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Let %(t) denote the row-of-teeth function

%(t) = [t]− t+ 1/2 .

Let a, b, c, . . . , p, q, r be positive integers. The homogeneous Dedekind sum
is

D(a, b; q) =
q−1∑
t=1

%

(
at

q

)
%

(
bt

q

)
,

and the inhomogeneous Dedekind sum is

D

(
p

q

)
=

q−1∑
t=1

%

(
t

q

)
%

(
pt

q

)
= D(1, p; q) .

The homogeneous sum can be expressed in terms of inhomogeneous sums
using the relation

(1)
q−1∑
u=0

%

(
t+

u

q

)
= %(qt)

to obtain the following rules:

(2) D(ac, bc; cq) = cD(a, b; q) + (c− 1)/4 for any c ,
(3) D(ac, bc; q) = D(a, b; q) for (c, q) = 1 ,
(4) D(a, bc; cq) = D(a, b; q) for (a, c) = 1 .

Putting a = 1 in (4), we find that the inhomogeneous sum is a well-defined
function of a positive rational argument. Since D(a, b; q) depends only on a
and b modulo q, we can reduce the homogeneous sum D(a, b; q) to the in-
homogeneous sum in two different ways, either by choosing c so that ac ≡ 1
(mod q), or so that bc ≡ 1 (mod q). We thus find that

(5) D(p/q) = D(r/q) when pr ≡ 1 (mod q) .
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A final trivial relation

(6) D(p/q) = −D((bq − p)/q) ,
for any large integer b, follows from the oddness of the function %(t).

In this note we base the theory of the inhomogeneous Dedekind sum on
the continued fraction algorithm. Our main tool is a three-term recurrence
relation for D(p/q), which gives a direct proof of the reciprocity formula

(7) D

(
p

q

)
+D

(
q

p

)
=
p2 + q2 + 1

12pq
− 1

4
,

and Barkan and Hickerson’s evaluation ofD(p/q) [1, 5] (which is also implicit
in Knuth [6]). The recurrence relation extends to give an interpolation
formula for inhomogeneous Dedekind sums, our Theorem 2 below, which
appears to be a new result.

The reciprocity formula (7) is a special case of the functional equation,
valid for p, q, r positive and pairwise coprime,

(8) D(p, q; r) +D(q, r; p) +D(r, p; q) =
p2 + q2 + r2

12pqr
− 1

4
.

It appears that (8) cannot be deduced directly from the special case (7). A
simple proof of (8) using integration will be given elsewhere. Other proofs of
the functional equation (8) use contour integration, or trigonometric iden-
tities among roots of unity, or counting the lattice points in a certain tetra-
hedron.

The association of D(p/q) with continued fractions is natural, since
the Dedekind sums first arose in connection with the multiplier system
for Dedekind’s eta function over the modular group of two by two inte-
ger matrices of determinant one [4]. The continued fraction algorithm can
be interpreted as the expression of a matrix of the modular group as a word

in the generators
(

1 1
0 1

)
and

(
1 0
1 1

)
.

The continued fraction for p/q is calculated using Euclid’s algorithm.
Let r0 = q, and let

p = a0r0 + r1 , 0 ≤ r1 ≤ q − 1 , a0 ≥ 0 .

If r1 6= 0, then let

r0 = a1r1 + r2 , 0 ≤ r2 ≤ r1 − 1 , a1 ≥ 1 ,

and so on. Eventually rn+1 = 0 for some n ≥ 0. The convergents are

pi/qi = a0 + 1/(a1 + 1/(a2 + . . .+ 1/ai) . . .) ,

satisfying the three-term recurrences

pi+1 = ai+1pi + pi−1 , qi+1 = ai+1qi + qi−1 ,
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with

(9)
pi+1

qi+1
− pi

qi
=

(−1)i

qiqi+1
.

The last convergent pn/qn is the lowest terms reduction of the ratio p/q.

Theorem 1 (Barkan’s evaluation [1]). Let n be the length of the continued
fraction for p/q. Then

(10) D

(
p

q

)
=


1
12

(
pn − qn−1

qn
− a0 + a1 − . . .− an

)
for n even,

1
12

(
pn + qn−1

qn
− a0 + a1 − . . .+ an

)
− 1

4
for n odd.

Since

qn−1/qn = 1/(an + 1/(an−1 + . . . (a2 + 1/a1) . . .)) ,

the expressions in the theorem are symmetric in pn and qn−1, in accordance
with (5) and (9).

Our evaluation of the Dedekind sum rests on the three-term recurrence
that follows.

Lemma 1. Let a, p, p′, p′′, q, q′, q′′ be positive integers with

p = ap′ + p′′ , q = aq′ + q′′ ,

(11)
p

q
− p′

q′
= ± 1

qq′
.

Then

(12) D

(
p

q

)
=

(
1− q′′

q

)
D

(
p′

q′

)
+
q′′

q
D

(
p′′

q′′

)
±

(
a

12

(
1 +

q′′

q

)
− 1

4

(
1− q′′

q

))
,

the ± sign in (12) agreeing with that in (11).

P r o o f. If the sign in (11) is negative, then we replace p, p′, p′′ by bq−p,
bq′−p′, bq′′−p′′ for some large integer b; the sign becomes positive, and the
Dedekind sums have changed sign by (6). Hence we may assume a positive
sign in (11).

We observe that for 0 ≤ t < q we have

(13) %

(
pt

q

)
= %

(
p′t

q′
+

t

qq′

)
= %

(
p′t

q′

)
− t

qq′
,

and similarly for 1 ≤ t < q′, t not a multiple of q′′, we have

(14) %

(
p′t

q′

)
= %

(
p′′t

q′′
− t

q′q′′

)
= %

(
p′′t

q′′

)
+

t

q′q′′
;
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if t is a multiple of q′′ in (14), then we must subtract one from the right
hand side.

By (1) we have

D

(
p

q

)
=

q−1∑
t=1

(
1
2
− t

q

)
%

(
pt

q

)
= −1

q

q−1∑
t=1

t%

(
pt

q

)
(15)

= − 1
q

q−1∑
t=1

t%

(
p′t

q′

)
+

1
q2q′

q−1∑
t=1

t2

= − 1
q

aq′+q′′−1∑
t=1

t%

(
p′t

q′

)
+

(q − 1)(2q − 1)
6qq′

.

In the first term in (15) we write t = uq′ + v with 0 ≤ u ≤ a− 1, 1 ≤ v ≤ q′.
The first term becomes

(16) −1
q

a−1∑
u=0

q′∑
v=1

(uq′ + v)%
(
p′v

q′

)
− 1
q

q′′−1∑
v=1

(aq′ + v)%
(
p′v

q′

)
.

The terms with v = q′ in (16) give

−1
q

a−1∑
u=0

(uq′ + q′)%(0) = −a(a+ 1)q′

4q
=

(a+ 1)(q′′ − q)
4q

.

The other terms in the first sum of (16) give

(17) − 1
q

a−1∑
u=0

q′−1∑
v=1

(
uq′ +

q′

2

)
%

(
p′v

q′

)
+
a

q

q′−1∑
v=1

(
q′

2
− v

)
%

(
p′v

q′

)
= 0 +

aq′

q
D

(
p′

q′

)
=

(
1− q′′

q

)
D

(
p′

q′

)
.

For the second term in (16) we use (14) instead of (13) to obtain

−1
q

q′′−1∑
v=1

(aq′ + v)%
(
p′′v

q′′

)
− 1
q

q′′−1∑
v=1

(aq′ + v)v
q′q′′

=
q′′

q
D

(
p′′

q′′

)
− a(q′′ − 1)

2q
− (q′′ − 1)(2q′′ − 1)

6q′q′′
,

as in (17). Collecting terms together, we obtain (12), the result of the
lemma.

The three-term recurrence is in second difference form, so we obtain the
theorem after two inductions. The result of the first induction is a form
of the reciprocity formula (7), noted by Rademacher [8]. Consequently,
Lemma 2 gives an independent proof of the reciprocity formula.
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Lemma 2. If p′/q′ and p/q are consecutive convergents of a continued
fraction, with

(18)
p

q
− p′

q′
= ± 1

qq′
,

then

(19) D

(
p

q

)
−D

(
p′

q′

)
= ±

(
q2 + q′2 + 1

12qq′
− 1

4

)
,

the ± sign agreeing with (18).

Corollary (reciprocity formula).

D

(
q′

q

)
+D

(
q

q′

)
=
q2 + q′2 + 1

12qq′
− 1

4
.

P r o o f o f L e m m a 2. To begin the induction, we note that

D(p0/q0) = D(a0) = 0 ,

D(p1/q1) = D(a0 + 1/a1) = D(1/a1) =
q1−1∑
t=1

(
1
2
− t

q1

)
=
q21 + 2
12q1

− 1
4
,

in the notation introduced above for continued fractions. This verifies (19)
when p/q is p1/q1, p′/q′ is p0/q0.

We treat the induction step in the case when the sign in (18) is +. In
the notation of Lemma 1, we take as the induction hypothesis that

(20) D

(
p′

q′

)
−D

(
p′′

q′′

)
= −q

′2 + q′′2 + 1
12q′q′′

+
1
4
.

By Lemma 1 we have

D

(
p

q

)
−D

(
p′

q′

)
= − q′′

q

(
D

(
p′

q′

)
−D

(
p′′

q′′

))
+

a

12

(
1 +

q′′

q

)
− 1

4

(
1− q′′

q

)
=
q′2 + q′′2 + 1

12qq′
− 1

4
+

a

12
(q + q′′)

q
,

and the result follows since
a

12
(q + q′′)

q
=

(q − q′′)(q + q′′)
12qq′

.

When the sign in (18) is reversed, then the signs in Lemma 1 and in (20)
are both reversed.
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P r o o f o f t h e C o r o l l a r y. Again there are two cases. When the
sign in (18) is +, then pq′ ≡ 1 (mod q), so that by (5)

(21) D(p/q) = D(q′/q) .

However, p′q ≡ −1 (mod q′), so that

(22) D

(
q

q′

)
= D

(
(a0 + 1)q′ − p′

q′

)
= −D

(
p′

q′

)
by (5) and (6). When the sign in (18) is −, then the signs in (19), (21)
and (22) are all reversed.

P r o o f o f T h e o r e m 1. Since q0 = 1, q1 = a1, we interpret q−1 as 0
in the relation

q1 = a1q0 + q−1 .

We then have
p0 + q−1

q0
− a0 = 0 = D

(
p0

q0

)
.

For the induction step we put pi/qi = p/q, and use the notation q = aq′+q′′

of Lemma 1 with a = ai etc. As usual there are two cases. If i is odd, then
we take the + sign in (19) to get

12D
(
p

q

)
− 12D

(
p′

q′

)
=

q

q′
+
q′

q
− 3 +

p

q
− p′

q′
(23)

=
p+ q′

q
− p′ − q′′

q′
+ a− 3 .

If i is even, then we take the − sign in (19) to get

(24) 12D
(
p

q

)
− 12D

(
p′

q′

)
=
p− q′

q
− p′ + q′′

q′
− a+ 3 .

The theorem now follows by induction, using (23) and (24) for alternate
values of i up to i = n.

Many properties of Dedekind sums may be deduced at once from the
theorem. The following results are due to Rademacher [8]. If 12D(p/q) is
an integer, then

qn−1 ≡ (−1)npn (mod qn) ,
D(qn−1/qn) = (−1)nD(pn/qn)

by (6). However, from (9)

pnqn−1 ≡ (−1)n−1 (mod qn) ,

so that by (5) and (6)

D(qn−1/qn) = (−1)n−1D(pn/qn) .
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We deduce that D(p/q) must be zero. In particular, D(p/q) never takes the
values 1, 2, 3, . . .

The first use of Dedekind sums [4] was to compute the multiplier system

for the Dedekind eta function. Let M =
(
a b
c d

)
be a matrix with positive

integer entries and determinant one. We note that a/c and b/d must be
consecutive convergents for some continued fraction (if we allow the last
partial quotient to be one), and similarly for the other ratios. There are
eight associated Dedekind sums, in four pairs:

D(a/c) = D(d/c) ,
D(c/a) = −D(b/a) ,

D(a/b) = D(d/b) ,
D(c/d) = −D(b/d) .

We have

D

(
a

c

)
−D

(
b

d

)
=
c2 + d2 + 1

12cd
− 1

4
=
a+ d

12c
− b− c

12d
− 1

4
,

D

(
a

b

)
−D

(
c

d

)
=
b2 + d2 + 1

12bd
− 1

4
=
a+ d

12b
− c− b

12d
− 1

4
,

D

(
d

c

)
−D

(
b

a

)
=
a2 + c2 + 1

12ac
− 1

4
=
a+ d

12c
− b− c

12a
− 1

4
,

D

(
d

b

)
−D

(
c

a

)
=
a2 + b2 + 1

12ab
− 1

4
=
a+ d

12b
− c− b

12a
− 1

4
.

We deduce that the various Dedekind sums are related by

−D
(
a

c

)
+
a+ d

12c
− 1

4
= D

(
d

b

)
− a+ d

12b
+

1
4

= D

(
c

d

)
− c− b

12d
= D

(
c

a

)
− c− b

12a
=

1
12
ψ(M) ,

where ψ(M) is an integer that determines the twenty-fourth root of unity
in the formula for η(Mτ). For two such matrices M and N , there should be
a relation between ψ(M), ψ(N) and ψ(MN).

There is a continued fraction with a/c and b/d as a consecutive conver-
gents:

a

c
= a0 +

1
a1+

. . .
1
at
,

and if c ≥ d > 0, then

b

d
= a0 +

1
a1+

. . .
1

at−1
,

D

(
a

c

)
=

1
12

(
pt + qt−1

qt
− a0 + a1 − . . .+ at

)
− 1

4
,
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but if d > c > 0, then

b

d
= a0 +

1
a1+

. . .
1

at+1
,

where at+1 is the largest integer strictly less than d/c, and

D

(
a

c

)
=

1
12

(
pt + qt−1

qt
− a0 + a1 − . . .+ at

)
− 1

4

=
1
12

(
pt + qt+1

qt
− a0 + a1 − . . .+ at − at+1

)
− 1

4
.

Here we may have at = 1 or at+1 = 1. If we define at+1 in both cases to be
the greatest integer strictly less than d/c, which is zero when c ≥ d, then in
both cases

D

(
a

c

)
=

1
12

(
a+ d

c
− a0 + a1 − . . .+ at − at+1

)
− 1

4
.

Similarly, if N =
(
f e
s r

)
is another integer matrix with

f

s
= f0 +

1
f1+

. . .
1
fu
,

and fu+1 is the greatest integer strictly less than r/s, then

D

(
f

s

)
=

1
12

(
f + r

s
− f0 + f1 − . . .+ fu − fu+1

)
− 1

4
.

We have

MN =
(
af + bs ae+ br
cf + ds ce+ dr

)
,

and
r

s
− ce+ dr

cf + ds
=

c

s(cf + ds)
<

1
s
.

Since any integer strictly less than r/s is at most (r − 1)/s, we see that
fu+1 is also the greatest integer strictly less than (ce+ dr)/(cf + ds). Now
we form the continued fraction for (ce + dr)/(cf + ds). We note the zero
drop-out rule, that

b0 +
1
b1+

. . .
1
bv+

1
0+

1
bv+2+

. . .
1

bv+w
= b0 +

1
b1+

. . .
1

bv + bv+2+
. . .

1
bv+w

,

the alternating sum of the bi remaining unchanged. There are two cases: if
c ≥ d > 0, then we write

af + bs

cf + ds
=
ptf/s+ pt−1

qtf/s+ qt−1
= a0 +

1
a1+

. . .
1
at+

1
f0+

. . .
1
fu
,



Dedekind sums and continued fractions 87

by the rules for continued fractions. If d > c > 0, then

af + bs

cf + ds
=
pt + pt+1s/f

qt + qt+1s/f
= a0 +

1
a1+

. . .
1

at+1+
1

0+
1
f0+

. . .
1
fu

= a0 +
1
a1+

. . .
1

at+1 + f0+
. . .

1
fu
.

Whether or not we have to invoke the zero drop-out rule again, we have

(25) ψ(MN) = a0−a1+. . .−at+at+1+f0−. . .−fu+fu+1 = ψ(M)+ψ(N) .

When we put

ψ

(
1 b
0 1

)
= b , ψ

(
1 0
c 1

)
= −c ,

then ψ is defined on the semigroup of integer matrices with non-negative
entries, and gives a homomorphism into Z, the additive group of integers.
The semigroup is generated by

R =
(

1 0
1 1

)
, S =

(
1 1
0 1

)
.

Rademacher [8] gives a rule for defining ψ(M) for all matrices of the group
SL(2,Z). The identity (25) must be replaced by a congruence, since the

group contains a matrix T =
(

0 1
−1 0

)
with

T 2 = −I , (ST )3 = I , R = T−1S−1T .

The identity (25) can be written as

(26) D

(
a

c

)
+D

(
f

s

)
−D

(
af + bs

cf + ds

)
=
c2 + s2 + (cf + ds)2

12cs(cf + ds)
− 1

4
,

analogous to the functional equation (8). We note that if p+ q + r+ s = 0,
then

(27)
(
p −s
r q

) (
q −s
p r

) (
r −s
q p

)
= −(p+ q)(p+ r)(q + r)I .

The matrices on the left have determinants greater than one. The matrix
identity (27) suggests that (8) and (26) may be special cases of some more
complicated identity.

When we translate (26) into the notation of continued fractions, then we
find a new identity for Dedekind sums.

Theorem 2 (interpolation formula). For x rational we write

E(x) = D(x)− x/6 .
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Suppose that p/q, p′/q′ and p′′/q′′ are rational numbers in their lowest terms
with

p

q
=
up′ + vp′′

uq′ + vq′′
,

p′

q′
− p′′

q′′
=

1
q′q′′

,

where u and v are positive integers with (u, v) = 1. Then

E

(
p

q

)
= λ

(
E

(
p′

q′

)
− E

(
v

u

))
+ (1− λ)

(
E

(
p′′

q′′

)
+ E

(
u

v

))
,

where λ = uq′/(uq′ + vq′′) is defined by

p

q
= λ

p′

q′
+ (1− λ)

p′′

q′′
.

P r o o f. We use the notation of (26), writing a/c, b/d and f/s for p′/q′,
p′′/q′′ and u/v, so that

λ =
cf

cf + ds
, 1− λ =

ds

cf + ds
.

We write (26) as

D

(
af + bs

cf + ds

)
= D

(
a

c

)
+D

(
f

s

)
− c2 + s2 + (cf + ds)2

12cs(cf + ds)
+

1
4
.

By Lemma 2 applied to a/c and b/d, we have

D

(
a

c

)
= λD

(
a

c

)
+ (1− λ)D

(
b

d

)
− s2(c2 + d2 + 1)

12cs(cf + ds)
− 1− λ

4
,

so that

D

(
af + bs

cf + ds

)
= λD

(
a

c

)
+ (1− λ)D

(
b

d

)
+D

(
f

s

)
+
λ

4

+
c2s2 − c2f2 − c2 − 2cdfs

12cs(cf + ds)
.

By the Corollary to Lemma 2 for f/s, we have

λ

4
=
c2(f2 + s2 + 1)
12cs(cf + ds)

− λD
(
f

s

)
− λD

(
s

f

)
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and

D

(
af + bs

cf + ds

)
= λD

(
a

c

)
+ (1− λ)D

(
b

d

)
− λD

(
s

f

)
+ (1− λ)D

(
f

s

)
+

2cs− 2df
12(cf + ds)

= λ

(
D

(
a

c

)
−D

(
s

f

)
+

s

6f

)
+ (1− λ)

(
D

(
b

d

)
+D

(
f

s

)
− f

6s

)
,

which gives the result when we substitute for D(x) in terms of E(x).

Rademacher [8] left many open questions about the value distribution of
Dedekind sums. Hickerson [5] settled the conjecture that the values of the
inhomogeneous sum D(p/q) are dense on the real line, by showing that the
points (p/q,D(p/q)) are dense in R2. The construction again uses continued
fractions. Given α and β real and ε > 0, we can specify a0, . . . , ar so that
all continued fractions beginning

a0 +
1
a1+

. . .
1
ar+

lie in the interval (α−ε, α+ε), and b1, . . . , bs so that all continued fractions
beginning

b1 +
1
b2+

. . .
1
bs+

lie in an interval (γ − ε, γ + ε), where

(α+ γ)/12− β = e ,

an integer. Here a0 is an integer, a1, . . . , ar, b1, . . . , bs are positive inte-
gers. We choose an odd integer n ≥ r + s + 2. We put an = b1, an−1 =
b2, . . . , an−s+1 = b1, and choose ar+1, . . . , an−s so that

a0 − a1 + . . .− an = e− 3 .

Then
p

q
=
pn

qn
= a0 +

1
a1+

. . .
1
an

lies in the interval (α− ε, α+ ε), with qn−1/qn in the interval (γ − ε, γ + ε),
and D(p/q) in the interval (β − ε/6, β + ε/6) as required.

The points (p/q,D(p/q)) in two dimensions are concentrated close to
the x-axis. The uniform distribution results of Vardi [9] and Myerson [7]
use Weyl’s criterion and bounds for generalized Kloosterman sums. The
classical Kloosterman sum bound corresponds to the discrepancy of the
sequence in the unit square for which xn runs through the rational numbers
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p/q (ordered lexicographically in their lowest terms form), and yn through
the numbers 12D(p/q), reduced modulo one. The discrepancy of the first
N terms of this sequence is easily seen to be O(N3/4 log3N); this estimate
could be improved using Kuznetsov’s work on sums of Kloosterman sums.
Bruggeman [2, 3] has investigated the points (p/q,D(p/q)/q) in R2, using
the representation theory of the group SL(2,Z). It would be of interest to
investigate the distribution of Dedekind sums using the metrical theory of
continued fractions.
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