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Pick-Nevanlinna interpolation on finitely-connected domains
by
STEPHEN D. FISHER (Evanston, IIL.)

Abstract. Let £2 be a domain in the complex plane bounded by m-+1 disjoint, analytic
simple closed curves and let 29,...,2n be n+ 1 distinct points in £2. We show that for
each (n -- 1)-tuple {wy,...,wns) of complex numbers, there is a unique analytic function
B such that: (a) B is continnous on the closure of {2 and has constant modulus on each
component of the boundary of (; (b) B has n or fewer zeros in {2; and {¢) B{zs) = wy,
0<isn

Introduction. The classical interpolation result of G. Pick and R. Nev-
anlinna referred to in the title is this, Let zg, ..., 2z, be distinct points of the
opert unit disc A in the complex plane. Then, for each nonzero (n -+ 1)-tuple
of complex numbers (wg, . .., ws), there is an analytic function of the form

ks
(1) B =[] =%, D=1 a,c4 r<n,
1&11-—&3‘2’

and a positive real number g such that
{2) ¢eB(z) =wy, k=0,...,n.

Moreover, g, A,r and @1, ..., a, are uniquely determined by the n + 1 equa-
tions in (2). A proof of this result may be found in, for instance, [F].

The Pick-Nevanlinna theorem has found applications in diverse areas:
approximation theory, most especially in the theory of n-widths EM1],
[FM2]; in circuit theory [D]; it is also a part of geometric function theory [A].

A function B of the form (1) is called a Blaschke product (of degree r}. Tt
is a standard and casily proved matter that [B(z)| = 1 for all 2 with || = 1.
Clonversely, it is also easily established that if F is analytic on A, continucus
on {z |z < 1}, and |P(z)| = 1 for all z with |2| = 1, then F is a Blaschke
product (of some finite degree).
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In this paper I take up an extension of the Pick-Nevanlinna result when
the unit disc A is replaced by a bounded domain 2 whose boundary I
consists of m + 1 digjoint analytic simple closed curves. One such extension
[G] is already known and is this. Let zo,..., 2n be n 4+ 1 distinct points of
2. Then for each nonzero (n + 1)-tuple of complex numbers (wq, ..., wn),
there is an analytic function B on (2 and a positive real number g such that

(i) oB(zx) = wy, k=0,...,7,
(8) (ii) B is continuous on 2U " and |B(z)| =1ifz€ [,
(iii) B has at most n + m zeros and at least m -+ 1 zeros on 2 (unless
B is constant).

Moreover, B is the unique solution of the extremum problem:
(4) Hlf{Hf”OO : f € HOO(Q): .f(zk) = Wk, k= Oa ey 'ﬂ,}‘

H>({2) is, as usual, the space of bounded analytic functions on {2. For a
proof of this result, see [G] or [F]. Although (3)—{4) is an exact extension of
(1)-(2), it possesses the drawback that the number of zeros of the interpolant
depends very directly on the connectivity of the domain (2.

Here I set forth an alternate way to extend (1) and (2). This extension
retains control on the number of zeros of the interpolant (n or fewer) at the
sacrifice of losing some control on the boundary values; we will see that the
interpolant may be chosen to have constant modulus on each component
of I, but the value of the modulus on one component need not equal that
on another.

An essential role will be played throughout this work by a factorization
theorem of R. Coifman and G. Weigs [CW]. Since this factorization and its
properties are not as widely known as the inner-outer factorization, I give
an exposition of it, as modified for my needs, in Section 1; Section 2 containg
the main result and its proof. And, because the proof makes no use of the
classical Pick-Nevanlinna theorem on the dise, the proof here provides (yet
another) proof of this result.

1. The Coifman—Weiss factorization. The boundary of £ is com-
posed of m + 1 disjoint analytic simple closed curves I, ..., N, We shall
agsume that I is the “outer” component; that ig, I is the boundary of the
unbounded component of the compiement of £2. There is no loss of gener-
ality in assuming that I'p is the circle {|z]| = 1} and we shall do so without
further comment. We once and forever fix a point £y € 2 to use as our base
point. The followulg is from [CW).

Fork = 1,...,m, let wk(z) be the harmonic function on £2 with boundary
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values | on Iy and zero on I'\ I. Let

Ow,;
gy = f “"ds, ik=1,...,m.

2t
The matrix A = (a;;) is neg&twe definite; let (7;) be the inverse of A,

There is a function P(z;¢), 2 € 2, ¢ € I', which is analytic as a function
of z for each ¢ € I" and for which

(5) h(z) = j Pz O (Re k) (¢) ds(C) + i Im h{Zo)

whenever /i is analytic on 2 and continucus on 2 U I
For o € 2 define

(6)  Blma)=(z-a)exp{ - J Ptz Ool¢ ~ ] ds(¢) }.

Then B(a;a) =0 and Bis a c:onformal map of £2 onto the open unit disc A
with m cireular slits removed. These slits are located on circles about the
origin of radit

m
(7 0i(a) :=exp { Z’n‘jkwk(a)}, i=1,...,m
k=1
Further, B(z;a) carries Iy onto the unit circle.
Forpe Iy, k=1,...,m, let

(®)  Blap)=(e-plexp{ — [ Plzi)loglc ~plds(0)}.
r

Then B(z;p) is a conformal map of {2 onto the annutar region {w : exp(mri)
< jw with m — L cireular slits removed. These slits are located on
circles about the origin of radii g; = exp{mjx}, § = 1,...,m, j # k.
Purther, £(z;p) maps Iy onto the unit circle.,

With all of this background, we are ready for the Coifman-Weiss factor-
ization theorem.

Let f be unalytic on a neighborhood of 2U I and not equal to zero on I
Then | has a unigue foctorization

{9) f=Bd
where
(10) B(z) = "fl]:[ (21 0;) H{B zpit
=1 FED ]
(1) Gx) = mep{ [ Pz0)logPOI4s(0)}.
.
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Here |y1] = | 12| = 1; 72 is chosen to make

(12) G(ta) > 05
ai,...,ar are the zeros of fin (2;
(14) I1,...,lm are integers (positive, zero or negative)

which are uniquely determined by f.

All of the above is from the paper of Coifman and Weiss; see particularly
Theorems I, IV and formula (4.13). The kernel P(z; () is that of the title of
their paper. I shall refer to (9) as “the CW factorization of f”.

The following continuity result is needed in Section 2.

ProrosiTiON 1. Let {ap} be a sequence of points in the plane with
ap — a as k — oo. Let
z—ay = ByGy and z—a= BG@
be the CW factorizations of z — ay and z — a, respectively. Then
B,—B and Gy, =G ask— o0
uniformily on compact subsets of £2.

Proof. There are a number of separate cases to be considered:

(A) a € £2 (and hence so is gy, for all large k),

(B) ais in the unbounded component of the complement of {7 (and hence
so is ay, for all large &),

(C} a is in one of the bounded components of the complement of 2 (and
hence so is ay, for all large k),

(D) a € Iy,

(E) a € I; for some j € {3,...,m}.

Cage (A) is the easiest. From [CW] we have
(15) % — ay = Blz; ax) exp{ [ P(z¢)10g ¢ — axl ds(C)}
r

and the conclusion is evident.
For case (B) we use Theorem 4.10 of [CW] to conclude that

(16) z—ap=mexp{ [Pz logl¢ - aslds()}
r

that is, the B-factor is a unimodular constant. This is because the inte-
gers Iy,..., 1y, in.(10) are the winding numbers of z — ay about Iy, ..., I,
respectively. From this, the conclusion is again immediate.
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Likewise, if a lies in the component of the complement of 2 bounded by
Iy, then I; = 0 for i # j and ; = 1. Hence,

(17) z = ap = B(#p;) v exp { J Plzi)ioglz — ay dS(C)}
r

for all (large) k and the conclusion is again immediate. This is case (C).
For case (D), we have

s-a=ven{ [ Pls0)loglt —alds(() }
]

that is, B(z; a) is a unimodular constant. If oy lies in the unbounded compo-
nent of the complement of {2, then (16) holds and the conclusion is evident.
If ay lies in £2, then by Theorem IV of [CW],

[B{z08) — 1 asap —aelyp

uniformly on compact subsets of {2, and so the limit is a unimodular con-
gtant.

Finally, case (E) is completed by again invoking Theorem IV of [CW]
and (17) above.

PROPOSITION 2. Let { Py} be a sequence of polynomials each of degree n
or less and suppose that Py — P uniformly on compact subsets on {2. Let

P;G =2 Bka and P = BG
be the CW factorizations of Py and P, respectively. Then
By — B uniformly on compact subsets of 2.
Proof Suppose first that for all large k, the degree of P equals that

of P. Let {agi,...,arn} be the zeros of Py, and {ay,...,an} be those of P.
We may suppose that the zeros are numbered so that

agj — a; ask—oo, 1<j<N.

Tn this context, we apply Proposition 1 N times and the conclusion follows.
The only other case is that

M == degree P < Ny = degree Fy, k& large.
In this case, we can number the zeros of P and of P so that
ag; —+ oy ask—oo, 17 M,
and . :
lag| oo ask— oo, M+1<j <N,
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We write
M Ny
P =i [[e—an) T] (2= aus)-
7=1 g=M--1

Then By = By, By, where By is the B-factor of Hﬁl(i—— akj) and By is the
B-factor of ¢ Hj\f_fM_l_l(z — ag;). By Proposition 1, By — B, the B-factor
of P. Moreover, Ek is & unimodular constant and we are again done.

2. Main result. We denote by M, (12) the set of those analytic functions
f on 2 of the form

r

(18) f@y=ci| Bz aj) H{B(z; 0359)}["’
Jj=1 k=1

where

e is a nonzero complex number,
a1, ..., 00 € 2 and r < n,

ap, €l for k=1,...,m,

l1,..., 1y are nonnegative integers.

Hence, each element of AM,,(§2) has n or fewer zeros on 2, hag constant
modulus on each component of I', and

lel = [ flzo@ = f(2)l, 2 I;
that is, the maximum modulus of f is attained on I'p.
The main result of the paper is this.

THEOREM. Let 2q,...,2, be distinct points of 2 and let wy, ..., w, be

complex numbers, not oll of which are zero. Then there is a unigue element
B e M, (02) such that

(19) B(zk) = W, k=0,...,n.

Proof. Let $*"+! be the collection of (n+1)-tuples of complex numbers
w = (wy, ..., wy) such that

T
1= z |wj|2 .
J=0

Define ¢ : S+ — 7. the space of polynomials of degree n or less, by
o(w)=P where P(zp)=wy, k=0,...,n.

"I‘hetn o is an odd mapping (i.e. ¢(—w) = —a(w)) and continuous when 7,
Is given the topology of uniform convergence on compact subsets of £2.
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We now use ¢ to construct a mapping T from §2"+! into M, ({2) in this
way: given x € S2 1 et

a(x) = BG
be the CW factorization of ¢(x); it is direct that B € M, (£2). Set
T(x) = B.

Then 7 is well-defined since the CW factors are uniquely determined. Fur-
ther, 7 is odd since o is odd. Finally, Proposition 2 of Section 1 implies that
7 I8 continnous from % inio the space of analytic functions on 2 with
the topology of uniform convergence on compact subsets of 2.

Let vo == (wo, ..., w,) be a unit vector in C**! and let vy,...,vn ben
other unit vectors in €™ such that vg,..., v, is an orthonormal basis of
Crtl Define g §4* — C* by

o(x) = {{{r(x){z) o Vi iz
where {,) is the standard inner product on C"+L. Since 7 is odd and con-
tinuous, g is ag wetl, The theorem of Borsuk [M; Theorem 68.6] then implies
that o has a zero; that is, there is an xg € §%"*! with 7(x¢} orthogonal
to all of vi,...,vy. Equivalently, there is an element By of M,,(2) and a
complex scalac A with

Bolzg) = Awg, k=0,...,n.

Clearly A is not zero and so + By is an element of M, ({2) which interpolates
wy, Ak s, k=0,...,n. To establish uniqueness, suppose that B is another
function in M, (£2) with

Bl(zk)=Bo(zk)=wk, .’c:O,...,n.

The difference By — By then has n + 1 or more zeros on {2. Multiplying

B, by a number slightly less than 1 will not decrease the number of zeros
of By — By in 2 and so we may assume that

I.l?‘[i#}B()' oneach I;, 057 <m.

The change in Arg (Bg~B) on I'; is equal to the change in the argument
of that B which has the larger modulus on I%. If § = 1,...,m, then this
change is elther zero or is a negative integer multiple of 27r; this is because
the factor of By (or By) of the form

»
HB(z;&j): (l]_,--.,(lq-EQ,
e

has no net change in its argument around I”; while the factor of the form

m

[[BEa™ -

k=1

Ylmzoi
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maps {2 onto an annulus with m — 1 circular slits removed, sending [ to
the circle jw| = 1.

The net change in Arg (By — B1) on [y is that of By and this in turn
is no more than 2zn. Hence, the total net change of Arg (B — Bj) over all
of I' is at most 27n. This shows that By — By could not have n + 1 zeros
without being identically zero.

ExaMmpLE. Without the hypothesis that Iy, ..., [, are nonnegative, the
uniqueness assertion of the Theorem fails. To see this, let 2 be the annulug
ro < |z| < Ro, o < 1 < Rg, and let zg,...,2, be the {n 4 D)st roots of
unity. Then

By(z) = 2" and By(z) =zt

agree at zp,...,2,; moreover, both have no zeros on 2 and have constant
modulus on [ = 62. (I am indebted to S. Fedorov for this example.)

We give M, (12) the topology of uniform convergence on compact subsets
of {2.

COROLLARY. For each positive integer n there is an odd continuous map-
ping of the sphere §*" into those elements of M., (£2) which have sup norm
1 on £2.

Proof One such mapping is the function r given in the proof of the
Theorem. Another such mapping is obtained in the following way. For each
x = (wy,...,wn) € S, the Theorem implies that there is a unique B of
the form (10) and a unique positive scalar ¢ such that

cB(zj)=w;, 0<j<n.

The mapping is then given by v(x) = B, To prove the continuity of «, let
{xx} be a sequence of points in §2*+! with x;, — x. We write

Xpp = (Wok, ..., Wnk) and x= (wo, - wr).

The functions By := y(xz) He in the unit sphere of H % (f2) and hence
some subsequence, again denoted by { By}, converges uniformly on compact
subsets of {2 to a function B of the form (10) with r < n and Iy, ..., b =0,
Moreover, by the Theorem, there are positive scalars {ck} such that

(20) CkBk(Zj)IwM, 0<jsm k=12,...

If some subsequence of {c;} were unbounded, then by using (20} and letting
k — oo, it would follow that B(z;) = 0, 0 < j < n. But this is clearly
impossible since B has n or fewer zeros. From (20) and the fact that {er}
is & bounded sequence, we conclude that ¢, — ¢ and so

eB(z)=w;, 0<j<n.
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Since the interpolant from M, to the data x = {w,} is unique, it follows
that ~v(x) = B.
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