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Almost everywhere summability of Laguerre series. II
by

K. STEMPAK (Wroclaw)

Abstract. Using methods from [9] we prove the almost everywhere convergence of
the Ceshro means of Laguerre series assoclated with the system of Laguerre functions
L8(z) = (nl/D(n+a+1))/ e #2208 (1), n=0,1,2,,.., a 2 0. The novel ingredient
we add Lo our previous technique is the Ap weights theory. We also take the opportunity
to comment and slightly Improve on our resulss from [9).

1. Introduction. This paper is a natural continuation of [9] where we
investipated almost everywhere summability of expansions with respect to
the systern of functions

(1.1) 0 (w) = (n!/I(n+ a+ 1) 2218 (x),

orthonormal in L?(R..,z%g), a = 0. There are several ways of studying
Laguerre expansions. A first, and say, the most principal one is by dealing
with Laguerre polynomials

Lé(z) = (n)) Le®z~(d/dz)" (e~ z"?),

which form a complete orthogonal system in L2(Ry, 2%e~*dx). Investigat-
ing Poisson integrals for this type of expansion Muckenhoupt (6] was the
first to prove an a.e. convergence result for Laguerre expansions. In fact, he
pointed out that polynomial expansions possess some unexpected features
by showing that for any 1 < p < 2 there is a function in LF(2%¢™*dx) whose
Abel Poiason means diverge everywhere.

A much wore pleasant type of expansion oceurs to be that with the func-
tions £ () as an orthonormal basis in L* (R ., & dz), a 2 0. We proved in [9]
that the Cesdro means of order § > a-+2/3 converge to f a.e. (in §4 we show
how to lower the hound on the parameter §). Incidentally, as pointed out in
9], this result also gives a.e. convergence of the Cesaro means of polynomial
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expansions of functions in L2(R,,e “z%dz) and thus in LP(R.,e™ "¢ du),
p> 2

A third type of expansion takes place when we consider the more famous
{which in. our opinion does not mean more natural) system of Laguerre
functions

£5(a) = (nl/T(n + o + 1))~/ 25214 ()

forming an orthonormal basis in L?(R, dz). The convergence for this type
of expansion has been investigated in the literature at least since Askey and
Wainger proved their celebrated mean convergence result. In 1979 Markets
[4] proved that for any a > 0 the Cesdro means

(12) €5 f(x) = (A5)™2 S A5y (f, £2) 12 ae) £ )
=()

of order § > 1/2 converge in L? norm to f for any f € LP{Ry,dz), 1 < p <
oo, and, moreover, § = 1/2 is the critical index here. Diugosz’ paper [3] was
the first to bring interesting a.e. convergence results.

The main objective of this paper is to prove the following result concern-
ing the a.e. summability of the Ceséro means for expansions with respect to
the system of Laguerre functions L% (z).

THEOREM 1.1, Let o > 0 and § > a -+ 2/3. Then for Ci f given by (1.2)
Cof(z) — fla)

almost everywhere as n — oo for every f € LP(Ry., dz), 1 € p < oo.

The purely real-variable proof of this theorem, given in §3, relies on our
technique developed in [9] and applies well-known facts from Muckenhioupt’s
A, weights theory. We also prove a similar result for still other, probably the
most exotic, Laguerre expansions, This time we use the system of functions

95 (z) = £5(2%) (2)'72,

a 2 0, orthonormal in L?(Ry, dz). These expansions were considered by
Markett [5] and Thangavelu [10]. Thangavelu proved that for @ > 1 /2 the
Cesdro means of order § > 1/6 converge to f a.c. and in L? norm for any
FeLP(Ry, dz), 1 <p < oo, and 1/6 is the critical index here.

We prove the following,

THEOREM 1.2. Let a>0 and § > a-+2/3. Then for every fel?(R.., dx),
1< p < oo,

(A0 AG L 8 2 (e (2) — F)
fomsd

almost everywhere as m — o0,
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Even if the Cesaro index g = a +2/3 far exceeds the critical index 1/6
we decided to include the proof for its simplicity. Moreover, the theorem
says something about the case 0 < a < 1/2 which is not covered by [10].
Getting in [10] the critical § = 1/6 required much more effort.

The paper is organized as follows. In §2 we prove a simple lemma on
A, weights, §3 is devoted to the proofs of the main theorems. In §4 we
gather improvements and comunents on our previous results from [9]. For all
unexplained notions and symbols we refer to [9].

2. Preliminaries. Given a fixed v > —1 we consider the half-axis
R, equipped with the measure du(z) = 27 dz and the Euclidean distance
g(z,y) = o~ y|. Then dy satisfies the doubling condition

p(Bae ()} £ Cu(Be(x)),

where B, (z) = {y € R} : |z — y| < }. Thus (Ry,dy, o) is a homogeneous
space and the maximal operator

(2.1) M f () = sup (B (&))" J 17 @)l duly)
e Be ()

is of weal type (1,1) and strong type (p,p), 1 < p < co.

The Muckenhoupt theory of A, weights has originally been developed
for the Buclidean spaces and then extended to spaces of homogeneous type.
In particular, in the context of the homogeneous space which is considered
here we say that a nonnegative weight w(y) on R satisfies the Ay = Ay (du)
condition provided

1 :
e | w{y) dpe(y) € Cess inf w
(I} }f I

for any interval I ¢ Ry. Similarly, w(y) satisfies the A, condition, 1. < p

< o0, if
(f i)t f )™ dute))” < Oz
I I

The importance of these classes of functions is explained by the fact t.ha,t
for w € A; the operator M given by (2.1) maps L' (wdp) continously into
weak L' (wdu), that is,

[ waus$ [irwds,

{Mf>)\}
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and, if w € Ay, 1 < p < oo, then M is bounded on L?(wdp), i.e.
o o0’
JIMfPwdns O [ 1fFwds.
0 0

We will need the following simple A, (du) characterization of power func-
tions.

LeMMa 2.1, Letv > —1,1 < p < oo and du(z) = 27 da. Then 2’ ¢
Az (dp) i and only if —(7+1) < b < 0. Similarly, ° € 4,(dp), 1 < p < oo,
if and only if —(y+1) <b< (y+1)(p—1).

Proof The necessity is obvious. For the sufficiency, if p = 1 and b
satisfies (v -+ 1) < b < 0 then all we need to check is the inequality

gyl g byl < Ctb(t7+1 — uv-r-l)

with arbitrary 0 < u < t < 0. By homogeneity, this is equivalent to
1— 2 < o1 - 2711,
0 <z < 1, which is clearly satisfied with C' = 1. If 1 < p < oo we have to
show
(7L bty (R -yl o O 7P
with arbitrary 0 < u < ¢ < oo, or, by homogeneity,
(1- zb+v+1)(1 _ Z'r—p—ETH)pwl < Ot ~ zb"l"'Y-I'-L)IJ

with arbitrary 0 < z < 1. An elementary argument shows that there is a
constant €' > 0 such that the last inequality is satisfied.

3. Proofs. Proving Theorems 1.1 and 1.2 we work with a > 1 and then
translate the results for the parameter @ = v~ 1. Until the end of this section
we use the notation du(z) = 2! dz. As in [9] we consider the system of
functions

0 B
wn(x) = (2nl/T(n + o))/ 2= 2 Le~1 (g3

orthonormal in Z2{R, du). The main result of [9], Theorem 5.5, says that
for § > a — 1/3 the Cesiro means

Cofla) = (A1) > ALt oo e (v)
k=0

converge to f(z) as n — oo almost everywhere for any f € Li{dw), 1L <p <
0. This result is achieved by establishing the crucial estimate

(3.1) Cif(z) < CMf(z)
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for the maximal operator C¢f(z) = sup, €2 fz}|, where f is any locally
integrable (with respect to du) function on R.,. Here M f denotes the maxi-
mal function delined in §2 with v == 2 — 1. We now observe that all we need
to show for the proof of Theorem 1.1 is the almost everywhere convergence

(8.2) Ch ) — f(z)
with & > @+ 2/3 for functions from the weighted space LP(wy o du) where
w;),rz(.’l’#) = gla-Bp~2)
This is g0 because for fixed 1 < p < 00 the mapping
])f(:[:) - 2u-1/2f(m'l./2)w(am1)/2
is a bijection from LP(wp o dp) onto LP(dz) satisfying
(@) Doy =57
(b) “Dleﬂ'(rf-ﬂ!) R zl/pw J-/zﬂf“Lw('lUp,wdH))
(C‘) (I)f: f)(ﬁ L3 (dw) & <.f1 g) LA (dp)
Thus, replacing @ by z'/? in (3.2) and then multiplying both sides of (3.2)
a:

by 27 Mgl B2 pivey €8 f(2) — f(x) for every f € L¥(Ry,dx) with CS f
given by (1.2). Therefore, by (3.1) we are done provided we show that

(3-3) Hﬂ/jf“JJ’{W,,,QdM) < GH“/}”L?’(wp,z.du)

for 1 < p < oo and

: C
(344) f Wi, dp < "X“f”Ll(wl,Q dyd -
{M >N}

But both inequalities follow from Lemma 2.1 with v = 20 — 1 and b =
(@-1)(p - 2). '

Sumnilarly, to prove Theorem 2.2 we observe that the mapping H f(z) =
Flmya Y, for fixed 1 € p < o0, a bijection from L¥(vp, o dp) onto LP{dz)
where

Vo (.’I‘) e L0 1/2)(p--2}

Moreover, H satisfies

(a) Hoppy = g
(b)Y N Flrogaey = 1F | Erop,a di)»
(V) (B f Hy) pagdey = (90 1o () -
The proof is concluded by observing that (3.3) and (3.4) are satisfied with
Wy, veplaced by vy . Once more we use Lema 2.1 with v = 20 — 1 and
= (e 1/2)(p~ 2)




322 K. Stempak

4. Improvements and comments. In this section we first improve on
our results concerning the summability of the Cesiro means

(4.1) Cof(m) = (A5)7 Y AL )i (e)

k=0

of expansions with respect to the system of functions £§{x) given by (1.1},
By improving we mean lowering the Cesaro index & for which the mean or
a.e. convergence holds.

In Theorem 1.3 of [9] we proved that if § > a+1/2, a > 0, then C5 f — f
in L? norm for every f € LP(z%dz) and 1 < p < co. It occurs that the lower
bound @ + 1/2 is best possible for p = 1. For other values of p, 1 < p < 00,
we apply Muckenhoupt’s result from [7] and then interpolate to get the
following.

ProposiTiON 4.1. Let a > 0, 1 < p < co and

5 PREICESD dot1)
§a,p) = 2a+3 2a+1
’ 2(a+1) Lyl otherwise
77373 wige.

If § = §(a,p) then
(4.2) ICEf — £lleoonday = O

as n — o0 for every f € LP(z*dx). The lower bound §(a,p) is best possible
in the sense that if 0 < & < §{a,p) then there ewisis an f € LP(x“dx) such
that (4.2) does not hold.

Proof. By the Banach-Steinhaus theorem the mean convergence (4.2)
for every f € LP(2® dx) is equivalent (up to the existence of a dense class of
functions for which (4.2) holds} to the uniform boundedness

(4.3) 1€ Hlpp < C

of the operator norms of C§ on LP (2% d). It follows from [7] (cf. Theovem 7
of §6 with A = B = a = b equal to a(l/p — 1/2)) that the partial surus
Sy = Cf are uniformly bounded on L?(z® dw) if and only if

4{a —I-ml 4{a+1)
2a+3 S 201
Using Stein’s complex interpolation theorem we then prove that for any

fixed p, 1 < p < 4(a+1)/(2a+3) or 4(a+1)/(2a + 1) < p < o0, € are

uniformly bounded on LP{z* dz) provided 6 > 2(a + 1){1/p ~ 1/2| — 1/2.
To show that the index §(a, p) is critical suppose 1 < p < 4(a-+1)/(2a+3)
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and agsume {4.3) is valid for 8. 6, 0 € § < §(a,p). Then the formula
1
Ch=3_ A4
k=0
gives the bound
(4.4) [ Snllpp € Cnf
on the partial sum operators S, = CJ) (cf [1] for details). The mapping
Joe Jlny = [0 fla)es(x)a® de, for any fixed n = 0,1,..., gives rise to a
bounded functional on L¥ (2 de) with norm equal to ||£8|4, 1/p+ 1/g = 1.
Thus we can take a function [ € LF(z% dw), || f|l, = 1, such that 3£, <
|F(m)|. Then, by {4.4), | F(n)l]|€&]l, < Cnd so
€2 ]lale3 g < O

But this is only possible when § > 6(a, p) since by the estimates from [5] we
have (ay ~ by stands for a, = O(b,) and by, = O(an) as n — oo}

plat1 L /r-1/2) l<p< 4;2:: 1)’ _
(4.5) e8]y ~ { B M logm)tE, =4,
: 4{a+1)
plakl)(1/2=1/p)=1/2  TNZ T 0 <
" ' a1l PSS

80 L% [l]16elly ~ nA(wHR0/e-2/2-1/2 This finishes the proof of Proposi-
tion 4.1,

As far as the a.e. convergence is concerned we proved in [9] that the
Clesiro means (4.1) converge to f(z) a.e. for every f € LP(z%dz), 1 < p <
o0, provided § > 2/8. Keeping in mind the mean convergence result it is
tempting to lower this exponent by 1/6. Even if we still cannot do this for
the whole range of p's we will show here how to do this for all p’s from the
interval (4/3, o0). The argument presented below was communicated to the
anthor 1n & letter by 9. Thangavelu to whora we are greatly indebted.

Frotn now o1 we strictly follow the notation from the proofs of Lemma 5.4
and Theorem 5.5 of [9], As in §3 of the present paper we work with the
parameter e 3 1 and then take ¢ = q~ L. To prove in [9] the basic estimate

¢ f() = sup €3 (@)] < O (=)

we fiest noted that Cf f(z) = @5 x f and then showed the inequality
(4.6) [Bn,6(x)] < Cwm(2)

with 6 » a — 1/3, w(z) = (1+ z?)~(=te) and £ > 0 chosen in such a way
that 6 = o — 1/3 -+ 2¢. In fact, ag one can check just by following th.e proof
of Lewima 5.4, § > ¢ ~ 1/2 is enough as long as we are outside the interval
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(VV/2,4/30/2), v = 4n + 2(a + 6) + 2. Therefore, let &y 5 = Cﬁjhb- - ,(ﬁ,'fhé,
where

{p'}n,ﬁ = X{V/2<w2$3u/2}¢'n.,6 »
and, for i = 1,2, let

€ f () =sup &y, 5 x f(z)].
We will show that if r > 4/3 and § > « — 1/2 then

(4.7) C L f(z) < CYUFIm )T

We have
JET T

2o xf@ < [ B sTEIMNWdp) = [+ [ =4
V2 YO

Only the first integral will be considered. The second is estimated in a similar
way. By the definition of &,, 5

[9]511,6( ); < On—ﬁ — /2|ch+6( 2)| < Gn(a 5/2 ~~(r1:|5 M:w k& ( 2}’

‘Therefore, for /2 < 22 < 3v/2, using the fundamental estimate on the
Laguerre functions (cf. [6], p. 235), we get

B 5()| < Cnla=/n, =) /3y 1A (U5 | 11/
< OrH A=A 4 |52 _ )i
ThHS, with 1/7" + 1/q - ]-5 we estimate Il a8 .EOUOWS:

Vv
Il S On——1/4—6 f (Ul/s +y—

vi2

v HMATE £ () duly)

—~1/4-§ v 1/3 4 /g
< O ([ (= g2 auy))
v/2

\/; ™
(e dutw)”

Av/2
< O ([ Ayt ) Y ey

v/2

< On‘l/‘*““a/”(““”/Q( [ oM gy d‘t)Wq((lfj?‘)w(m))i./r
v/2

CUA) =)
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"The last inequality comes from the assumption that § > o — 1 /2 and g < 4.
As we bave already mentioned the condition § > o — 1 /2 is sufficient to
show that C , f(2) € CF*(x), which implies

Coaflly < Cliflp s

since the maximal operator f — f* is of strong type (p,p), 1 < p < oo.
Similarly, if p > 4/3, by taking 4/3 < » < p and using (4.7)

1621 lle < CUCUEYY Y Nlp < CllS e

Now, since Cy f < CE f+C8yf, for § > a—1/2 and p > 4/3 we eventually
get

(4.8) IC2H1s < Cllf s,
which Is sallicient to prove the a.e. convergence of the 6-Cesaro means (4.1),
§>a-+1/2, to f{z) for any f € LP(2%dx), p > 4/3.

To lower further the index 6 for which (4.8) holds we use the interpolation

method from (8] (§5 of Chapter 7). First we quote a result valid for general
orthonormal systems.

LisMMA 4.2 ([2], p. 238). Suppose that |]CE fla < C||flle for a 6 > 0.
Then |CE flla < C|f||2 for every & > 0.

Thus, ix;l;carpolatiug hetween p = 2 with arbitrarily small § and p = oo or
p=1with§ > r\a -1/2 or 6 > @ — 1/3 respectively, gives |C:f|l, < Clifll»
with & > (200 ~ (L/2 = 1/p)for 2 <p<ooand 6> (200 —2/3)(1/p—1/2)
for 1 < p < 2. Consequently, we obtain

PRrROPOSITION 4.3. Let e > 0, 1 < p < 0o and

L at+2/3)(1/p—1/2), 1<p<2,
oa.p) = {2Ea. +1/2) (1/12)* 1/p), 2< ﬁ < 0.

Then for every [ € LP (e dx) and § > §(p, a)

i
S AL LU b () — S (@)
ke ()
almost everywhere as n - oo,
[n addition we strengthen Corollary 1.2 of [9].
COROLLARY 4.4, Leba 2 0 and § > 0. Then for every f € L3 (z%e™® du)
with the expangion [ ~ 315, doL(2)

ZA e Li(2) — f(z)

fmi)
almost cverywhere as n -+ 0.
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We are now going to prove the following localization principle for La-
guerre expansions. :

THEOREM 45. Leta > 0,6 > a+2/3, 1 < p< oo and et f € LP(z"dz)
have the expansion f ~ 300 bils. If f vanishes in a neighborhood of o
point y € (0,00) then

(4.9) (A5 YA () » 0 s m— oo,
k=0

The theorem will follow from the more general result,

PROPOSITION 4.6. Let & > 1 and k € L' (21 dx) be such that |k(z)| <
Cl+a®)~F9 ¢ > 0. If f e LP(z?~ldg), 1 < p < oo, vanishes in o
neighborhood of a point y € (0,00) then limy—.p k; * f(y) = 0.

Proof. We consider the case p = 1 only; for p > 1 the arguinent is
similar. Let # > 0. By the assumption on k there is a constant ¢ > 0 such
that for z > n and 0 < ¢ < 1 we have |k,(2)| < C. Suppose now that g
vanishes on (y — 1,7 +n). Then also Thg(z) = 0 for z < 1 and

oo
e gl < [ [Tho(a)|[ke(x)| dpsfa) < Cllglly .
7
Given a function f vanishing on (y — 7,y + 1) we now choose a compactly
supported continuous function h vanishing on (y — 9,4 -+ 1) and such that
1 = 21 i small. Since lirny_g &y * A(y) = 0 and

ke % F{w)] < [k % R(y)| + CIIf = |y
we get the result,

We now return to the proof of Theorem 4.5, By the remarks from [9],
pp. 132, 133, all we need to prove is an analogue of (4.9) with a, 6 > a-+2/3,
J and £f(x) replaced by a 2 1, § > o —~ 1/8, f € LP(z**1dz) and wi(e).
Since we have (cf. [9], p. 145)

Chf@)] = |@ns x ()] < (@n sl % | f)(@) € Cuo g # 1)

where w(z) = (14 2%)~(*"} and ¢ > 0 is chosen in such a way that § »
o~ 1/3 4 2¢, we are done.
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