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1. Introduction. The main purpose of the reduction theory is to
construct a fundamental domain of the unimodular group acting discontin-
uously on the space of positive definite quadratic forms. This fundamental
domain is for example used in the theory of automorphic forms for GLn

(cf. [11]) or in the theory of Siegel modular forms (cf. [1], [4]). There are
several ways of reduction, which are usually based on various minima of the
quadratic form, e.g. the Korkin–Zolotarev method (cf. [10], [3]), Venkov’s
method (cf. [12]) or Voronöı’s approach (cf. [13]), which also works in the
general setting of positivity domains (cf. [5]). The most popular method is
Minkowski’s reduction theory [6] and its generalizations (cf. [9], [15]).

Minkowski’s reduction theory is based on attaining certain minima,
which can be characterized as the successive primitive minima of the quadra-
tic form. Besides these we have successive minima, but a reduction accord-
ing to successive minima only works for n ≤ 4 (cf. [14]). In this paper we
introduce so-called primitive minima, which lie between successive and suc-
cessive primitive minima (cf. Theorem 2). Using primitive minima we obtain
a straightforward generalization of Hermite’s inequality in Theorem 1. As
an application we get a simple proof for the finiteness of the class num-
ber. Finally we describe relations with Rankin’s minima (cf. [8]) and with
Venkov’s reduction (cf. [12]).

2. Various minima. Let Pn denote the set of all real positive definite
n×n matrices. GLn(Z) stands for the unimodular group of degree n, i.e. the
group of units in the ring Mn(Z). An integral n× k matrix P ∈ Mn×k(Z),
n ≥ k, is called primitive, if the g.c.d. of all the k-rowed minors of P is 1.
This is equivalent to the fact that there exists a matrix (P, ∗) ∈ GLn(Z)
(cf. [7]). Moreover, set

A[B] := (Bt)AB

for matrices A,B of appropriate size.
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A matrix S = (sjk) ∈ Pn is called Minkowski-reduced whenever

(M.1) S[g] ≥ skk for all g = (γ1, . . . , γn)t ∈ Zn

with g.c.d. (γk, . . . , γn) = 1 , 1 ≤ k ≤ n ,

(M.2) sk,k+1 ≥ 0 for 0 < k < n .

The set of Minkowski-reduced matrices is a fundamental domain of Pn with
respect to the discontinuous group of mappings

Pn → Pn , S 7→ S[U ] , U ∈ GLn(Z) .

In order to determine a unimodular matrix U such that S[U ] is Minkowski-
reduced proceed as follows (cf. [4]): Given S ∈ Pn define its minimum by

(1) µ(S) := inf{S[h] | 0 6= h ∈ Zn} .

Determine g1 ∈ Zn with µ(S) = S[g1]. As soon as g1, . . . , gk , 0 < k < n,
are given, choose gk+1 ∈ Zn such that

(2) S[gk+1] = inf{S[h] | (g1, . . . , gk, h) ∈ Mn×(k+1)(Z) is primitive} .

If necessary replace gk+1 by −gk+1 in order to get gkSgk+1 ≥ 0. In this way
we construct a unimodular matrix U = (g1, . . . , gn) such that T = S[U ] is
Minkowski-reduced. The diagonal entries of T are given by (1) and (2) and
may therefore be called the successive primitive minima of S.

Besides these the successive minima µ1(S), . . . , µn(S) of S ∈ Pn were
introduced (cf. [14]). Determine g1 ∈ Zn as in (1), i.e.

µ1(S) = µ(S) = S[g1] .

As soon as g1, . . . , gk, 0 < k < n, are given, choose gk+1 ∈ Zn such that

(3) µk+1(S) = S[gk+1] = inf{S[h] | h ∈ Zn , rank(g1, . . . , gk, h) = k + 1} .

Using Steinitz’ theorem we have the alternative definition

(4) µk(S) = inf
{

t ∈ R
∣∣∣∣ there is H = (h1, . . . , hk) ∈ Mn×k(Z) ,

rank H = k , S[hj ] ≤ t , 1 ≤ j ≤ k

}
,

1 ≤ k ≤ n .

Comparing (3) and (4) it is interesting to investigate the analogue for prim-
itive matrices in place of maximal rank matrices. We define

(5) νk(S) = inf
{

t ∈ R
∣∣∣∣ there is a primitive H = (h1, . . . , hk)

in Mn×k(Z) , S[hj ] ≤ t , 1 ≤ j ≤ k

}
,

1 ≤ k ≤ n .

We call νk(S) the k-th primitive minimum of S. Obviously one has

(6) µk(S) ≤ νk(S) , 1 ≤ k ≤ n , ν1(S) = µ1(S) = µ(S) .
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3. A generalization of Hermite’s inequality. For S ∈ Pn we have

(7) µ(S) = ν1(S) ≤ ν2(S) ≤ . . . ≤ νn(S) .

Since UP, U ∈ GLn(Z), is primitive if and only if P is, we conclude

(8) νk(S[U ]) = νk(S) for U ∈ GLn(Z) , 1 ≤ k ≤ n .

Note that a primitive matrix can be completed to a unimodular matrix.
Hence given 1 ≤ k ≤ n there exists Uk ∈ GLn(Z) such that

(9) S[Uk] = T = (tij) , t11 ≤ t22 ≤ . . . ≤ tnn , tkk = νk(S) .

Theorem 1. Given S ∈ Pn one has

ν1(S) . . . νn(S) ≤ ( 4
3 )n(n−1)/2 det S .

P r o o f. We use induction on n; the case n = 1 is obvious. According
to (8) and (9) we may assume s11 = µ(S) = ν1(S) =: µ without restriction.
By the method of completing squares we obtain a decomposition

S =
(

µ 0
0 T

) [(
1 at

0 I

)]
=

(
µ µat

µa T + µaat

)
, T ∈ Pn−1 , a ∈ Rn−1 ,

where I is the (n − 1) × (n − 1) identity matrix. Given 0 < k < n there
exists a primitive matrix G = (g1, . . . , gk) ∈ M(n−1)×k(Z) such that

T [gj ] ≤ νk(T ) , 1 ≤ j ≤ k .

Next choose g = (γ1, . . . , γk)t ∈ Zk such that the entries of g + Gta belong
to the interval [− 1

2 ; 1
2 ]. Now

H =
(

1 gt

0 G

)
∈ Mn×(k+1)(Z) and H ′ =

(
gt

G

)
∈ Mn×k(Z)

are primitive. One has

S

[
γj

gj

]
= µ(γj + atgj)2 + T [gj ] ≤ 1

4 ν1(S) + νk(T ) , 1 ≤ j ≤ k .

Since H ′ is primitive we conclude

νk(S) ≤ 1
4ν1(S) + νk(T ) .

Now (7) leads to

S

[
1
0

]
= ν1(S) ≤ νk(S) ≤ 1

4ν1(S) + νk(T ) .

Since H is primitive, we now have

νk+1(S) ≤ 1
4ν1(S) + νk(T ) and νk+1(S) ≤ 4

3νk(T ) .

According to ν1(S) det T = det S the induction hypothesis yields

ν1(S) . . . νn(S) ≤ ( 4
3 )n−1ν1(S)ν1(T ) . . . νn−1(T )

≤ ( 4
3 )n(n−1)/2ν1(S) det T = (4

3 )n(n−1)/2 detS .
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In view of (7) we obtain Hermite’s inequality (cf. [7]) as

Corollary 1. Given S ∈ Pn one has

µ(S)n ≤ ( 4
3 )n(n−1)/2 detS .

Denote the class number by hn(N) , N ≥ 1, i.e. hn(N) is the number of
GLn(Z)-equivalence classes of integral S ∈ Pn with detS = N .

Corollary 2. The class numbers hn(N) , N ≥ 1, are finite. One has

hn(N) = O(Nn(n+1)/2) as N →∞ .

P r o o f. By (9) it suffices to count the number of integral S ∈ Pn with
det S = N and skk ≤ νn(S) , 1 ≤ k ≤ n. In view of νk(S) ≥ 1 Theorem 1
implies

0 < skk ≤ νn(S) ≤ ν1(S) . . . νn(S) ≤ ( 4
3 )n(n−1)/2N .

Next S ∈ Pn yields sjjskk − s2
jk > 0, hence |sjk| < ( 4

3 )n(n−1)/2N for 1 ≤
j < k ≤ n. Thus the number of these S is O(Nn(n+1)/2) as N →∞.

For other proofs of Corollary 2 we refer to [7].

4. Relations with other types of minima. The first relation is
derived in

Theorem 2. Let S = (sij) ∈ Pn be Minkowski-reduced. Given 1 ≤ k ≤ n
one has

µk(S) ≤ νk(S) ≤ skk ≤ αkµk(S) ≤ αkνk(S) ,

where

αk =
{

1 if k ≤ 4 ,
( 5
4 )k−4 if k ≥ 4 .

P r o o f. νk(S) ≤ skk follows from s11 ≤ . . . ≤ snn. The remaining parts
are consequences of (6) and [14], Satz 7 and (45).

If k ≥ 5 there are quadratic forms S with νk(S) > µk(S). Just as in [14]
consider the matrix S attached to the quadratic form

x2
1 + x2

2 + x2
3 + x2

4 + (x1 + x2 + x3 + x4)x5 + 5
4x2

5 .

One easily checks

µk(S) = νj(S) = 1 , 1 ≤ k ≤ 5 , 1 ≤ j ≤ 4 , ν5(S) = 5
4 .

Next consider the minima
δk(S) := inf{det(S[P ]) | P ∈ Mn×k(Z) primitive}

= inf{det(S[G]) | G ∈ Mn×k , rank G = k} , 1 ≤ k ≤ n ,

which were introduced by Rankin [8].
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Proposition 1. Given S ∈ Pn and 1 ≤ k ≤ n one has

ν1(S) . . . νk(S) ≤ ( 4
3 )k(k−1)/2δk(S) .

P r o o f. Choose a primitive P ∈ Mn×k(Z) with δk(S) = det(S[P ]).
Apply Theorem 1 to S[P ]. In view of the obvious inequalities νj(S[P ]) ≥
νj(S) for 1 ≤ j ≤ k, the claim follows.

Given T ∈ Pk and S ∈ Pn , 1 ≤ k ≤ n, we define

νT (S) := inf{tr(S[P ]T ) | P ∈ Mn×k(Z) primitive} ,

where tr is the trace. Clearly the minimum is attained and one has

νI(S) ≥ ν1(S) + . . . + νk(S) , I =

 1 0
. . .

0 1

 ∈ Pk ,

where equality holds at least for k ≤ 4. If k = n and T ∈ Pn has no
non-trivial automorphs, then Venkov [12] showed that

{S ∈ Pn | tr(ST ) = νT (S)}
is a fundamental domain of Pn with respect to the action of the unimodular
group.

Proposition 2. Let S ∈ Pn, T ∈ Pk, 1 ≤ k ≤ n. Then one has

νT (S) ≥ kδk(S)1/k(detT )1/k ≥ k( 3
4 )(k−1)/2µ(S)µ(T ) .

P r o o f. Choose a primitive P ∈ Mn×k(Z) with νT (S) = tr(S[P ]T ).
Then apply the result of Barnes and Cohn [2] to S[P ] and T :

νT (S) = tr(S[P ]T ) ≥ k(det(S[P ]))1/k(detT )1/k .

One has det(S[P ]) ≥ δk(S). Now the claim follows by virtue of Proposi-
tion 1, Corollary 1 and (7).
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