
My f(x) = sup Ey(f *a P%(a;0,T5) (), Ty < 1) -
b>1

In view of (6.4) and Corollary (3.39) there are constants C, 8 such that
P%(a;0,t,2) < CtA(1 4 [z])79" .
Therefore
f*e P%(a;0,t,2) < Ct™PRf(x),
where

Rf(z)= [ fleo(y™ N +y)" 9 dy.
@

Obviously R is bounded on L' and
MY f(z) < Csup By(T5 %, Ty < 1) Rf(z).
b>1

By (4.7),

1
By(T5%, To < 1) = (4x) ™% [ 4732 P exp(—(b— nt)>/(41)) db .
0.

1 <b< 2k then
1

BTy, To < 1) < (dm) " 22me™ [ +73/27F exp(—1/(41)) dt -
a

If b > max(2k, 1) then b— &t > b/2 and

By(T5 P, To < 1) < (dm) ™2 [ 4737270 exp(-¥7/(161)) dt
0
= (4x)"2/2 fi +73/2(5%) 0 exp(—1/(16t)) dt
8]
< (4m)"1/2 j‘rw-ﬁ exp(~1/(16t))dt. =
a

(6.5) THEOREM. If Ma)? = ¢ > 0, laj(a)], |ay(a)] < de™ for some
n> 0, and
(6.8) Y(a) €lin{X1,..., Xg, [Xr, Xp] : 1 S 1p S K}
for every a, then Maf is of weak type (1,1).

Since by Corollary (5.11) all derivatives of it are integrable, the proof is
the same as that of Theorem (7.21) in [DH]. For a counterexample showing

that (6.6) is essential when a = 0 see [Z].
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Pick-Nevanlinna interpolation on finitely-connected domains
by
STEPHEN D. FISHER (Evanston, IIL.)

Abstract. Let £2 be a domain in the complex plane bounded by m-+1 disjoint, analytic
simple closed curves and let 29,...,2n be n+ 1 distinct points in £2. We show that for
each (n -- 1)-tuple {wy,...,wns) of complex numbers, there is a unique analytic function
B such that: (a) B is continnous on the closure of {2 and has constant modulus on each
component of the boundary of (; (b) B has n or fewer zeros in {2; and {¢) B{zs) = wy,
0<isn

Introduction. The classical interpolation result of G. Pick and R. Nev-
anlinna referred to in the title is this, Let zg, ..., 2z, be distinct points of the
opert unit disc A in the complex plane. Then, for each nonzero (n -+ 1)-tuple
of complex numbers (wg, . .., ws), there is an analytic function of the form

ks
(1) B =[] =%, D=1 a,c4 r<n,
1&11-—&3‘2’

and a positive real number g such that
{2) ¢eB(z) =wy, k=0,...,n.

Moreover, g, A,r and @1, ..., a, are uniquely determined by the n + 1 equa-
tions in (2). A proof of this result may be found in, for instance, [F].

The Pick-Nevanlinna theorem has found applications in diverse areas:
approximation theory, most especially in the theory of n-widths EM1],
[FM2]; in circuit theory [D]; it is also a part of geometric function theory [A].

A function B of the form (1) is called a Blaschke product (of degree r}. Tt
is a standard and casily proved matter that [B(z)| = 1 for all 2 with || = 1.
Clonversely, it is also easily established that if F is analytic on A, continucus
on {z |z < 1}, and |P(z)| = 1 for all z with |2| = 1, then F is a Blaschke
product (of some finite degree).
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