ACTA ARITHMETICA
LXIIL1 (1993)

Primitive minima of positive definite
quadratic forms

by

Avoys KRrIEG (Miinster)

1. Introduction. The main purpose of the reduction theory is to
construct a fundamental domain of the unimodular group acting discontin-
uously on the space of positive definite quadratic forms. This fundamental
domain is for example used in the theory of automorphic forms for GL,
(cf. [11]) or in the theory of Siegel modular forms (cf. [1], [4]). There are
several ways of reduction, which are usually based on various minima of the
quadratic form, e.g. the Korkin—Zolotarev method (cf. [10], [3]), Venkov’s
method (cf. [12]) or Voronol’s approach (cf. [13]), which also works in the
general setting of positivity domains (cf. [5]). The most popular method is
Minkowski’s reduction theory [6] and its generalizations (cf. [9], [15]).

Minkowski’s reduction theory is based on attaining certain minima,
which can be characterized as the successive primitive minima of the quadra-
tic form. Besides these we have successive minima, but a reduction accord-
ing to successive minima only works for n < 4 (cf. [14]). In this paper we
introduce so-called primitive minima, which lie between successive and suc-
cessive primitive minima (cf. Theorem 2). Using primitive minima we obtain
a straightforward generalization of Hermite’s inequality in Theorem 1. As
an application we get a simple proof for the finiteness of the class num-
ber. Finally we describe relations with Rankin’s minima (cf. [8]) and with
Venkov’s reduction (cf. [12]).

2. Various minima. Let P,, denote the set of all real positive definite
nxn matrices. GL,,(Z) stands for the unimodular group of degree n, i.e. the
group of units in the ring M,,(Z). An integral n x k matrix P € M, «(Z),
n > k, is called primitive, if the g.c.d. of all the k-rowed minors of P is 1.
This is equivalent to the fact that there exists a matrix (P,*) € GL,(Z)
(cf. [7]). Moreover, set

A[B] := (B")AB

for matrices A, B of appropriate size.
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A matrix S = (s;i) € Py, is called Minkowski-reduced whenever
(M.1)  S[g] > sik for all g = (y1,..., ) €Z"
with g.c.d. (e, ., ) =1, 1 <k <n,
(MQ) Sk k+1 = Ofor 0<k<n.

The set of Minkowski-reduced matrices is a fundamental domain of P,, with
respect to the discontinuous group of mappings

Pn—P,, S—S[U], UeGL,(Z).
In order to determine a unimodular matrix U such that S[U] is Minkowski-
reduced proceed as follows (cf. [4]): Given S € P,, define its minimum by
(1) wu(S) :=inf{S[h] |0 #h cZ"}.
Determine g1 € Z™ with u(S) = S[g1]. As soon as g1,...,9x, 0 < k < n,
are given, choose gry1 € Z" such that

(2) Slgrs1] = inf{S[h] | (91,.-., 9%, h) € My x(k41)(Z) is primitive} .

If necessary replace gix+1 by —gr+1 in order to get gr.Sgr+1 > 0. In this way
we construct a unimodular matrix U = (g1,...,9n) such that T = S[U] is
Minkowski-reduced. The diagonal entries of T" are given by (1) and (2) and
may therefore be called the successive primitive minima of S.

Besides these the successive minima p1(S),. .., pn(S) of S € P, were
introduced (cf. [14]). Determine g; € Z™ as in (1), i.e.

p1(S) = u(S) = Slg] .
As soon as g1,...,9k,0 < k < n, are given, choose gx11 € Z" such that
(3) pr+1(S) = Slgr+1] = inf{S[h] | h € Z", rank(g1,...,9kx,h) =k + 1}.
Using Steinitz’ theorem we have the alternative definition

there is H = (hy,...,hx) € Myuxk(Z),
rank H =k, S[h;] <t, 1<j<k ’
1<k<n.

(4)  pr(S) =inf {t eR

Comparing (3) and (4) it is interesting to investigate the analogue for prim-
itive matrices in place of maximal rank matrices. We define
there is a primitive H = (hy, ..., hg)
lnMnXk(Z)aS[hj]Sta 1§]§k ’
1<k<n.

(5)  v(S) = inf {t eR

We call v (S) the k-th primitive minimum of S. Obviously one has
6) () <w(S), 1<k<n, n(S)=m(S) =mus).
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3. A generalization of Hermite’s inequality. For S € P,, we have

(7) w(S) =11(S) < wa(S) < ... <w(S).
Since UP, U € GL,(Z), is primitive if and only if P is, we conclude
(8) vp(S[U]) = vi(S) for U € GL,(Z), 1<k <n.

Note that a primitive matrix can be completed to a unimodular matrix.
Hence given 1 < k < n there exists Uy € GL,,(Z) such that

9)  S[U)=T=(ty), t11<tor<...<tun, tar="rvi(S).
THEOREM 1. Given S € P,, one has
V1(S) ... v (S) < (27D 2 et S .
Proof. We use induction on n; the case n = 1 is obvious. According

to (8) and (9) we may assume s17 = p(S) = v1(S) =: p without restriction.
By the method of completing squares we obtain a decomposition

- p y 1 at = H :U“at n—1
S_(O T>|:<O I)}_(ua T—I—,uaat ’ TePnp1,acR ,

where I is the (n — 1) x (n — 1) identity matrix. Given 0 < k < n there
exists a primitive matrix G = (g1,...,9x) € M(—1)xx(Z) such that

Tlg;) <we(T), 1<j<k.
Next choose g = (71,...,7k)" € 7ZF such that the entries of g + Ga belong

to the interval [—3;1]. Now
t

1 t
H= (o %) € Mueorn(@ and 1= (%) € Moa(@)

are primitive. One has
S Bﬂ = p(yy +a'gy)® +Tlgl < gni(S) +w(T), 1<j<k.
Since H' is primitive we conclude
v(S) < L (8) + wa(T).
Now (7) leads to
S [(1)] =11(8) < ve(S) < 21 (S) +vi(T).

Since H is primitive, we now have

ve41(9) < 311 (S) + ve(T)  and v (S) < 3ui(T).
According to v1(S) det T = det S the induction hypothesis yields

11(S) .. vn(S) < ()" ()i (T) ... vy (T)

< (Hyr=D/2p(8) det T = ()" D/2 det S . m
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In view of (7) we obtain Hermite’s inequality (cf. [7]) as
COROLLARY 1. Given S € P,, one has
p(S)" < ($)mn=H/2det S .
Denote the class number by h,(N), N > 1, i.e. h, (V) is the number of
GL,,(Z)-equivalence classes of integral S € P,, with det S = N.
COROLLARY 2. The class numbers h,(N), N > 1, are finite. One has
hn(N) = O(N"("D/2) 45 N — 0.

Proof. By (9) it suffices to count the number of integral S € P,, with
det S = N and sgr < v,(5), 1 <k < n. In view of v(S) > 1 Theorem 1
implies

0 < sk < vp(S) S vi(S)...vn(S) < ()" D/2N
Next S € P, yields s;jspr — s?k > 0, hence |s;;| < (%)”(”_1)/2]\7 for1 <
§ < k < n. Thus the number of these S is O(N"("T1/2) as N — co. m

For other proofs of Corollary 2 we refer to [7].

4. Relations with other types of minima. The first relation is
derived in

THEOREM 2. Let S = (s;;) € Pp, be Minkowski-reduced. Given1 <k <n
one has
pi(S) < vi(S) < spr < appr(S) < agrr(S),

where

{1 ifk <4,
ap =

()t ifk>4.

Proof. v(S) < sgi follows from s1; < ... < 8p,,. The remaining parts
are consequences of (6) and [14], Satz 7 and (45). =

If & > 5 there are quadratic forms S with v4(S) > puk(S). Just as in [14]
consider the matrix S attached to the quadratic form

x} + 25 + 25 + 25 + (21 + 22 + T3 + Ta)T5 + 222
One easily checks
pe(S) =v;(S)=1, 1<k<5,1<j<4, (5=

N3

Next consider the minima
0k (S) := inf{det(S[P]) | P € M, «xx(Z) primitive}
= inf{det(S[G]) | G € My xi, rankG =k}, 1<k<mn,

which were introduced by Rankin [8].
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PROPOSITION 1. Given S € P, and 1 < k <n one has

v1(S) ... v (S) < (3)FE-D/25,(89).

Proof. Choose a primitive P € M, x,(Z) with §;(S) = det(S[P]).
Apply Theorem 1 to S[P]. In view of the obvious inequalities v;(S[P]) >
v;(S) for 1 < j <k, the claim follows. m

Given T € P, and S € P,,, 1 <k <n, we define

vp(S) == inf{tr(S[P]T) | P € M, x,(Z) primitive},

where tr is the trace. Clearly the minimum is attained and one has

1 0

vi(S) > (S)+...+w(S), I= € P,

0 1
where equality holds at least for ¥ < 4. If Kk = n and T € P, has no
non-trivial automorphs, then Venkov [12] showed that

{S €P,|tr(ST) =vr(S)}

is a fundamental domain of P,, with respect to the action of the unimodular
group.

PROPOSITION 2. Let S € P,,, T € P, 1 <k <n. Then one has

vr(S) 2 kor(S)/*(det T)V/* > k()" D2 u(S)(T) -

Proof. Choose a primitive P € M, «x(Z) with vp(S) = tr(S[P]T).

Then apply the result of Barnes and Cohn [2] to S[P] and T
vp(S) = tr(S[P]T) > k(det(S[P]))Y*(det T)'/* .

One has det(S[P]) > 0x(S). Now the claim follows by virtue of Proposi-
tion 1, Corollary 1 and (7). m
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