208 G. Herzog

and therefore

AT Moy = TTo

(3
=;;(

So | 2miT 0w — o =

Jn0+ﬂ-u(ﬂu~1)/253 L no)

it

Fngt+nolng~1)/2 .
> 2_7'ng+na('n.a—1)/2ﬁjmj =,

B} =

4. Final remarks. 1) By analogy with the proof of Theorem 1, one can
prove that for a complex separable Banach space there are operators with
supercyclic vectors if and only if dim X € {0,1} or dim X = co.

'2) In the infinite-dimensional case, the operator T in the proof of Theo-
rem 1 is compact. An operator with hypercyclic vectors cannot be compact
(see [6]}.

3) In 2, p. 42] a supercyclic vector x € X for T € B(X) and X real
is defined by {Ay:y € Ob(T,z), A > 0} = X. Also with this definition,
Theorem 1 holds with exactly the same proof with the only difference that
in the case dim X = 1 we take minug identity.
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Functionals on transient stochastic processes
with independent increments

by

K. URBANIK ({Wroclaw)

Abstract. The paper is devoted to the study of integral functionals f Om FX({t,w))dt
for a wide class of functions f and transient stochastic processes X (¢,w) with stationary
and independent inerements, In particular, for nonnegative processes a random. analogne
of the Tauberian theorem is obtained.

1. Notation and preliminaries. Let » be a Borel measure on the real
line (~o0,00). We denote by L(u) the space of all complex-valued Borel
functions f with the finite norm

1= [ 15 lde)

O
The measure p is said to be shift-bounded if
sup{u(la + 2, b+ 2z]) : @ € (~o0,00)} < 00

for every bounded interval [a,b]. All measures under consideration in the
sequel will tacitly be assumed to be shift-bounded and not identically equal
to 0. The support of a function f is denoted by supp f. The indicator of a
set A iy denoted by La4.

Put y(de) = e ¥l dz. The space Loo(y) consists of all complex-valued
Borel functions f with the finite norm

oo = raisup{|f(@)] : 2 & (=00, 00)}
In the sequel we shall briefly say “almost everywhere” instead of “y-almost

averywhaere” .
If the integral [ |f(x + )| p(dy) is finite for almost all z, then the

convolution f* pu is dehned by the formula

(f * pw)iz) = f fla+y) uldy).

1091 Mathematics Subject Clossification: Primary 60H05.
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Observe that, by the shift-boundedness of the measure u, the supremurm
[ o]
s(p) = sup{ f e~ 1= ¥ p(dy) : x & (—oo, oo)}
—oa
is finite. We define a mapping y — p* by setting

p* (dz) = fe oyl y(dy) da .

— 00
It is clear that the measure wp* is shift-bounded and equivalent to the
meagsure v. Moreover, we have the formula

(1.1) Al = AT el s
which shows that f € L{u*) if and only if |f| * u € L(v}).
The following simple result will be needed below.

Lemma 1.1. Given a continuous mapping F from L(u*) into L{vy) such
that the norm |[F(f)|le is locally bounded on L{p*), put G(f) = fF(f).
Then G is a continuous mapping from L{p*) into L{u*).

Proof Suppose that f, f. € L{p*) (n=1,2,...) and || fr — f||r — 0 as
n — oo. Since the norms ||F(fn)||oo are uniformly bounded and the measures
p#* and «y are equivalent we have

(1.2 tim (F ~ F)P(fa)
Further, setting Ay = {z : |f(z)| > &} U {z : |z| > k} we have
(1.3) k@_?-; [1£14 ] = 0.

Denoting by By the complement of 4 we get

k
1£18, (F(F) = F(fad)llur < & [ {F(F) ~ F(fu)l(x) p* (de)
—k

K
< s(pke® [ |F(f) -
—k

F(fa)l@)e™ do < s(udbe* [F(F) ~ F(fa)lly,

which yields
(LY lim s, (F(f) - F(ED) e =0 (h=1,2,..).

Since {|fla, (F(f) = F(fa))llar < IIF(F)
(1.3) and (1.4),

— F(fa)llollfLa,]lur we have, by

Jm ([F(F(f) = F{fn))fur =0,

which together with (l 2) implies it o0 || G(F) =~ G(fn)|| 4+ = 0. The lemma
is thus proved.
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We denote by L, (u*) the subset of L{u*) consisting of all functions f
satisfying the condition

lim  f [flz+y+h) = fle+y)|pdy)=0

Fmes (1

for all z € (00, 00). The following statement is evident.

LemMa 1.2. The set L {(u*) is tnvariant under multiplication by bounded
functions continuous on the right. For any f € L,.(u*) the function f = 11 is
continuous on the right and finite everywhere.

We denote by L(u, 0o) the space of all complex-valued Borel functions f
defined on the real line for which |f|+ p € Lo (). The norm in L(y, cc) is
given by the formula

(15) oo = INF1H plleo -

By (1.1} we have || f]| 4,00 2 ||f [+, which yields L(y, 00) ¢ L(p*). It is clear
that all bounded Borel functions with bounded support belong to L{u, o).
Moreover, by the shift-boundedness of u, for any ¢ € (0, 00) the function
e 11,00y () belongs to Lu, 00) N Ly (p").

Let 17 be a set of complex-valued functions. We shall denote by Re B the
subset of B consisting of real-valued functions.

Let A be a bounded Borel measure on (—oo,00) and a € (—o0,00).
We shall denote by e(a, M) the 1nﬁn1tely divisible probability measure with
characteristic function

. , T A iow isz \ 1+ &?
g(a, M){(s) = exp (ms+ ‘Dfo (e -1- mi) —_— M(d:c)) .

22
Moreover, for a bounded Borel measure N concentrated on the half-line
(0,00} we shall denote by e, (V) the infinitely divisible probability measure
concentrated on [0, co) with Laplace transform

]_ .
(1.6) EL(NY(z) = exp f (e7® ki N{dzx)
for 2 € [0, 00). The function
T Lt T
(1.7) B(N,z)= [ (1-¢7) —= N(dz)

0

is called the Bernstein function. In the sequel we write briefly B(z) instead
of B(N, z) if it causes no confusion. : :
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Let X (t,w), t € [0,00), be a real-valued stochastic process with sta-
tionary and independent increments, with sample functions continuous on
the right and satisfying the initial condition X(0,w) = 0. Denote by +;, the
probability distribution of X (¢,w). It is well-known that

7 = e(te, M)
for some a and M. Similarly, for nonnegative processes we have
Ty =5 €. (tN)
for some measure NN, In this case the Bernstein function B{N, z) is said to
be associated with the process X (¢,w).
The process X (¢,w) is said to be transient if the potential

o0
old) = [ m(A)dt

o
is finite for all bounded Borel sets A. By Proposition 13.10 in [4] the measure
¢ is always shift-bounded. It is known that X (#,w) is transient if and only
if the function

Re(log 71 {s))™*

is integrable in a neighbourhood of the origin ([4], 13.17). Moreover, each

nonnegative process which is not identically zere is transient and the Laplace
transform of its potential is given by the formula

(1.8) &(z) = B(2)™"

for z € (0, cc) where B(z) is the associated Bernstein function ([4], 14.1).

Throughout this paper the processes X (¢, w) will tacitly be assumed to
be transient,

2. Integral functionals. Let X (¢,w) be a transient process with poten-
tial . This sectigoz; is devoted to the study of the probability distribution of
the functionals [° f(X(t,w))dt for § € Re L(p"). We shall use the notation

o]

(2.1) Ifyzw)= [ f(X(tw)+a)d
0

provided the right-hand side integral is well-defined.

Suppose that {|f| * ¢)(zo) is finite. By standard calculations the exXpec-
tation of I(|f|, zg,w) is

BI(|fl:0,w) = (|f] * 0)(z0)

It follows from (1.1) that for any f € L{p*) the convolution [f] * ¢ is finite
almost everywhere. This yields the following statement.
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ProrosiTion 2.1 Let f € L{g*). Then I(f, z,w) is finite with probability
L for almost every © and '
(2‘2) EI(fawi) =(fx 9)(53)
almost cuerywhere. If in addition f € Lo(g*), then I(f x,w) is finite with
probability | for cvery =, formula (2.2) holds for every x and
(2.3) ,,,lif& ElI{f,z +u,w) ~I(f,z,w)| =0
Jor every .

Consider the characteristic fanction Q(f,z,s) = Ee{lfew) for f &
Re L{g*).

TuroreM 2.1, Let f € ReL(g*). Then for every s € (—o0,00) the
function Q(Jf, -, 5) sotisfies the equation

(24) Qf,%,8) =1+is T He+9)Q(f,z +y,s) oldy)

—00
for almost every x. If in addition f € Re Ly(g"), then the above equation is
satisfied for every .
Proof. Introduce the notation
Fo(N(2) = Q(f,z,8),  Go(f)(@) = F(@)Qf,7,8) .
First we shall prove that for any s € (—o0, 00), F,(-) and G(-) * ¢ are con-
tinnous mappings from Re L{p*) into L(v). Taking into account the obvious
inequality
(2.5) [F(flleo <1
and (1.1) we infer that Fy(f) € L(vy) and G.(f) * ¢ € L(v) for every f €
Re L(p"). Further, for any f,g € Re L(¢*) we have, by {2.2),
|Fa(£)(z) - Fo(9)(@)] £ 8 EII(f, 2,w) = I(g,2,w)| < |si{If — g » 0)(2)
almost everywhere, which yields, by (1.1),
(15 (f) = Folg)lly £ lslllf = glls -
Sonsequently, the mapping Fy() from Re L(g*) into L(y) is continuous. Now
from (2.5) and Lemma 1.1 it follows that G's(-) is continuous from Re ng*)
into L{g*). Consoquently, by (1.1}, G.(-)* ¢ is continuous from Re L{¢") into

L(y).
Iquation (2.4) can be written in the form
(2.6) Fo(f) =1 +1is(Gs(f) * )

Since both sides of the above equation are continuous mappings from
Re L{g*) into L(v) it suffices to prove it for real-valued continuous func-
tions f with a bounded support, which form a dense subset of Re L(g™).
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For such f and u € (0, 00) we denote by Qy(f,z,s) the characteristic func-
tion of the functional [’ f(X(¢,w) + @) dt. By the Skorokhod Theorem ([8],
Chapter 4.1, 6),

Qu(f,m,s)=1—|~z'sfu ff(:c+y)Qu_f(f,:c-I-y,s)ﬁ(dy)dt.
0 —oa

1t is clear that Q. (f,z,s) — Q{f, x,s) as 1 — oco. Moreover, the right-hand
side of the above equation tends to 1 + is(G4(f) * o) () as w ~ o0, which
vields {2.6) for real-valued continuous functions f with a bounded support,
This completes the proof of (2.4).

Suppose now that f € Re L., (¢*). Then, by Lemma 1.2 and Proposition
2.1, both sides of (2.4) are continuous on the right in z, which yields the
assertion of the theorem.

THEOREM 2.2. Let f € ReL(g,00), |s|[|filoc < 1 and A D supp f.
Suppose that a Borel function H, satisfies Hyly € Loo(y) and

(2.7) Hy(@)=1+is [ f(o+y)Hd(z+y)e(dy)

—
for almost every © € A. Then Hy(z) = Q(f, z,8) for almost every x € A.
Proof. Setting Us(z) = Q(f,x,8)14(x) — Hy(z)14(2) we get a function

belonging to L., (v) and, by the obvious equality f(z) = f(2)la(x) and
Theorem 2.1,

Us(w) = isla(z) [ flo+u)Usle +y) oldy)

—00
for almost every @ € (—oo, 00). Consequently, by (1.5),
1Usllee < I8llITsleoll1£1 # ellco = 15[1Uslloc [ £ gy00
which yields ||[U, oo = 0. This implies the assertion of the theorem.

Given f € Re L(g, co) we define a sequence of functions g, (f,2) (1 =
0,1,...) on the real line by setting

QO(fam) = 11'
(28) o -
g1 (frz) = f fle+yian(fiz+y)oldy) (n=0,1,...).

By induction we get

(2.9) lanlfso)lloe < #1500 (n=0,1,...),

which shows that ¢.(f,:) € Loo(7). If in addition f € L. (g*), then, by
Lemma 1.2, the functions g,,(f, -) are continuous on the right.
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THEOREM 2.3. Let f € Re L{p, c0). For almost every = the characteris-
tic function Q(f,z,-) can be extended to on analytic function in the strip
Tm zjl| f|] g0 < L, and in the circle |z|||flla00 < 1 it has the power series
representation

fe.o)
(£.10) Qfsz2) =Y (i) (s, )

n=()
Jor almost every x. If in addition f € L.o(g*), then the above formula is
true for cvery .

Proof By (2.9) the function H,(z) = 3 o ,(#2)"¢a{f, z) is analytic in
the civele |2]||f]|p,00 < 1 for almost every z. Further, for any fixed real s the
function H,(x) belongs to Le(y) and, by (2.8), satisfles equation (2.7) for
almost every 2. Applying Theorem 2.2 we get Q(f, x, ) = Hy{x) for almost
every . Hence Q(f,z,-) can be extended to an analytic function in the
circle | 2| f|lg.00 < 1 and, consequently, in the strip {Im ||| f]],0 < 1 ([6],
p. 212}, The last assertion is an immediate consequence of the continuity on
the right of the functions Q{f, -, s) and q,,(f, ) {(n =0,1,...) for f &€ L, (o%).

As a consequence of the above theorem we get a formula for the moments
of the functional I(f, z,w).

CoROLLARY 2.1. For any f € ReL{p,00) and almost every =
EI'(f,z,w)=nlg,(f,2) (n=0,1,...}.
If in addition f € Li.(p*), then the above formula s rue for every .

For nonnegative functions f from L(p*)} we denote by H(f,z,z) the
Laplace transform of the probability distribution of I(f, z,w), i.e.

H(f,z,2) = Be ! how)
for z € [0,00). As an immediate consequence of Theorems 2.1-2.3 we get
the following statement.
THBOREM 2.4. Let f be a nonnegative function from L(p, cc). Then for
any z satisfying |2} f||pee < 1 the function H(f x,z) is the only solution
af the equalion

0
(2.11) H(f,w,2)=1~z [ flz+y)H(f x+y,2) oldy)
- O
for almost every © € supp f. Moreover,
oo
(2.12) H(f,2,2)= Y_(=2)"ta{f12)
n==0

almost everywhere. If in addition f € Li(e*), then (2.11) and (2.12) hold
Jor every .
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3. Examples. The results of the preceding section may serve for the
determining of the probability distribution of functionals [(f, z,w). We shall
illustrate this by some examples,

ExaMPLE 3.1 (A compound Poisson process). Let X (t,w) be a process
with probability distribution 71 = e, (N1) where Ni(dz) = i-c " du.
The associated Bernstein function is B{z) = %, which, by (1.8), yields
o(dz) = 8u(dz) 4 Lpecy(z) dz where &y is the probability measure con-
cenirated at the origin. For any f € ReL(p,o0) and althost every 2 we
hawve

B Qhme =@ -isfla) e (i [ L0 a).
In fact, by Theorem 2.1,

Q(f, &,5) = 1+isf(2)Q(f z,s) +is [ F)Q(f:u,9)dy

for almost every z. It is easy to verify that the right-hand side of (3.1) also
satisfies the above equation, which, by Theorem 2.2, yields formula (3.1).
Observe that for every f € ReL{p,c0) and almost every z the randomn
variable I(f,z,w) is infinitely divisible.

ExaMpLE 3.2 (Nonnegative stable processes). Let X (¢,w) be a nonneg-
ative stable process with associated Bernstein function B(z) = z* wherte
p € (0,1). From (1.8) we get

3.2 i) = L
Given b € (0,00} we put
|m(exp -fb exp jb)

My(ds) = L - Loy (0} da,

1 23(1 — — e

(L+z?)( expx)(l exp +b)

0

ay = f (7 4 (1= ) (1 + 272)) My(d) — log(p -+ b) ~ log I'(p) .
)

We shall show that e(as, M) is the probability distribution of the random
variable

log fXb(t,w)lm,l)(xa,w))dt.

First observe that the functlons fo(z) = @bl 1y (z) belong to L{g, c0) N
Li(e*) and, by (2.8) and {3.2),
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0u(fir0)

. It -
11(p>:,]' f-f y%(y] +y2)b.,(’y1 —1—_" +y7?)by:f 1 ..y’r:';, ldyl__ dyn
B,

where B, = {(yls-"ayn) : Z;::jl e < 1, Yi > 0, j = l,...,n}. Taking
the one-to-one mapping (y1,...,¢n) = (u1,...,uy,) from By, onto the nth
Cartesian power of the interval {0,1) defined by

YL =L Uy Yk Ukl o Ual(l —upoy) (K=2,..0,n)
we get, by Corollary 2.1, the formula

EIM( f,0,w)
S
5 e n(p-rb)—1 (»
rp) & fole
Hence, by simple calculation we get
(p+b)+1)
=1,2,...).
=(p+h)” Hr(k<p+b)+p> v )

Let Y3 (w) be a random variable with probability distribution e(ap, Mp). It
is clear that the characteristic function &(ap, My) can be extended to an
analytic function in the half-plane Im z < 0. Thus

(5.4) Eexp(n¥y(w)) = €lap, Mp)(—in) (n=1,2,...).
Applying Malmsten’s formula ([1], 1.9)

—ug)P Ny L .

(3.8)  EI™(f»,0,w

o9 1 - 6r—(z—1)m e~ T '
(3.5) log I'(z) = f (z —-1- ___m._,w",) - dr (Rez>0)

l—e—?®
0

to the right-hand side of (3.3) we get, by simple calculation,
(8.6) BI™(fy,0,0) = Blay, Mp)(—in) (n=12,...).

By Theorem 2.3 the probabiiity distribution of I(fp, 0,w) is uniquely deter-
mined by its moments. Cowparing (3.4) and (3.6) we conclude that e(ay, Mp)
i the probability distribution of log I(fs,0, w).

EXAMPLE 3.3 (Brownian motion with drift). Let X (¢,w) = W (t, w) +ct
where W (t,w) is the standard Brownian motion and the drift coefficient ¢
is positive. The potential of this process is of the form

(3.7 o(dz) = ¢ g 00y () dz -+ ¢ 1P L Loy () d

Denote by ay(r) < ap(r) < ... the sequence of all positive zeros of the Bessel
function J,. (r > —1). Deﬁne a finite Borel measure Ny on the half-line [0, 00)
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by setting
No(dz) = {1+ 2)" (Zexp -8 a2 (2c~ Dz )) de .
We shall prove that e (V) is the probability distribution of the functional

fe B 110,00y (X (4 w)) dt

Observe that the Laplace transform of e, (Ny) is

(3.8)  Ep(No)(2) = [J(1+8za7?(2c - 1)) = Joar 2&22 -1{v/82)

n=1
where I, denotes the modified Bessel function of the first kind. As we men-
tioned in Section 1 the function fg(z) = ™% 1p o (x) belongs to L(g, co) M
L4 (p*). Taking into account (3.7) we infer, by Theorem 2.4, that the Laplace
transform H{fy, 2, #) of the probability distribution of the functional
I(fy,z,w) is the only solution of the equation

(3.9) H{fo,z,2)=1~c"1z }oe_yH(fg,y, 2) dy

s
B f e(zc"]')yH(fo,y,z) dy

0

for z € supp fo = [0, c0) and |2||] fol|s,00 < 1.
In order to solve the above equation we introduce auxiliary functions
Fi(u, z) for r € (0,00}, u € [0,1] and z € [0, 00) by setting
(uz)”

2T"1F('I")IT_1(Z) )
where K, denotes the modified Bessel function of the third kind. Using the

well-known properties of the modified Besse! functions I, and K. ([2], 7.11,
formulae (19)-{22) and (39)) we can easily check that

(3.10)  Fo(u,z) = (I (uz) Koy (2) + Ko (ua)lp..i(2))

(3.11) Folu,z)=1—(2r)"'2* ] yF{y, 2) dy
° ]
= (2r)Ly2r 2 f Y E, (v, 2) dy
and ’
(3.12) _ Fu(l,2) = -

YA L)
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Moreover, taking into account the asymptotic behaviour of I, and X, as
z — 00 ([2], 7.4, formula (1)) we have

27K, (z)

2r-1r(r) "

Starting from equation (3.11) one can easily check that the function
Fyo(e®/%,/82) satisfies equation (3.9), which yields

(314) ff(fﬂ)w:z) cm e/ '\/_)

for 2 & [0,00) and z € [0,00). In particular, H(fo,0,2) = Fp.(l,/82),
which, by (3.8) and (3.12), shows that H(fy,0, 2) is the Laplace transform
of e..(Ny). This completes the proof of our assertion.

Obseerve that, by the strong law of large numbers for the Brownian mo-
tion,

(3.13) ul_i#n(;{l_ Fo(u,u™2) =

lim M =¢

t~+00 t
with probability 1. Consequently, the integral [;°e~%®%) dt is finite with
probability 1. Denote by H(z) the Laplace transform of its probability dis-
tribution. Since litngco €I(fo,z,w) = [~ e~* (") dt with probability 1,
we have limg.e H(fo, 2, ¢%2) = H(z), which, by {3.13) and (3.14), yields
H(z) = I'(2c)"'2¢t 12Ky, (v/Bz). Hence ([3], p. 283, formula 40) the ran-
dom variable [~ e~ (%) dt has probability density function I'(2¢)~'4% x

g el g2/ Lo,00) ().

ExamrLe 3.4 (Nonnegative processes). Let X(t,w) be a nonnegative
process with Bernstein function B(z). We shall prove that for any u € (0, c0)

(3.15) E( f g X (B) dt)n = n) kﬁ B(ku)™
v] =1

As we mentioned in Section 1 the functions gy (z) = €7 1jg,c0)(2) belong
to L{g,00) N Ly(g*) for every u € (0,00}. It is clear that the potential ¢
of the process in question is concentrated on the half-line [0, co). Moreover,
g, wyw) = & %% I(gy,,0,w) for z € [0,00) and

J(Q’u:o W f ""_ux bk g .

Consequently, by Corollary 2.1, q,.,,(gu,w) = g~ ™q (g,,0) for z € [0, 00),
which, by (2.8), yields

Py
C]n»}nl(gm 0) == Qn(gua O) f e“{n+l)uy Q(dy) = q’n(gu: O)Z?'((‘TL + 1)“) .
0

Applying formula (1.8) and Corollary 2.1 we get our assertion.
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4. A family of probability measures. Define a bounded Borel mea-
sure My on the real line and a constant ag by setting
zle”
oo, (@) d2

(1-e”)(1+2%)

o e¥ ey
- S — T
" _{o ((ey N+ oy > “

Given p € [0,00) we denote by Z,(w) a random variable with probability
distribution e(pag, pMp). Since the measure My is absnlutcly continuous
with respect to the Lebesgue measure and the functiown ,.-l;»v_ "'j"[ does nol
increase on (—o0,0) and on (0,00), we infer, by criterion "B in 6], p. 324,
that the random variables Z,(w) are self-decomposable. Using Malmsten’s
formula (3.5) we get, by standard calculation, the formula

(4.1) Eexp(isZ,(w)) = I'(1 +1is)?

where the principal branch of the pth power is taken. From the asymptotic
behaviour

Mo(dm) =

Jim |P(14is)ils| ™ explris}/2) = VET
5| —r00

([1], 1.18, formula 6) we conclude that for p € (0,00) the characteristic
function (4.1) is integrable on (~oo, o). Consequently, the probability dis-
tribution of Z,(w) is absolutely continuous for p € (0, c0).

Denote by A, the probability distribution of the random wvariable
exp Zp{w). For p € (0,00) the measure Ay is also absolutely continuous. Since
the characteristic function (4.1) has an analytic extension to the half-plane
Imz < 0 we have

(4.2) e x(dm) = T +n)P = ()P (n=1,2,..),
0
which for p € [0,1) yields the expansion
S o S )

in the whole complex plane.

Given two independent random variables X (w) and YV (w) with probabil-
ity distributions 1 and v respectively we shall denote by uw the probability
distribution of the random variable X (w)¥ (). It is clear that
(4.4) ApAg = Aptg
for all p, g € [0, 00).

- PROPOSITION 4.1. The probability distribution A, is infinitely divisible if
and only if p € {0} U[L, o0). ‘
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Proof. It follows from (4.2) that Ao = §; and A; is the exponential
digtribution Ay (dz) = € Li,00) () dz. Thus Ag and A; are both infinitely
divisible. For p € (1,00) we have, by (4.4), A, = A1A,_1, which, by the
Goldie Theorem ([5]), shows that A, is infinitely divisible.

Suppose now that p € (0,1) and Ay is infinitely divisible. Then A,
¢.(N) where the measure N is not concentrated at the origin because
by (4.2), Ay is not concentrated at a single point. Consequently, for some
o & (0,00) we have b == N({a,00)) > 0. Moreover, by (4.3), the Laplace
trangform )\,,( ) 18 an entire function, which, by (1.6), yields

e

(45) [ e do(de) = Kp(-)

0
(=9}
>exp [ (e
[¢]

for every ¥ & [0,00). Let &k be a positive integer such that p+&k~! < 1. Put
q = kL. Taking independent random variables X (w),..., Xp(w) with the
same probability distribution A, we have for « € [0, 00}

-1))

k k
f:( H Xj(w) = J,’") < ZP(Xj((J)) > ) = kA, ([z, 00)).
il

i=1
By (4.4) the left-hand side of the above inequality is equal to Ay ([z*, o0)).
Since Ay is the exponential distribution we finally get
(4.6) exp(—2z") < kA ([z, 00))
for every x & [0, 00). _
Observe that, by (4.3), the Laplace transform A,y ,(z) is an entire func-
tion and, consequently, the integral

c= f &% Apig (d2)
is finite. Taking into account (4. 4) and (4.5) we have for any xz € [0, 00)

Cﬁ? [ ]
¢ ] ffﬂ”’ Ay (du) Ag(dy) 2 b(ev® — 1)) Ag(dy)

00
> )\q [J:: )) exP( (6 .- 1))’
which vields

Etﬂg

X[z, 00)) € cexp(b(l — ).
Comparing the above inequality with {4.6) we get a contradiction, which
shows that for p € (0, 1) the measures Ap are not infinitely divisible. The
proposition g thus proved.
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Let Y (w) be a random variable with probability distribution v and ¢ ¢
(0,00). We shall denote by T,r the probability distribution of the random
variable ¢¥ (w).

We conclude this section with the following example.

ExAMPLE 4.1. Let X (¢,w) be a nonnegative stable process with Bernstein
function B{z) = 2”7 where p € (0,1]. We shall show that for any u & (0, 00),
TyAh1—p with v = w7 is the probahility distribution of the functional

00
f e—uX(t,w) di
0

In fact, by (3.15), the nth moment of the above random variable is equal
to w~"P(n!)*~P. Comparing this with (4.2) we get our assertion.

5. A limit problem. Throughout this section X (¢,w) will denote a
nonnegative process. It was shown in Example 3.4 that for any v € (0, c0)
the integral f —uX 0w gt is finite with probability 1. For &.1r11phc1lv of no-
tation A stands for either 0 or oc. The problem we study can be formulated
as follows: suppose that for a given process X (t,w) there exist sequences w.,
and v, of positive numbers satisfying

(6.1) nllrréo Uy, = A, niETolo Uppt /Uy, = 1
such that the sequence of the prebability distributions of the normalized
integrals
(5‘2) Un, f e_r“‘uX(in“-') Clt
0

converges to a probability distribution other than &;,. What can be said
about the limit distribution and the process X (¢,w)? The results presented
in this section can be regarded as a random analogue of Tauberian theorems.

We note that by the convergence of types theorem ([6], p. 203), if for a
gwen process and a sequence Uy, we have two normalizing sequences v, aud
vy, then limg, o0 v, /v, exists and is positive.

Denote by Da the family of all processes admitting sequences w,, and ,
with the properties described above and by K 4 the set of all possible limit
probability distributions.

We recall that a positive-valued measurable function F defined on the

hall-line (0,c0) is said to be regularly varying of order p at A if for every
z € (0,00)

Jira, Fay)/F(y) =

icm
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Observing that each Bernstein function B(z) is increasing and, by (1.7),
the function [3{z)/z is decreasing we infer that the order p of a Bernstein
function regularly varying at A belongs to the interval {0, 1]. Moreover, for
every p € [0,1] there exists a Bernstein function regularly varying of order
p ab A Indeed, for p € (0,1] it suffices to take B(z) = 2. For p = 0 the
functions B(z) = 1/log(1 +21) ([4], p. 129) and B(z) = z/(1 + 2} have
this property at 0 and so respectively.

LieMMA B.1. The Bernstein functions associated with processes from D4
are regularly varying at 4.

Proof. Let B(z) be the Bernstein function associated with a process
from 124, Suppose that w, and v, have the required properties and denote
by H.(z) the Laplace transform of the probability distribution of (5.2).
By assumption Hy,(z) tends to the Laplace transform H{z) of the limit
digtribution. By Theorem 2.4,

oo
H(2)=1~v,2 f

W]

& H,y (267 o{dy)

where p is the potential of the process in question and z € [0,00). Since
H,(£) 18 decreasing the above equation yields

Ho(2) €1~ vpzH, (2)8(1,) .
Now, by virtue of (1.8), we get
U, 1— H,(1)
<
B(uy) =  Hu(1)
Since H{l1} » 0 we conclude that v, < cB(uy) (n=1,2,..

constant e. By (3.13) we have for sufﬁcmn‘rly small |z

.) for a positive

[==]

. (z) = Z (~vy2) ’“ H B(jun) ™

sl ol
Since [3(z) is nondecreasing the absolute value of the kth coefficient in the
above power series is not greater than ¢*. Hence the limit function H(z) is
analytic in a neighbourhood of the origin. Setting

H(z) =y ay(~
k=0

we have
k
lim v, H.Bj’tbn =ap (k=1,2...).

Tl €K
Je=l-
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Observe that all ay, are positive because the limit measure is different from
&y. Consequently, for any positive integer k
. Blku,) oiap-y
lim = .
nevoo Bt} ay

Further, from (5.1) it follows that the sequence of functions
(670 — gt/ un)(] - =2y~
tends uniformly to 0 on the half-line [0, co). Hence, in view of (1.7), we got
niLr{:O Blugy1)/B(tg) = 1.
Now our assertion follows from Theorem 1.9 in [7].

LeEMMA 5.2. Suppose that the Bernstein funciion B(z) associated with ¢
process X (t,w) is regularly varying of order p at A (p € [0,1]). Then the
Hmit distribution of

(o0}
(5.3) Blu) [ e7#X0w) gy
0

exists as u — A and 15 equal to Ay_p.

Proof. Denote by Gy (z) the Laplace trangform of the probability dis-
tribution of (5.3). By (3.13), Gy, (2) can be expanded into a power series in
the unit circle:

QO
Gy(z) = Z an{u)(~2)"
n=0
where ag(u) = 1 and an(u) = B(w)"[[; B(kuv)™' (n = 1,2,...). Since
B(z) is increasing we have 0 < ap(u) < 1 (n = 0,1,...). Moreover,
Hmy— 4 Gy (2) = A1-p(2), which completes the proof.

As an immediate consequence of Lemmas 5.1 and 5.2 we get; the following
theorems.

THEOREM 5.1, A process belongs to Da if and only if its Bernsbein
function is regularly varying at A.

THEOREM 5.2. Ky = Koo = {TuAp :p € [0,1], ¢ € (0,00)}.

For A =0 the assertion of Theorem 5.1 can be written in an equivalent
form.

COROLLARY 5.1. A process belongs to Dy if and only if the probability
distribution Ty belongs to the domain of attraction of o stable law.

icm
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