and therefore

$$2^{n_0^2} T^{n_0} w = T^{n_0} \left(\sum_{j=1}^{\nu} 2^{jn_0 + n_0(n_0 - 1)/2} \beta_j x_{j+n_0} \right)$$
$$= \sum_{j=1}^{\nu} \left(\frac{1}{2} \right)^{jn_0 + n_0(n_0 - 1)/2} 2^{jn_0 + n_0(n_0 - 1)/2} \beta_j x_j = v.$$

So $||2^{n_0^2}T^{n_0}w-v||=0\leq \varepsilon$.

- 4. Final remarks. 1) By analogy with the proof of Theorem 1, one can prove that for a complex separable Banach space there are operators with supercyclic vectors if and only if $\dim X \in \{0,1\}$ or $\dim X = \infty$.
- 2) In the infinite-dimensional case, the operator T in the proof of Theorem 1 is compact. An operator with hypercyclic vectors cannot be compact (see [6]).
- 3) In [2, p. 42] a supercyclic vector $x \in X$ for $T \in B(X)$ and X real is defined by $\{\lambda y : y \in \operatorname{Orb}(T,x), \ \lambda > 0\} = X$. Also with this definition, Theorem 1 holds with exactly the same proof with the only difference that in the case dim X = 1 we take minus identity.

References

- [1] B. Beauzamy, An operator in a separable Hilbert space with many hypercyclic vectors, Studia Math. 87 (1987), 71-78.
- [2] —, Introduction to Operator Theory and Invariant Subspaces, North-Holland, 1988.
- P. S. Bourdon and J. H. Shapiro, Cyclic composition operators in H², in: Proc. Sympos. Pure Math. 51, Amer. Math. Soc., 1990, 43-53.
- [4] K.-G. Große-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Gießen 176 (1987).
- [5] D. A. Herrero and Z.-Y. Wang, Compact perturbations of hypercyclic and supercyclic operators, Indiana Univ. Math. J. 39 (1990), 819-829.
- [6] G. Herzog und R. Lemmert, Endomorphismen mit dichten Bahnen, preprint.
- [7] G. Pólya und G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Band I, Springer, 1964.
- [8] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22.

MATHEMATISCHES INSTITUT I UNIVERSITÄT KARLSRUHE POSTFACH 6980 D-7500 KARLSRUHE 1, GERMANY

> Received April 13, 1992 Revised version July 8, 1992 (2928)

bу

K. URBANIK (Wrocław)

Abstract. The paper is devoted to the study of integral functionals $\int_0^\infty f(X(t,\omega)) dt$ for a wide class of functions f and transient stochastic processes $X(t,\omega)$ with stationary and independent increments. In particular, for nonnegative processes a random analogue of the Tauberian theorem is obtained.

1. Notation and preliminaries. Let μ be a Borel measure on the real line $(-\infty, \infty)$. We denote by $L(\mu)$ the space of all complex-valued Borel functions f with the finite norm

$$||f||_{\mu} = \int\limits_{-\infty}^{\infty} |f(x)| \, \mu(dx)$$
.

The measure μ is said to be shift-bounded if

$$\sup\{\mu([a+x,b+x]):x\in(-\infty,\infty)\}<\infty$$

for every bounded interval [a, b]. All measures under consideration in the sequel will tacitly be assumed to be shift-bounded and not identically equal to 0. The support of a function f is denoted by supp f. The indicator of a set A is denoted by 1_A .

Put $\gamma(dx) = e^{-|x|} dx$. The space $L_{\infty}(\gamma)$ consists of all complex-valued Borel functions f with the finite norm

$$||f||_{\infty} = \operatorname{vraisup}\{|f(x)| : x \in (-\infty, \infty)\}.$$

In the sequel we shall briefly say "almost everywhere" instead of " γ -almost everywhere".

If the integral $\int_{-\infty}^{\infty} |f(x+y)| \, \mu(dy)$ is finite for almost all x, then the convolution $f * \mu$ is defined by the formula

$$(f * \mu)(x) = \int_{-\infty}^{\infty} f(x+y) \, \mu(dy) \,.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 60H05.

Observe that, by the shift-boundedness of the measure μ , the supremum

$$s(\mu) = \sup \left\{ \int\limits_{-\infty}^{\infty} e^{-|x-y|} \, \mu(dy) : x \in (-\infty, \infty) \right\}$$

is finite. We define a mapping $\mu \to \mu^*$ by setting

$$\mu^* (dx) = \int_{-\infty}^{\infty} e^{-|x-y|} \, \mu(dy) \, dx \, .$$

It is clear that the measure μ^* is shift-bounded and equivalent to the measure γ . Moreover, we have the formula

$$(1.1) ||f||_{\mu^*} = |||f| * \mu||_{\gamma},$$

which shows that $f \in L(\mu^*)$ if and only if $|f| * \mu \in L(\gamma)$.

The following simple result will be needed below.

LEMMA 1.1. Given a continuous mapping F from $L(\mu^*)$ into $L(\gamma)$ such that the norm $||F(f)||_{\infty}$ is locally bounded on $L(\mu^*)$, put G(f) = fF(f). Then G is a continuous mapping from $L(\mu^*)$ into $L(\mu^*)$.

Proof. Suppose that $f, f_n \in L(\mu^*)$ (n = 1, 2, ...) and $||f_n - f||_{\mu^*} \to 0$ as $n \to \infty$. Since the norms $||F(f_n)||_{\infty}$ are uniformly bounded and the measures μ^* and γ are equivalent we have

(1.2)
$$\lim_{n \to \infty} \|(f - f_n)F(f_n)\|_{\mu^*} = 0.$$

Further, setting $A_k = \{x: |f(x)| > k\} \cup \{x: |x| > k\}$ we have

(1.3)
$$\lim_{k \to \infty} \|f 1_{A_k}\|_{\mu^*} = 0.$$

Denoting by B_k the complement of A_k we get

$$||f1_{B_k}(F(f)-F(f_n))||_{\mu^*} \le k \int_{-k}^k |F(f)-F(f_n)|(x) \, \mu^*(dx)$$

$$\leq s(\mu)ke^k \int_{-k}^k |F(f) - F(f_n)|(x)e^{-|x|} dx \leq s(\mu)ke^k ||F(f) - F(f_n)||_{\gamma},$$

which yields

(1.4)
$$\lim_{n\to\infty} \|f1_{B_k}(F(f)-F(f_n))\|_{\mu^*} = 0 \quad (k=1,2,\ldots).$$

Since $||f1_{A_k}(F(f) - F(f_n))||_{\mu^*} \le ||F(f) - F(f_n)||_{\infty} ||f1_{A_k}||_{\mu^*}$ we have, by (1.3) and (1.4),

$$\lim_{n \to \infty} ||f(F(f) - F(f_n))||_{\mu^*} = 0,$$

which together with (1.2) implies $\lim_{n\to\infty} \|G(f)-G(f_n)\|_{\mu^*} = 0$. The lemma is thus proved.

 $\lim_{h \to 0+} \int_{-\infty}^{\infty} |f(x+y+h) - f(x+y)| \, \mu(dy) = 0$

for all $x \in (-\infty, \infty)$. The following statement is evident.

LEMMA 1.2. The set $L_{+}(\mu^{*})$ is invariant under multiplication by bounded functions continuous on the right. For any $f \in L_{+}(\mu^{*})$ the function $f * \mu$ is continuous on the right and finite everywhere.

We denote by $L(\mu, \infty)$ the space of all complex-valued Borel functions f defined on the real line for which $|f| * \mu \in L_{\infty}(\gamma)$. The norm in $L(\mu, \infty)$ is given by the formula

$$(1.5) ||f||_{\mu,\infty} = ||f| * \mu||_{\infty}.$$

By (1.1) we have $||f||_{\mu,\infty} \ge ||f||_{\mu^*}$, which yields $L(\mu,\infty) \subset L(\mu^*)$. It is clear that all bounded Borel functions with bounded support belong to $L(\mu,\infty)$. Moreover, by the shift-boundedness of μ , for any $a \in (0,\infty)$ the function $e^{-ax}1_{[0,\infty)}(x)$ belongs to $L(\mu,\infty) \cap L_+(\mu^*)$.

Let B be a set of complex-valued functions. We shall denote by Re B the subset of B consisting of real-valued functions.

Let M be a bounded Borel measure on $(-\infty, \infty)$ and $a \in (-\infty, \infty)$. We shall denote by e(a, M) the infinitely divisible probability measure with characteristic function

$$\widehat{e}(a,M)(s) = \exp\left(ias + \int\limits_{-\infty}^{\infty} \left(e^{isx} - 1 - \frac{isx}{1+x^2}\right) \frac{1+x^2}{x^2} M(dx)\right).$$

Moreover, for a bounded Borel measure N concentrated on the half-line $[0,\infty)$ we shall denote by $e_+(N)$ the infinitely divisible probability measure concentrated on $[0,\infty)$ with Laplace transform

(1.6)
$$\tilde{e}_{+}(N)(z) = \exp \int_{0}^{\infty} (e^{-zx} - 1) \frac{1+x}{x} N(dx)$$

for $z \in [0, \infty)$. The function

(1.7)
$$B(N,z) = \int_{0}^{\infty} (1 - e^{-zx}) \frac{1+x}{x} N(dx)$$

is called the *Bernstein function*. In the sequel we write briefly B(z) instead of B(N, z) if it causes no confusion.

Let $X(t,\omega),\ t\in[0,\infty)$, be a real-valued stochastic process with stationary and independent increments, with sample functions continuous on the right and satisfying the initial condition $X(0,\omega)=0$. Denote by τ_t the probability distribution of $X(t,\omega)$. It is well-known that

$$\tau_t = e(ta, tM)$$

for some a and M. Similarly, for nonnegative processes we have

$$\tau_t = e_+(tN)$$

for some measure N. In this case the Bernstein function B(N,z) is said to be associated with the process $X(t,\omega)$.

The process $X(t,\omega)$ is said to be transient if the potential

$$\varrho(A) = \int\limits_0^\infty au_t(A) \, dt$$

is finite for all bounded Borel sets A. By Proposition 13.10 in [4] the measure ϱ is always shift-bounded. It is known that $X(t,\omega)$ is transient if and only if the function

$$\operatorname{Re}(\log \widehat{\tau}_1(s))^{-1}$$

is integrable in a neighbourhood of the origin ([4], 13.17). Moreover, each nonnegative process which is not identically zero is transient and the Laplace transform of its potential is given by the formula

$$(1.8) \widetilde{\varrho}(z) = B(z)^{-1}$$

for $z \in (0, \infty)$ where B(z) is the associated Bernstein function ([4], 14.1).

Throughout this paper the processes $X(t,\omega)$ will tacitly be assumed to be transient.

2. Integral functionals. Let $X(t,\omega)$ be a transient process with potential ϱ . This section is devoted to the study of the probability distribution of the functionals $\int_0^\infty f(X(t,\omega)) dt$ for $f \in \operatorname{Re} L(\varrho^*)$. We shall use the notation

(2.1)
$$I(f, x, \omega) = \int_{0}^{\infty} f(X(t, \omega) + x) dt$$

provided the right-hand side integral is well-defined.

Suppose that $(|f| * \varrho)(x_0)$ is finite. By standard calculations the expectation of $I(|f|, x_0, \omega)$ is

$$EI(|f|, x_0, \omega) = (|f| * \rho)(x_0).$$

It follows from (1.1) that for any $f \in L(\varrho^*)$ the convolution $|f| * \varrho$ is finite almost everywhere. This yields the following statement.

PROPOSITION 2.1. Let $f \in L(\varrho^*)$. Then $I(f, x, \omega)$ is finite with probability 1 for almost every x and

(2.2)
$$EI(f, x, \omega) = (f * \varrho)(x)$$

almost everywhere. If in addition $f \in L_+(\varrho^*)$, then $I(f, x, \omega)$ is finite with probability 1 for every x, formula (2.2) holds for every x and

(2.3)
$$\lim_{u \to 0+} E|I(f, x + u, \omega) - I(f, x, \omega)| = 0$$

for every x.

Consider the characteristic function $Q(f, x, s) = Ee^{isI(f, x, \omega)}$ for $f \in \operatorname{Re} L(\varrho^*)$.

Theorem 2.1. Let $f \in \text{Re } L(\varrho^*)$. Then for every $s \in (-\infty, \infty)$ the function $Q(f, \cdot, s)$ satisfies the equation

(2.4)
$$Q(f,x,s) = 1 + is \int_{-\infty}^{\infty} f(x+y)Q(f,x+y,s) \varrho(dy)$$

for almost every x. If in addition $f \in \operatorname{Re} L_+(\varrho^*)$, then the above equation is satisfied for every x.

Proof. Introduce the notation

$$F_s(f)(x) = Q(f, x, s), \quad G_s(f)(x) = f(x)Q(f, x, s).$$

First we shall prove that for any $s \in (-\infty, \infty)$, $F_s(\cdot)$ and $G_s(\cdot) * \varrho$ are continuous mappings from Re $L(\varrho^*)$ into $L(\gamma)$. Taking into account the obvious inequality

$$(2.5) ||F_s(f)||_{\infty} \le 1$$

and (1.1) we infer that $F_s(f) \in L(\gamma)$ and $G_s(f) * \varrho \in L(\gamma)$ for every $f \in \text{Re } L(\varrho^*)$. Further, for any $f, g \in \text{Re } L(\varrho^*)$ we have, by (2.2),

$$|F_s(f)(x) - F_s(g)(x)| \le |s|E|I(f, x, \omega) - I(g, x, \omega)| \le |s|(|f - g| * \varrho)(x)$$
 almost everywhere, which yields, by (1.1),

$$||F_s(f) - F_s(g)||_{\gamma} \le |s| ||f - g||_*.$$

Consequently, the mapping $F_s(\cdot)$ from Re $L(\varrho^*)$ into $L(\gamma)$ is continuous. Now from (2.5) and Lemma 1.1 it follows that $G_s(\cdot)$ is continuous from Re $L(\varrho^*)$ into $L(\varrho^*)$. Consequently, by (1.1), $G_s(\cdot) * \varrho$ is continuous from Re $L(\varrho^*)$ into $L(\gamma)$.

Equation (2.4) can be written in the form

(2.6)
$$F_s(f) = 1 + is(G_s(f) * \varrho).$$

Since both sides of the above equation are continuous mappings from $\operatorname{Re} L(\varrho^*)$ into $L(\gamma)$ it suffices to prove it for real-valued continuous functions f with a bounded support, which form a dense subset of $\operatorname{Re} L(\varrho^*)$.

For such f and $u \in (0, \infty)$ we denote by $Q_u(f, x, s)$ the characteristic function of the functional $\int_0^u f(X(t, \omega) + x) dt$. By the Skorokhod Theorem ([8], Chapter 4.1, 6),

$$Q_u(f, x, s) = 1 + is \int_0^u \int_{-\infty}^{\infty} f(x+y)Q_{u-t}(f, x+y, s) \, \tau_t(dy) \, dt$$
.

It is clear that $Q_u(f, x, s) \to Q(f, x, s)$ as $u \to \infty$. Moreover, the right-hand side of the above equation tends to $1 + is(G_s(f) * \varrho)(x)$ as $u \to \infty$, which yields (2.6) for real-valued continuous functions f with a bounded support. This completes the proof of (2.4).

Suppose now that $f \in \operatorname{Re} L_+(\varrho^*)$. Then, by Lemma 1.2 and Proposition 2.1, both sides of (2.4) are continuous on the right in x, which yields the assertion of the theorem.

THEOREM 2.2. Let $f \in \text{Re } L(\varrho, \infty)$, $|s| ||f||_{\varrho,\infty} < 1$ and $A \supset \text{supp } f$. Suppose that a Borel function H_s satisfies $H_s 1_A \in L_\infty(\gamma)$ and

(2.7)
$$H_s(x) = 1 + is \int_{-\infty}^{\infty} f(x+y) H_s(x+y) \varrho(dy)$$

for almost every $x \in A$. Then $H_s(x) = Q(f, x, s)$ for almost every $x \in A$.

Proof. Setting $U_s(x) = Q(f, x, s) \mathbf{1}_A(x) - H_s(x) \mathbf{1}_A(x)$ we get a function belonging to $L_{\infty}(\gamma)$ and, by the obvious equality $f(x) = f(x) \mathbf{1}_A(x)$ and Theorem 2.1,

$$U_s(x) = is1_A(x) \int\limits_{-\infty}^{\infty} f(x+y)U_s(x+y) \, \varrho(dy)$$

for almost every $x \in (-\infty, \infty)$. Consequently, by (1.5),

$$||U_s||_{\infty} \le |s|||U_s||_{\infty}||f| * \varrho||_{\infty} = |s|||U_s||_{\infty}||f||_{\varrho,\infty},$$

which yields $||U_s||_{\infty} = 0$. This implies the assertion of the theorem.

Given $f \in \operatorname{Re} L(\varrho, \infty)$ we define a sequence of functions $q_n(f, x)$ $(n = 0, 1, \ldots)$ on the real line by setting

(2.8)
$$q_0(f,x) = 1,$$

$$q_{n+1}(f,x) = \int_{-\infty}^{\infty} f(x+y)q_n(f,x+y) \varrho(dy) \quad (n = 0,1,...).$$

By induction we get

(2.9)
$$||q_n(f,x)||_{\infty} \le ||f||_{\rho,\infty}^n \quad (n=0,1,\ldots),$$

which shows that $q_n(f,\cdot) \in L_{\infty}(\gamma)$. If in addition $f \in L_{+}(\varrho^*)$, then, by Lemma 1.2, the functions $q_n(f,\cdot)$ are continuous on the right.

THEOREM 2.3. Let $f \in \operatorname{Re} L(\varrho, \infty)$. For almost every x the characteristic function $Q(f, x, \cdot)$ can be extended to an analytic function in the strip $|\operatorname{Im} z| \|f\|_{\varrho,\infty} < 1$, and in the circle $|z| \|f\|_{\varrho,\infty} < 1$ it has the power series representation

(2.10)
$$Q(f, x, z) = \sum_{n=0}^{\infty} (iz)^n q_n(f, x)$$

for almost every x. If in addition $f \in L_+(\varrho^*)$, then the above formula is true for every x.

Proof. By (2.9) the function $H_z(x) = \sum_{n=0}^{\infty} (iz)^n q_n(f,x)$ is analytic in the circle $|z| ||f||_{\ell,\infty} < 1$ for almost every x. Further, for any fixed real s the function $H_s(x)$ belongs to $L_{\infty}(\gamma)$ and, by (2.8), satisfies equation (2.7) for almost every x. Applying Theorem 2.2 we get $Q(f,x,s) = H_s(x)$ for almost every x. Hence $Q(f,x,\cdot)$ can be extended to an analytic function in the circle $|z| ||f||_{\ell,\infty} < 1$ and, consequently, in the strip $|\text{Im } z| ||f||_{\ell,\infty} < 1$ ([6], p. 212). The last assertion is an immediate consequence of the continuity on the right of the functions $Q(f,\cdot,s)$ and $q_n(f,\cdot)$ $(n=0,1,\ldots)$ for $f \in L_+(\ell^*)$.

As a consequence of the above theorem we get a formula for the moments of the functional $I(f, x, \omega)$.

COROLLARY 2.1. For any $f \in \operatorname{Re} L(\varrho, \infty)$ and almost every x

$$EI^{n}(f,x,\omega) = n!q_{n}(f,x) \qquad (n=0,1,\ldots).$$

If in addition $f \in L_+(\rho^*)$, then the above formula is true for every x.

For nonnegative functions f from $L(\varrho^*)$ we denote by H(f, x, z) the Laplace transform of the probability distribution of $I(f, x, \omega)$, i.e.

$$H(f, x, z) = Ee^{-zI(f, x, \omega)}$$

for $z \in [0, \infty)$. As an immediate consequence of Theorems 2.1–2.3 we get the following statement.

THEOREM 2.4. Let f be a nonnegative function from $L(\varrho, \infty)$. Then for any z satisfying $|z|||f||_{\varrho,\infty} < 1$ the function H(f,x,z) is the only solution of the equation

(2.11)
$$H(f,x,z) = 1 - z \int_{-\infty}^{\infty} f(x+y)H(f,x+y,z) \varrho(dy)$$

for almost every $x \in \text{supp } f$. Moreover,

(2.12)
$$H(f, x, z) = \sum_{n=0}^{\infty} (-z)^n q_n(f, x)$$

almost everywhere. If in addition $f \in L_+(\varrho^*)$, then (2.11) and (2.12) hold for every x.

3. Examples. The results of the preceding section may serve for the determining of the probability distribution of functionals $I(f, x, \omega)$. We shall illustrate this by some examples.

Example 3.1 (A compound Poisson process). Let $X(t,\omega)$ be a process with probability distribution $\tau_1=e_+(N_1)$ where $N_1(dx)=\frac{x}{1+x}e^{-x}\,dx$. The associated Bernstein function is $B(z)=\frac{z}{1+z}$, which, by (1.8), yields $\varrho(dx)=\delta_0(dx)+1_{[0,\infty)}(x)\,dx$ where δ_0 is the probability measure concentrated at the origin. For any $f\in \operatorname{Re} L(\varrho,\infty)$ and almost every x we have

(3.1)
$$Q(f, x, s) = (1 - isf(x))^{-1} \exp\left(is \int_{x}^{\infty} \frac{f(y)}{1 - isf(y)} dy\right).$$

In fact, by Theorem 2.1,

$$Q(f,x,s) = 1 + isf(x)Q(f,x,s) + is\int\limits_{x}^{\infty}f(y)Q(f,y,s)\,dy$$

for almost every x. It is easy to verify that the right-hand side of (3.1) also satisfies the above equation, which, by Theorem 2.2, yields formula (3.1). Observe that for every $f \in \text{Re } L(\varrho, \infty)$ and almost every x the random variable $I(f, x, \omega)$ is infinitely divisible.

EXAMPLE 3.2 (Nonnegative stable processes). Let $X(t, \omega)$ be a nonnegative stable process with associated Bernstein function $B(z) = z^p$ where $p \in (0,1)$. From (1.8) we get

(3.2)
$$\varrho(dx) = \frac{x^{p-1}}{\Gamma(p)} 1_{[0,\infty)}(x) dx.$$

Given $b \in (0, \infty)$ we put

$$M_b(dx) = rac{|x| \left(\exprac{px}{p+b} - \exprac{x}{p+b}
ight)}{(1+x^2)(1-\exp x) \left(1-\exprac{x}{p+b}
ight)} 1_{(-\infty,0)}(x) \, dx \, ,$$
 $a_b = \int\limits_{-\infty}^0 \left(x^{-1} + (1-e^x)(1+x^{-2})\right) M_b(dx) - \log(p+b) - \log I^*(p) \, .$

We shall show that $e(a_b, M_b)$ is the probability distribution of the random variable

$$\log\int\limits_0^\infty X^b(t,\omega)1_{[0,1)}(X(t,\omega))\,dt\,.$$

First observe that the functions $f_b(x) = x^b 1_{[0,1)}(x)$ belong to $L(\varrho, \infty) \cap L_+(\varrho^*)$ and, by (2.8) and (3.2),

 $q_n(f_b,0) = \frac{1}{\Gamma(p)^n} \int \dots \int_{B_n} y_1^b (y_1 + y_2)^b \dots (y_1 + \dots + y_n)^b y_1^{p-1} \dots y_n^{p-1} dy_1 \dots dy_n$

where $B_n = \{(y_1, \ldots, y_n) : \sum_{k=1}^n y_k < 1, y_j > 0, j = 1, \ldots, n\}$. Taking the one-to-one mapping $(y_1, \ldots, y_n) \to (u_1, \ldots, u_n)$ from B_n onto the *n*th Cartesian power of the interval (0, 1) defined by

$$y_1 = u_1 \dots u_n, \quad y_k = u_k u_{k+1} \dots u_n (1 - u_{k-1}) \quad (k = 2, \dots, n)$$

we get, by Corollary 2.1, the formula

$$EI^{n}(f_{b},0,\omega) = \frac{n!}{\Gamma(p)} \int_{0}^{1} \dots \int_{0}^{1} u_{n}^{n(p+b)-1} \prod_{k=1}^{n-1} u_{k}^{k(p+b)-1} (1-u_{k})^{p-1} du_{1} \dots du_{n}.$$

Hence, by simple calculation we get

(3.3)
$$EI^{n}(f_{b},0,\omega) = (p+b)^{-n} \prod_{k=0}^{n-1} \frac{\Gamma(k(p+b)+1)}{\Gamma(k(p+b)+p)} \quad (n=1,2,\ldots).$$

Let $Y_b(\omega)$ be a random variable with probability distribution $e(a_b, M_b)$. It is clear that the characteristic function $\widehat{e}(a_b, M_b)$ can be extended to an analytic function in the half-plane Im z < 0. Thus

(3.4)
$$E\exp(nY_b(\omega)) = \widehat{e}(a_b, M_b)(-in) \quad (n = 1, 2, \ldots).$$

Applying Malmsten's formula ([1], 1.9)

(3.5)
$$\log \Gamma(z) = \int_{0}^{\infty} \left(z - 1 - \frac{1 - e^{-(z-1)x}}{1 - e^{-x}} \right) \frac{e^{-x}}{x} dx \quad (\text{Re } z > 0)$$

to the right-hand side of (3.3) we get, by simple calculation,

(3.6)
$$EI^{n}(f_{b},0,\omega) = \widehat{e}(a_{b},M_{b})(-in) \quad (n=1,2,\ldots).$$

By Theorem 2.3 the probability distribution of $I(f_b, 0, \omega)$ is uniquely determined by its moments. Comparing (3.4) and (3.6) we conclude that $e(a_b, M_b)$ is the probability distribution of $\log I(f_b, 0, \omega)$.

EXAMPLE 3.3 (Brownian motion with drift). Let $X(t,\omega) = W(t,\omega) + ct$ where $W(t,\omega)$ is the standard Brownian motion and the drift coefficient c is positive. The potential of this process is of the form

(3.7)
$$\varrho(dx) = c^{-1} \mathbf{1}_{[0,\infty)}(x) \, dx + c^{-1} e^{2cx} \mathbf{1}_{(-\infty,0)}(x) \, dx$$

Denote by $a_1(r) < a_2(r) < \dots$ the sequence of all positive zeros of the Bessel function J_r (r>-1). Define a finite Borel measure N_0 on the half-line $[0,\infty)$

by setting

$$N_0(dx) = (1+x)^{-1} \left(\sum_{n=1}^{\infty} \exp(-8^{-1}a_n^2(2c-1)x) \right) dx.$$

We shall prove that $e_{+}(N_0)$ is the probability distribution of the functional

$$\int_{0}^{\infty} e^{-X(t,\omega)} 1_{[0,\infty)}(X(t,\omega)) dt.$$

Observe that the Laplace transform of $e_+(N_0)$ is

$$(3.8) \qquad \widetilde{e}_{+}(N_{0})(z) = \prod_{n=1}^{\infty} (1 + 8za_{n}^{-2}(2c - 1))^{-1} = \frac{(2z)^{c}}{\sqrt{2z}\Gamma(2c)I_{2c-1}(\sqrt{8z})}$$

where I_r denotes the modified Bessel function of the first kind. As we mentioned in Section 1 the function $f_0(x) = e^{-x} 1_{[0,\infty)}(x)$ belongs to $L(\varrho,\infty) \cap L_+(\varrho^*)$. Taking into account (3.7) we infer, by Theorem 2.4, that the Laplace transform $H(f_0,x,z)$ of the probability distribution of the functional $I(f_0,x,\omega)$ is the only solution of the equation

(3.9)
$$H(f_0, x, z) = 1 - c^{-1}z \int_x^{\infty} e^{-y} H(f_0, y, z) dy$$
$$- c^{-1}z e^{-2cx} \int_0^x e^{(2c-1)y} H(f_0, y, z) dy$$

for $x \in \text{supp } f_0 = [0, \infty) \text{ and } |z| ||f_0||_{\varrho, \infty} < 1.$

In order to solve the above equation we introduce auxiliary functions $F_r(u, z)$ for $r \in (0, \infty)$, $u \in [0, 1]$ and $z \in [0, \infty)$ by setting

(3.10)
$$F_r(u,z) = \frac{(uz)^r}{2^{r-1}\Gamma(r)I_{r-1}(z)} (I_r(uz)K_{r-1}(z) + K_r(uz)I_{r-1}(z))$$

where K_r denotes the modified Bessel function of the third kind. Using the well-known properties of the modified Bessel functions I_r and K_r ([2], 7.11, formulae (19)–(22) and (39)) we can easily check that

(3.11)
$$F_r(u,z) = 1 - (2r)^{-1}z^2 \int_0^u y F_r(y,z) \, dy - (2r)^{-1}u^{2r}z^2 \int_u^1 y^{1-2r} F_r(y,z) \, dy$$

and

(3.12)
$$F_r(1,z) = \frac{z^{r-1}}{2^{r-1}\Gamma(r)I_{r-1}(z)}.$$

Moreover, taking into account the asymptotic behaviour of I_r and K_r as $z \to \infty$ ([2], 7.4, formula (1)) we have

(3.13)
$$\lim_{u \to 0+} F_r(u, u^{-1}z) = \frac{z^r K_r(z)}{2^{r-1} \Gamma(r)}.$$

Starting from equation (3.11) one can easily check that the function $F_{2c}(e^{-x/2}, \sqrt{8z})$ satisfies equation (3.9), which yields

(3.14)
$$H(f_0, x, z) = F_{2c}(e^{-x/2}, \sqrt{8z})$$

for $x \in [0, \infty)$ and $z \in [0, \infty)$. In particular, $H(f_0, 0, z) = F_{2c}(1, \sqrt{8z})$, which, by (3.8) and (3.12), shows that $H(f_0, 0, z)$ is the Laplace transform of $e_+(N_0)$. This completes the proof of our assertion.

Observe that, by the strong law of large numbers for the Brownian motion,

$$\lim_{t \to \infty} \frac{X(t, \omega)}{t} = c$$

with probability 1. Consequently, the integral $\int_0^\infty e^{-X(t,\omega)} dt$ is finite with probability 1. Denote by H(z) the Laplace transform of its probability distribution. Since $\lim_{x\to\infty} e^x I(f_0,x,\omega) = \int_0^\infty e^{-X(t,\omega)} dt$ with probability 1, we have $\lim_{x\to\infty} H(f_0,x,e^xz) = H(z)$, which, by (3.13) and (3.14), yields $H(z) = \Gamma(2c)^{-1}2^{c+1}z^c K_{2c}(\sqrt{8z})$. Hence ([3], p. 283, formula 40) the random variable $\int_0^\infty e^{-X(t,\omega)} dt$ has probability density function $\Gamma(2c)^{-1}4^c \times x^{-2c-1}e^{-2/x}1_{[0,\infty)}(x)$.

EXAMPLE 3.4 (Nonnegative processes). Let $X(t, \omega)$ be a nonnegative process with Bernstein function B(z). We shall prove that for any $u \in (0, \infty)$

(3.15)
$$E\left(\int_{0}^{\infty} e^{-uX(t,\omega)} dt\right)^{n} = n! \prod_{k=1}^{n} B(ku)^{-1} \quad (n=1,2,\ldots).$$

As we mentioned in Section 1 the functions $g_u(x) = e^{-ux} 1_{[0,\infty)}(x)$ belong to $L(\varrho,\infty) \cap L_+(\varrho^*)$ for every $u \in (0,\infty)$. It is clear that the potential ϱ of the process in question is concentrated on the half-line $[0,\infty)$. Moreover, $I(g_u,x,\omega) = e^{-ux} I(g_u,0,\omega)$ for $x \in [0,\infty)$ and

$$I(g_u, 0, \omega) = \int_0^\infty e^{-uX(t, \omega)} dt.$$

Consequently, by Corollary 2.1, $q_n(g_u, x) = e^{-nux}q_n(g_u, 0)$ for $x \in [0, \infty)$, which, by (2.8), yields

$$q_{n+1}(g_u,0) = q_n(g_u,0) \int_0^\infty e^{-(n+1)uy} \varrho(dy) = q_n(g_u,0)\widetilde{\varrho}((n+1)u).$$

Applying formula (1.8) and Corollary 2.1 we get our assertion.

4. A family of probability measures. Define a bounded Borel measure M_0 on the real line and a constant a_0 by setting

$$M_0(dx) = \frac{|x|e^x}{(1 - e^x)(1 + x^2)} 1_{(-\infty,0)}(x) dx,$$

$$a_0 = \int_{-\infty}^0 \left(\frac{e^y}{(e^y - 1)(1 + y^2)} - \frac{e^y}{y} \right) dy.$$

Given $p \in [0, \infty)$ we denote by $Z_p(\omega)$ a random variable with probability distribution $e(pa_0, pM_0)$. Since the measure M_0 is absolutely continuous with respect to the Lebesgue measure and the function $\frac{1+x^2}{x}\frac{dM_0}{dx}$ does not increase on $(-\infty, 0)$ and on $(0, \infty)$, we infer, by criterion B in [6], p. 324, that the random variables $Z_p(\omega)$ are self-decomposable. Using Malmsten's formula (3.5) we get, by standard calculation, the formula

(4.1)
$$E \exp(isZ_p(\omega)) = \Gamma(1+is)^p$$

where the principal branch of the pth power is taken. From the asymptotic behaviour

$$\lim_{|s| \to \infty} |\Gamma(1+is)||s|^{-1/2} \exp(\pi|s|/2) = \sqrt{2\pi}$$

([1], 1.18, formula 6) we conclude that for $p \in (0, \infty)$ the characteristic function (4.1) is integrable on $(-\infty, \infty)$. Consequently, the probability distribution of $Z_p(\omega)$ is absolutely continuous for $p \in (0, \infty)$.

Denote by λ_p the probability distribution of the random variable $\exp Z_p(\omega)$. For $p \in (0,\infty)$ the measure λ_p is also absolutely continuous. Since the characteristic function (4.1) has an analytic extension to the half-plane $\operatorname{Im} z < 0$ we have

(4.2)
$$\int_{0}^{\infty} x^{n} \lambda_{p}(dx) = \Gamma(1+n)^{p} = (n!)^{p} \quad (n=1,2,\ldots),$$

which for $p \in [0,1)$ yields the expansion

(4.3)
$$\widetilde{\lambda}_p(z) = \sum_{n=0}^{\infty} \frac{(-z)^n}{(n!)^{1-p}}$$

in the whole complex plane.

Given two independent random variables $X(\omega)$ and $Y(\omega)$ with probability distributions μ and ν respectively we shall denote by $\mu\nu$ the probability distribution of the random variable $X(\omega)Y(\omega)$. It is clear that

$$\lambda_p \lambda_q = \lambda_{p+q}$$

for all $p, q \in [0, \infty)$.

PROPOSITION 4.1. The probability distribution λ_p is infinitely divisible if and only if $p \in \{0\} \cup [1, \infty)$.

Proof. It follows from (4.2) that $\lambda_0 = \delta_1$ and λ_1 is the exponential distribution $\lambda_1(dx) = e^{-x} \mathbf{1}_{[0,\infty)}(x) dx$. Thus λ_0 and λ_1 are both infinitely divisible. For $p \in (1,\infty)$ we have, by (4.4), $\lambda_p = \lambda_1 \lambda_{p-1}$, which, by the Goldie Theorem ([5]), shows that λ_p is infinitely divisible.

Suppose now that $p \in (0,1)$ and λ_p is infinitely divisible. Then $\lambda_p = e_+(N)$ where the measure N is not concentrated at the origin because, by (4.2), λ_p is not concentrated at a single point. Consequently, for some $a \in (0,\infty)$ we have $b = N([a,\infty)) > 0$. Moreover, by (4.3), the Laplace transform $\lambda_p(z)$ is an entire function, which, by (1.6), yields

(4.5)
$$\int_{0}^{\infty} e^{yx} \lambda_{p}(dx) = \widetilde{\lambda}_{p}(-y)$$

$$\geq \exp \int_{0}^{\infty} (e^{yx} - 1) \frac{1+x}{x} N(dx) \geq \exp(b(e^{ya} - 1))$$

for every $y \in [0, \infty)$. Let k be a positive integer such that $p + k^{-1} < 1$. Put $q = k^{-1}$. Taking independent random variables $X_1(\omega), \ldots, X_k(\omega)$ with the same probability distribution λ_q we have for $x \in [0, \infty)$

$$P\Big(\prod_{j=1}^k X_j(\omega) \ge x^k\Big) \le \sum_{j=1}^k P(X_j(\omega) \ge x) = k\lambda_q([x,\infty)).$$

By (4.4) the left-hand side of the above inequality is equal to $\lambda_1([x^k, \infty))$. Since λ_1 is the exponential distribution we finally get

$$(4.6) \exp(-x^k) \le k\lambda_q([x,\infty))$$

for every $x \in [0, \infty)$.

Observe that, by (4.3), the Laplace transform $\tilde{\lambda}_{p+q}(z)$ is an entire function and, consequently, the integral

$$c = \int_{0}^{\infty} e^{x} \, \lambda_{p+q} \left(dx \right)$$

is finite. Taking into account (4.4) and (4.5) we have for any $x \in [0, \infty)$

$$c = \int_{0}^{\infty} \int_{0}^{\infty} e^{uy} \lambda_{p}(du) \lambda_{q}(dy) \ge \int_{x}^{\infty} \exp(b(e^{ya} - 1)) \lambda_{q}(dy)$$

$$\ge \lambda_{q}([x, \infty)) \exp(b(e^{xa} - 1)),$$

which yields

$$\lambda_a([x,\infty)) \le c \exp(b(1-e^{xa})).$$

Comparing the above inequality with (4.6) we get a contradiction, which shows that for $p \in (0,1)$ the measures λ_p are not infinitely divisible. The proposition is thus proved.

Let $Y(\omega)$ be a random variable with probability distribution ν and $c \in (0, \infty)$. We shall denote by $T_c\nu$ the probability distribution of the random variable $cY(\omega)$.

We conclude this section with the following example.

EXAMPLE 4.1. Let $X(t,\omega)$ be a nonnegative stable process with Bernstein function $B(z)=z^p$ where $p\in(0,1]$. We shall show that for any $u\in(0,\infty)$, $T_v\lambda_{1-p}$ with $v=u^{-p}$ is the probability distribution of the functional

$$\int_{0}^{\infty} e^{-uX(t,\omega)} dt.$$

In fact, by (3.15), the *n*th moment of the above random variable is equal to $u^{-np}(n!)^{1-p}$. Comparing this with (4.2) we get our assertion.

5. A limit problem. Throughout this section $X(t,\omega)$ will denote a nonnegative process. It was shown in Example 3.4 that for any $u \in (0,\infty)$ the integral $\int_0^\infty e^{-uX(t,\omega)} dt$ is finite with probability 1. For simplicity of notation Δ stands for either 0 or ∞ . The problem we study can be formulated as follows: suppose that for a given process $X(t,\omega)$ there exist sequences u_n and v_n of positive numbers satisfying

(5.1)
$$\lim_{n \to \infty} u_n = \Delta, \quad \lim_{n \to \infty} u_{n+1}/u_n = 1$$

such that the sequence of the probability distributions of the normalized integrals

$$(5.2) v_n \int_0^\infty e^{-u_n X(t,\omega)} dt$$

converges to a probability distribution other than δ_0 . What can be said about the limit distribution and the process $X(t,\omega)$? The results presented in this section can be regarded as a random analogue of Tauberian theorems.

We note that by the convergence of types theorem ([6], p. 203), if for a given process and a sequence u_n we have two normalizing sequences v_n and v'_n , then $\lim_{n\to\infty} v'_n/v_n$ exists and is positive.

Denote by D_{Δ} the family of all processes admitting sequences u_n and v_n with the properties described above and by K_{Δ} the set of all possible limit probability distributions.

We recall that a positive-valued measurable function F defined on the half-line $(0,\infty)$ is said to be regularly varying of order p at Δ if for every $x \in (0,\infty)$

$$\lim_{y \to \Delta} F(xy)/F(y) = x^p.$$

LEMMA 5.1. The Bernstein functions associated with processes from D_{Δ} are regularly varying at Δ .

Proof. Let B(z) be the Bernstein function associated with a process from D_{Δ} . Suppose that u_n and v_n have the required properties and denote by $H_n(z)$ the Laplace transform of the probability distribution of (5.2). By assumption $H_n(z)$ tends to the Laplace transform H(z) of the limit distribution. By Theorem 2.4,

$$H_n(z) = 1 - v_n z \int_0^\infty e^{-u_n y} H_n(z e^{-u_n y}) \, \varrho(dy)$$

where ϱ is the potential of the process in question and $z \in [0, \infty)$. Since $H_n(z)$ is decreasing the above equation yields

$$H_n(z) \leq 1 - v_n z H_n(z) \widetilde{\varrho}(u_n)$$
.

Now, by virtue of (1.8), we get

$$\frac{v_n}{B(u_n)} \le \frac{1 - H_n(1)}{H_n(1)}.$$

Since H(1) > 0 we conclude that $v_n \le cB(u_n)$ (n = 1, 2, ...) for a positive constant c. By (3.15) we have for sufficiently small |z|

$$H_n(z) = \sum_{k=0}^{\infty} (-v_n z)^k \prod_{j=1}^k B(ju_n)^{-1}.$$

Since B(z) is nondecreasing the absolute value of the kth coefficient in the above power series is not greater than c^k . Hence the limit function H(z) is analytic in a neighbourhood of the origin. Setting

$$H(z) = \sum_{k=0}^{\infty} a_k (-z)^k$$

we have

$$\lim_{n \to \infty} v_n^k \prod_{j=1}^k B(ju_n)^{-1} = a_k \quad (k = 1, 2, \dots).$$

Observe that all a_k are positive because the limit measure is different from δ_0 . Consequently, for any positive integer k

$$\lim_{n\to\infty}\frac{B(ku_n)}{B(u_n)}=\frac{a_1a_{k-1}}{a_k}.$$

Further, from (5.1) it follows that the sequence of functions

$$(e^{-x} - e^{-u_{n+1}x/u_n})(1 - e^{-x})^{-1}$$

tends uniformly to 0 on the half-line $[0,\infty)$. Hence, in view of (1.7), we get

$$\lim_{n\to\infty} B(u_{n+1})/B(u_n) = 1.$$

Now our assertion follows from Theorem 1.9 in [7].

LEMMA 5.2. Suppose that the Bernstein function B(z) associated with a process $X(t,\omega)$ is regularly varying of order p at Δ $(p \in [0,1])$. Then the limit distribution of

(5.3)
$$B(u) \int_{0}^{\infty} e^{-uX(t,\omega)} dt$$

exists as $u \to \Delta$ and is equal to λ_{1-p} .

Proof. Denote by $G_u(z)$ the Laplace transform of the probability distribution of (5.3). By (3.15), $G_u(z)$ can be expanded into a power series in the unit circle:

$$G_u(z) = \sum_{n=0}^{\infty} a_n(u)(-z)^n$$

where $a_0(u) = 1$ and $a_n(u) = B(u)^n \prod_{k=1}^n B(ku)^{-1}$ (n = 1, 2, ...). Since B(z) is increasing we have $0 < a_n(u) \le 1$ (n = 0, 1, ...). Moreover, $\lim_{u \to \Delta} G_u(z) = \tilde{\lambda}_{1-p}(z)$, which completes the proof.

As an immediate consequence of Lemmas 5.1 and 5.2 we get the following theorems.

THEOREM 5.1. A process belongs to D_{Δ} if and only if its Bernstein function is regularly varying at Δ .

THEOREM 5.2. $K_0 = K_{\infty} = \{T_c \lambda_p : p \in [0, 1], c \in (0, \infty)\}.$

For $\Delta = 0$ the assertion of Theorem 5.1 can be written in an equivalent form.

COROLLARY 5.1. A process belongs to D_0 if and only if the probability distribution τ_1 belongs to the domain of attraction of a stable law.

References

- H. Bateman et al., Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York 1953.
- [2] —, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York 1953.
- 3] --, Tables of Integral Transforms, Vol. 1, McGraw-Hill, New York 1954.
- [4] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer, Berlin 1975.
- [5] C. M. Goldie, A class of infinitely divisible distributions, Proc. Cambridge Philos. Soc. 63 (1967), 1141-1143.
- [6] M. Loève, Probability Theory, Van Nostrand, New York 1955.
- [7] E. Seneta, Regularly Varying Functions, Lecture Notes in Math. 508, Springer, Berlin 1976.
- [8] A. V. Skorokhod, Random Processes with Independent Increments, Nauka, Moscow 1986 (in Russian).

INSTITUTE OF MATHEMATICS WROCLAW UNIVERSITY PL. GRUNWALDZKI 2/4 50-384 WROCLAW, POLAND

Received May 13, 1992

(2941)