

294

STUDIA MATHEMATICA 103 (3) (1992)

[3] J. Väisälä, Free quasiconformality in Banach spaces I, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), 355-379.

MATEMATIIKAN LAITOS
HELSINGIN YLIOPISTO
HALLITUSKATU 15
SF-00100 HELSINKI
FINLAND
E-mail: JVAISALA@CC.HELSINKI.FI

Received March 17, 1992

(2917)

On linear operators having supercyclic vectors

by

GERD HERZOG (Karlsruhe)

Abstract. We show that for a real separable Banach space X there are operators in B(X) having supercyclic vectors if and only if dim $X \leq 2$ or dim $X = \infty$.

1. Introduction. Let $(X, \|\cdot\|)$ be a real (or complex) Banach space and B(X) the set of linear continuous mappings from X into itself. Let $T \in B(X)$. A vector $x \in X$ is called (a) cyclic, (b) supercyclic, (c) hypercyclic if the orbit

$$Orb(T, x) := \{T^n x : n \in \mathbb{N}_0\}$$

satisfies

- (a) $\overline{\operatorname{span}(\operatorname{Orb}(T,x))} = X$,
- (b) $\overline{\{\lambda y : y \in \operatorname{Orb}(T, x), \lambda \in \mathbb{R}(\mathbb{C})\}} = X$,
- (c) $\overline{\operatorname{Orb}(T,x)} = X$

(see [5]).

As far as we know it is still an open problem whether there is an operator with hypercyclic vectors in every separable infinite-dimensional Banach space, and it is well known that there are none in finite dimensions (see [8]). In this paper we will characterize those separable Banach spaces which have operators with supercyclic vectors. Of course, a Banach space having such operators is separable. The main result is:

THEOREM 1. Let $(X, \|\cdot\|)$ be a real separable Banach space. Then there exist operators in B(X) having supercyclic vectors if and only if

$$\dim X \in \{0, 1, 2\} \quad or \quad \dim X = \infty.$$

To prove Theorem 1 we will use methods of the theory of universal functions developed by K.-G. Große-Erdmann [4].

For further properties of the operator classes defined above compare, e.g., [1], [2], [5], [6] and [8].

¹⁹⁹¹ Mathematics Subject Classification: Primary 47A65.

- 2. Universal elements. Let X_1 and Y_1 be topological spaces and $\Lambda = (L_n)$ a sequence of continuous mappings $L_n: X_1 \to Y_1 \ (n \in \mathbb{N})$. Then $x \in X_1$ is called Λ -universal if the set $\{L_n x: n \in \mathbb{N}\}$ is dense in Y_1 . In [4, p. 11] Große-Erdmann showed that if X_1 is a Baire space and Y_1 is a metrizable and separable space, then the set of Λ -universal elements is residual in X_1 if and only if the set $\{(\xi, L_n \xi): \xi \in X_1, n \in \mathbb{N}\}$ is dense in the topological product of X_1 and Y_1 . Therein a subset of a Baire space is called residual if its complement is of first category.
- 3. Proof of Theorem 1. In the proof of Theorem 1 we will use the following lemma (see [8]).

LEMMA. Let $(X, \|\cdot\|)$ be a finite-dimensional Banach space, $T \in B(X)$ and $x \in X$. Then, for the sequence $(T^n x)_{n=0}^{\infty}$, one of the following three possibilities holds:

- (a) $\lim_{n\to\infty} T^n x = 0$;
- (b) $\lim_{n\to\infty} ||T^n x|| = \infty;$
- (c) $\overline{\mathrm{Orb}(T,x)}$ is compact and $0 \notin \overline{\mathrm{Orb}(T,x)}$.

Proof of Theorem 1.

1) dim $X < \infty$. If dim $X \in \{0,1\}$, then the identity has supercyclic vectors. If dim X = 2, then for $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ the operator

$$T = \begin{pmatrix} \cos(2\pi\alpha) & \sin(2\pi\alpha) \\ -\sin(2\pi\alpha) & \cos(2\pi\alpha) \end{pmatrix}$$

has supercyclic vectors, since for irrational α the sequence $(n\alpha)_{n=0}^{\infty}$ is uniformly distributed modulo 1 (see [7, p. 71]).

Now let $k = \dim X \geq 3$. Assume that $T \in B(X)$ has supercyclic vectors. Then T must be regular and since cT has supercyclic vectors for every $c \in \mathbb{R} \setminus \{0\}$ if T has, we can assume without loss of generality that T has an eigenvalue λ with $|\lambda| = 1$. So we can find a one(two)-dimensional T-invariant subspace U if λ is (not) real and a (k-1)(resp. (k-2))-dimensional T-invariant subspace W such that $X = U \oplus W$, and $\{T^n u : n \in \mathbb{N}_0\}$ is compact and does not contain 0 for every $u \in U \setminus \{0\}$. If λ is not real this follows from the fact that together with λ also λ is an eigenvalue, since X is a real vector space. Since T has supercyclic vectors, there must be an $x \in X$ of the form x = u + w, $u \in U \setminus \{0\}$, $w \in W \setminus \{0\}$, such that $\{\lambda y : y \in \text{Orb}(T, x), \lambda \in \mathbb{R}\}$ is dense in X.

By our lemma, there are three possibilities for the sequence $(T^n w)_{n=0}^{\infty}$:

(a) $\lim_{n\to\infty} T^n w = 0$. There must be a subsequence $(T^{n_m}x)_{m=0}^{\infty}$ and a sequence of real numbers $(\mu_m)_{m=0}^{\infty}$ such that $\mu_m T^{n_m} u + \mu_m T^{n_m} w \to u + w$

- (b) $\lim_{n\to\infty} ||T^n w|| = \infty$. In this case it follows from $\mu_m T^{n_m} u + \mu_m T^{n_m} w$ $\to u$ as $m \to \infty$ that $\mu_m T^{n_m} w \to 0$ as $m \to \infty$ and so $\mu_m T^{n_m} x \to 0$, which is also a contradiction.
- (c) $0 \notin \overline{\mathrm{Orb}(T, w)}$ compact. Then from $\mu_m T^{n_m} u + \mu_m T^{n_m} w \to w$ we conclude $\mu_m \to 0$ as $m \to \infty$ and so $\mu_m T^{n_m} x \to 0$ as $m \to \infty$, which is again a contradiction.

So T cannot have supercyclic vectors.

- 2) dim $X = \infty$. In this case, by a theorem due to Ovsepian and Pełczyński there exists a sequence $(x_k)_{k=1}^{\infty}$ in X and a sequence $(\varphi_k)_{k=1}^{\infty}$ in X^* with the following properties:
 - $(1) \varphi_k(x_l) = \delta_{k,l}, \, k, l \in \mathbb{N}.$
 - $(2) \overline{\operatorname{span}\{x_k : k \in \mathbb{N}\}} = X.$
 - (3) $\varphi_k(x) = 0, k \in \mathbb{N} \Rightarrow x = 0.$
 - (4) $||x_k|| = 1, k \in \mathbb{N}; \sup_{k \in \mathbb{N}} ||\varphi_k|| = C < \infty.$

We define $T: X \to X$ by $Tx = \sum_{k=1}^{\infty} (1/2)^k \varphi_{k+1}(x) x_k$ and so $T \in B(X)$ as a consequence of (4). We will show that T has supercyclic vectors to do that it is enough to show that there is an $x \in X$ and a sequence $(\mu_n)_{n=0}^{\infty}$ of real numbers such that $\{\mu_n T^n x : n \in \mathbb{N}_0\}$ is dense in X.

We choose $\mu_n = 2^{n^2}$, $n \in \mathbb{N}_0$, and will show now that the sequence $\Lambda = (2^{n^2}T^n)_{n=0}^{\infty}$ has Λ -universal elements. We find that

$$T^n x = \sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^{kn+n(n-1)/2} \varphi_{k+n}(x) x_k, \quad n \in \mathbb{N}, \ x \in X.$$

Let $\varepsilon > 0$, $u = \sum_{j=1}^{\nu} \alpha_j x_j$, $v = \sum_{j=1}^{\nu} \beta_j x_j$ with $\alpha_1, \ldots, \alpha_{\nu}, \beta_1, \ldots, \beta_{\nu} \in \mathbb{R}$. We will prove that there is a $w \in X$ and an $n_0 \in \mathbb{N}_0$ such that $||w - u|| \le \varepsilon$ and $||2^{n_0^2} T^{n_0} w - v|| \le \varepsilon$. From (2) we then deduce that $\{(\xi, 2^{n^2} T^n \xi) : \xi \in X, n \in \mathbb{N}_0\}$ is dense in $X \times X$ and, using the results of Große-Erdmann, we are done. Let

$$w = u + \sum_{j=1}^{\nu} 2^{jn_0 + n_0(n_0 - 1)/2 - n_0^2} \beta_j x_{j+n_0}$$

with $n_0 \ge \nu$ such that $||w - u|| \le \varepsilon$. Since $n_0 \ge \nu$, we get from (1)

$$T^{n_0}u=0$$

and therefore

$$2^{n_0^2} T^{n_0} w = T^{n_0} \left(\sum_{j=1}^{\nu} 2^{jn_0 + n_0(n_0 - 1)/2} \beta_j x_{j+n_0} \right)$$
$$= \sum_{j=1}^{\nu} \left(\frac{1}{2} \right)^{jn_0 + n_0(n_0 - 1)/2} 2^{jn_0 + n_0(n_0 - 1)/2} \beta_j x_j = v.$$

So $||2^{n_0^2}T^{n_0}w - v|| = 0 \le \varepsilon$.

- 4. Final remarks. 1) By analogy with the proof of Theorem 1, one can prove that for a complex separable Banach space there are operators with supercyclic vectors if and only if $\dim X \in \{0,1\}$ or $\dim X = \infty$.
- 2) In the infinite-dimensional case, the operator T in the proof of Theorem 1 is compact. An operator with hypercyclic vectors cannot be compact (see [6]).
- 3) In [2, p. 42] a supercyclic vector $x \in X$ for $T \in B(X)$ and X real is defined by $\{\lambda y : y \in \operatorname{Orb}(T,x), \ \lambda > 0\} = X$. Also with this definition, Theorem 1 holds with exactly the same proof with the only difference that in the case dim X = 1 we take minus identity.

References

- [1] B. Beauzamy, An operator in a separable Hilbert space with many hypercyclic vectors, Studia Math. 87 (1987), 71-78.
- [2] —, Introduction to Operator Theory and Invariant Subspaces, North-Holland, 1988.
- P. S. Bourdon and J. H. Shapiro, Cyclic composition operators in H², in: Proc. Sympos. Pure Math. 51, Amer. Math. Soc., 1990, 43-53.
- [4] K.-G. Große-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Gießen 176 (1987).
- [5] D. A. Herrero and Z.-Y. Wang, Compact perturbations of hypercyclic and supercyclic operators, Indiana Univ. Math. J. 39 (1990), 819-829.
- [6] G. Herzog und R. Lemmert, Endomorphismen mit dichten Bahnen, preprint.
- [7] G. Pólya und G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Band I, Springer, 1964.
- [8] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22.

MATHEMATISCHES INSTITUT I UNIVERSITÄT KARLSRUHE POSTFACH 6980 D-7500 KARLSRUHE 1, GERMANY

> Received April 13, 1992 Revised version July 8, 1992 (2928)

bу

K. URBANIK (Wrocław)

Abstract. The paper is devoted to the study of integral functionals $\int_0^\infty f(X(t,\omega)) dt$ for a wide class of functions f and transient stochastic processes $X(t,\omega)$ with stationary and independent increments. In particular, for nonnegative processes a random analogue of the Tauberian theorem is obtained.

1. Notation and preliminaries. Let μ be a Borel measure on the real line $(-\infty, \infty)$. We denote by $L(\mu)$ the space of all complex-valued Borel functions f with the finite norm

$$||f||_{\mu} = \int\limits_{-\infty}^{\infty} |f(x)| \, \mu(dx)$$
.

The measure μ is said to be *shift-bounded* if

$$\sup\{\mu([a+x,b+x]):x\in(-\infty,\infty)\}<\infty$$

for every bounded interval [a, b]. All measures under consideration in the sequel will tacitly be assumed to be shift-bounded and not identically equal to 0. The support of a function f is denoted by supp f. The indicator of a set A is denoted by 1_A .

Put $\gamma(dx) = e^{-|x|} dx$. The space $L_{\infty}(\gamma)$ consists of all complex-valued Borel functions f with the finite norm

$$||f||_{\infty} = \operatorname{vraisup}\{|f(x)| : x \in (-\infty, \infty)\}.$$

In the sequel we shall briefly say "almost everywhere" instead of " γ -almost everywhere".

If the integral $\int_{-\infty}^{\infty} |f(x+y)| \, \mu(dy)$ is finite for almost all x, then the convolution $f * \mu$ is defined by the formula

$$(f * \mu)(x) = \int_{-\infty}^{\infty} f(x+y) \, \mu(dy) \,.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 60H05.