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On linear operators having supercyclic vectors
Iy

GERD HERZOG (Karlsruhe)

Abstract, We show that for a real separable Banach space X there are operators in
B{X) having supercyclic vectors if and only if dim X <2 or dim X = oo.

1. Introduction. Let (X,]| - ||) be a real (or complex) Banach space
and B(X) the set of linear continuous mappings from X into itsell. Let
T B(X). Avectorz € X scalled (a) cyclic, (b) supercyelic, (¢) hypercyclic
if the orbit

Orb(T,z) 1= {T"z :n & Ny}
satisfies

(a) span(Orb(T 7)) = X,

(bY {Ay 1y € Orb(T,2), A € R(C)} = X,

(c) Orb{T,z) = X
(see [5]).

As far as we know 1t is still an open problem whether there is an opera-
tor with liypercyclic vectors in every separable infinite-dimensional Banach
space, and it is well known that there are none in finite dimensions (see [8]).
In this paper we will characterize those separable Banach spaces which have
aperators with snpercyclic vectors. Of course, a Banach space having such
opetators is separable. The main result is:

TuroriM 1. Let (X, || ]) be.a real separuble Banach space. Then there
cxist operators in B(X) having supereyclic vectors if and only of
dim X €{0,1,2} or dimX = co.
To prove Theorem 1 we will use methods of the theory of universal
functions developed by K.-G. GroBe-Erdmann [4].
For further properties of the operator classes defined above compare,
e.g., [1], [2], 5], (6] and [8].
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2. Universal elements. Let X; and ¥} be topological spaces and A =
(L,) a sequence of continuous mappings Ly, : X3 — ¥1 {n € N). Then
x € X1 is called A-universal if the set {L,z : n € N} is dense in ¥}, In
[4, p. 11] GroBe-Erdmann showed that if X; is a Baire space and Y7 ig
a metrizable and separable space, then the set of A-universal elements is
residual in X7 if and only if the set {(£, Ln£) : € € X, n € N} is dense in
the topological product of Xy and Y;. Therein a subset of a Baire space is
called residual if its complement is of first category.

3. Proof of Theorem 1. In the proof of Theorem 1 we will usge the
following lemma (see [8]).

LemMA. Let (X, | |} be a finite-dimensional Banach space, T' & B(X)
and © € X. Then, for the sequence (T™x)2%,, one of the following three
possibilities holds:

(a) ipyoo Iz = 0;

(b) limp oo [T 2| = oo;

(c) Orb(T, z) s compact and 0 & Orb(T, z).
Proof of Theorem 1.

1) dimX < oo. If dimX € {0,1}, then the identity has supereyclic
vectors. If dim X = 2, then for & € R\ Q the operator

T = ( cos(2ma) sin(27ra))

—sin(2ra)  cos(2rar)

has supercyclic vectors, since for irrational o the sequence (na) 3%y is uni-
formly distributed modulo 1 (see [7, p. 71]).

Now let k = dim X > 3. Assume that T € B(X) has supercyclic vectors.
Then T must be regular and since ¢ has supercyclic vectors for every
c € R\ {0} if T has, we can assume without loss of generality that T has an
eigenvalue A with |A| = 1. So we can find a one(two)-dimensional T-invariant
subspace U if A is (not) real and a (k — 1)(resp. (k ~ 2))-dimensional 7-
invariant subspace W such that X = U@ W, and {T™u: n NK} ig compack
and does not contain 0 for every u € U/ \ {0}. If A is not resl this follows
from the fact that together with A also X is an eigenvalue, since X is a real
vector space. Since T" has supercyclic vectors, there must be an z € X of the
form z = u+w, u € U\ {0}, w € W\ {0}, such that {\y: y & Orb(T, a),
A g R} is dense in X.

By our lemma, thete are three possibilities for the sequence (T™w)0y:

(a) lioy, 0o 7w = 0. There must be a subseguence (Immg)ee o and a
sequence of real numbers (., )%, such that P T % A p T 00— 4w
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as m — 00, But from this it follows that (pm,)22., is bounded and, since
Trmqp — 0 ag m — 0, we have a contradiction.

(b} limy oo [|[T™w]l = co. In this case it follows from g, T u+ pi, T w
— u ag m — oo that g, 77w — 0 as m — oo and 50 py,T™ 2 — 0, which
is also a contradiction.
conclude fig, — 0 as m — oo and so0 ppT"mx — 0 a8 m — oo, which is
again & contradiction,

So T cannot have supercyclic vectors.

2) ditm X = 00. In this cage, by a theorem due to Ovseplan and Pelezyt-
ski there exists a sequence (24)52, in X and a sequence ()72, in X* with
the following properties:

(1) prle) = bpy, k1€ N

(2) span{zy : k € N} = X.

(3) pp(z) =0, ke N=2=0.

(4) llan| =1, k € Ny supyen Jon| = €' < oo,

We define T': X — X by Tw = 35 (1/2)%0p 41 (z)z and so T € B(X)
as a consequence of (4). We will show that T has supercyclic vectors to do

that it is enough to show that there is an z € X and a sequence ()52, of
real numbers such that {u, 7"z : n € Ny} is dense in X.

We choose [, = 2”2, n € Ng, and will show now that the sequence
A= (27 T™)°2, has A-universal elements. We find that

Tem

o0

kndn{n—1)/2
o - ey, neN zeX.
Tz ?;1(2) Phea )Tk

Let &> 0, u= 30 oy, v =2 7y Bz with oy, 00, 01,6, €R.
We will prove thal there is a w € X and an np € Ny such tha;t llw —u|| <&
and || 2% 7™y || £ e From (2) we then deduce that {(£,2" T"&) : £ € X,
n & Np} ig dense in X » X and, using the results of Grofe-Erdmann, we are
done. Let

13
) -1} /203
W=+ Z ginetne(no=1}/2=m0 3.
i=1

with ng > v such that |w — u|| £ & Since ng > v, we get from (1)

Ty =0
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and therefore

AT Moy = TTo

(3
=;;(

So | 2miT 0w — o =

Jn0+ﬂ-u(ﬂu~1)/253 L no)

it

Fngt+nolng~1)/2 .
> 2_7'ng+na('n.a—1)/2ﬁjmj =,

B} =

4. Final remarks. 1) By analogy with the proof of Theorem 1, one can
prove that for a complex separable Banach space there are operators with
supercyclic vectors if and only if dim X € {0,1} or dim X = co.

'2) In the infinite-dimensional case, the operator T in the proof of Theo-
rem 1 is compact. An operator with hypercyclic vectors cannot be compact
(see [6]}.

3) In 2, p. 42] a supercyclic vector x € X for T € B(X) and X real
is defined by {Ay:y € Ob(T,z), A > 0} = X. Also with this definition,
Theorem 1 holds with exactly the same proof with the only difference that
in the case dim X = 1 we take minug identity.
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Functionals on transient stochastic processes
with independent increments

by

K. URBANIK ({Wroclaw)

Abstract. The paper is devoted to the study of integral functionals f Om FX({t,w))dt
for a wide class of functions f and transient stochastic processes X (¢,w) with stationary
and independent inerements, In particular, for nonnegative processes a random. analogne
of the Tauberian theorem is obtained.

1. Notation and preliminaries. Let » be a Borel measure on the real
line (~o0,00). We denote by L(u) the space of all complex-valued Borel
functions f with the finite norm

1= [ 15 lde)

O
The measure p is said to be shift-bounded if
sup{u(la + 2, b+ 2z]) : @ € (~o0,00)} < 00

for every bounded interval [a,b]. All measures under consideration in the
sequel will tacitly be assumed to be shift-bounded and not identically equal
to 0. The support of a function f is denoted by supp f. The indicator of a
set A iy denoted by La4.

Put y(de) = e ¥l dz. The space Loo(y) consists of all complex-valued
Borel functions f with the finite norm

oo = raisup{|f(@)] : 2 & (=00, 00)}
In the sequel we shall briefly say “almost everywhere” instead of “y-almost

averywhaere” .
If the integral [ |f(x + )| p(dy) is finite for almost all z, then the

convolution f* pu is dehned by the formula

(f * pw)iz) = f fla+y) uldy).
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