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1. Introduction and notation. As usual we write s = σ + it. The
main object of this paper is to prove the following

Theorem 1. Let a be any complex constant and µ any real constant
satisfying 0 < µ < 1. Then there exists a constant δ = δ(a, µ) (> 0)
depending only on a and µ such that the number of distinct zeros of ζ ′(s)−a
in (σ ≥ 1/2 + δ, T ≤ t ≤ T + Tµ) exceeds a positive constant multiple of
Tµ. (Hereafter we write � Tµ to mean this.)

R e m a r k. The history of the theorem on the zeros of ζ ′(s) − a is con-
nected with the names B. C. Berndt [6] (see p. 287 of [8]) and N. Levinson
and H. L. Montgomery [7] (see pp. 287–289 of [8]). See also Theorem 11.5(C)
on p. 298 of [8] for the earlier history. But our Theorem 1 deals with the
distribution of the zeros of ζ ′(s) − a in “short t-slabs” in the “right half of
the critical strip” (i.e. the region σ ≥ 1/2 + δ), as compared with earlier
results. Another point about our proof of Theorem 1 is its novelty and its
generality.

We will be concerned with proving a similar theorem for more general
functions G(s) defined for large σ by a convergent series 1 −

∑∞
n=2 bnµ−s

n

where µ2, µ3, . . . are real numbers and b2, b3, . . . are complex numbers re-
stricted by the following conditions:

(i) Put µ1 = 1. Then for n = 1, 2, 3, . . . , C−1
1 ≤ µn+1 − µn ≤ C1

where C1 (≥ 1) is any fixed constant,
(ii) G(s) can be continued analytically in (σ ≥ 1/2, T ≤ t ≤ T + Tµ)

and there the maximum of |G(s)| is ≤ TC2 where C2 (> 0) is any fixed
constant, and

(iii) |bn| < nC3 where C3 (> 0) is any constant.

Theorem 1 is a special case of

Theorem 2. Let µn =(n0 + n− 1)n−1
0 where n0 is any integer constant

≥ 1. Let
∑∞

n=2 |bn|2n−1−ε be convergent for every ε>0 and →∞ as ε→0.
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Let further

lim
ε→0

inf min
q≥2

{
q2

( ∞∑
n=2

|bn|2n−1−ε
)1/q(∑′

|bn|2n−1−ε
)−1}

= 0

where the accent denotes the sum over all integers ≥ n0 + 1 for which n0 +
n − 1 is prime. Then G(s) has � Tµ distinct zeros in (σ ≥ 1/2 + δ,
T ≤ t ≤ T + Tµ) for every fixed µ with 0 < µ < 1 and a suitable constant δ
(> 0) depending only on µ, C1, C2 and C3.

R e m a r k 1. Theorem 1 follows from the observations ζ ′(s) =
−2−s(log 2)G(s) for a suitable G(s) and if a 6= 0, ζ ′(s)− a = −aG(s) for a
suitable G(s).

R e m a r k 2. Obviously we can deduce similar theorems for higher deriva-
tives of ζ(s). We can also get similar theorems for the derivatives of ζ and
L-functions and for ζ-functions of ray classes in any algebraic number field.
However, we have neater theorems for ζ(s)−a (a 6= 0) and certain more gen-
eral functions (compared with ζ(s)− a (a 6= 0)). But these need a different
treatment and are dealt with in [5].

For general µn we need a conjecture (see Section 2) which is true for
example for µn = n +

√
2. It is also true for more general situations. Thus

we can state

Theorem 3. Let b2, b3, . . . be non-negative real numbers and µn = n+
√

2
(n ≥ 2). Then subject to the only conditions that

∑∞
n=2 |bn|2n−1−ε shall be

convergent for every ε > 0 and that it shall tend to infinity as ε → 0, G(s)
has � Tµ distinct zeros in (σ ≥ 1/2+δ, T ≤ t ≤ T +Tµ) for every constant
µ (0 < µ < 1) and a suitable positive constant δ depending only on µ, C1,
C2 and C3.

R e m a r k 1. This theorem is true for all those sequences µn for which
the conjecture in Section 2 is true.

R e m a r k 2. This theorem includes functions like

1−
∞∑

n=1

d(n)(n +
√

2)−s , 1−
∑

r

(N(r) +
√

2)−s

where r runs over all ideals in a ray class of an algebraic number field and
so on.

As a closing remark in this section we mention that our method enables
us to prove something stronger. For example in Theorems 1 and 3 we can
prove that the number of zeros counted with multiplicity is either� Tµ log T
or there exist � Tµ distinct zeros of odd orders. For this we have to replace
Lemma 1 of Section 3 by our Theorem 3 of [1].
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2. Some preliminaries. In this section we collect together some results
of our earlier papers and state a Local Convexity Theorem [3], a lower bound
for the mean-value of Titchmarsh series [4] and two simple lemmas from [2].
We number these results with an asterisk thus: Theorems 1∗, 2∗, 3∗ and 4∗

and Lemmas 1∗ and 2∗. Also we state a conjecture.

(Local Convexity) Theorem 1∗. Suppose f(s) is an analytic func-
tion of s = σ + it defined in the rectangle

R : {a ≤ σ ≤ b, t0 −H ≤ t ≤ t0 + H}
where a and b are constants with a < b. Let the maximum of |f(s)| taken
over R be ≤ M . Let a ≤ σ0 < σ1 < σ2 ≤ b and let A be any large positive
constant. Let r be any positive integer, 0 < D < H and s1 = σ1 + it0. Then

|2πf(s1)| ≤ 2{Iσ2−σ1
0 (I2 + M−A)σ1−σ0}(σ2−σ0)

−1
Er

0

+2MA+2(σ2 − σ0)
(

2
(

1 +
(

log
(

D

σ1 − σ0

))∗))(σ2−σ1)(σ2−σ0)
−1(

2E0

D

)r

,

where

E0 = exp
(

(σ2 − σ1)(σ1 − σ0)
σ2 − σ0

)
,

I0 =
∫

|v|≤D

∣∣∣∣f(σ0 + it0 + iv)
dv

σ0 − σ1 + iv

∣∣∣∣ ,

I2 =
∫

|v|≤D

∣∣∣∣f(σ2 + it0 + iv)
dv

σ2 − σ1 + iv

∣∣∣∣ ,

and we have written x∗ = max(0, x) for any real number x.

R e m a r k. We have borrowed the result with C = 1 from our paper [3].

In the rest of this section we state a conjecture which gives a lower bound
for the mean-value of Titchmarsh series. We then collect some special results
where the conjecture is proved. We borrow Sections 2 and 3 of [2]. We
believe that the following conjecture is true (at least in a modified form).
We stipulate that certain constants shall be integers only for a technical
reason which is not serious.

Conjecture. Let 1 = µ1 < µ2 < . . . be any sequence of real numbers
with C−1 ≤ µn+1 − µn ≤ C, where C (≥ 1) is an integer constant and
n = 1, 2, 3, . . . Let us form the sequence 1 = λ1 < λ2 < . . . of all possible
distinct finite power products of 1 = µ1 < µ2 < . . . with non-negative
integral exponents. Let s = σ + it, H (≥ 10) a real parameter and {an}
(n = 1, 2, 3, . . .) with a1 = 1 be any sequence of complex numbers (possibly
depending on H) such that F (s) =

∑∞
n=1 anλ−s

n is absolutely convergent
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at s = B where B (≥ 3) is an integer constant. Suppose F (s) can be
continued analytically in (σ ≥ 0, 0 ≤ t ≤ H) and that there exist T1, T2,
with 0 ≤ T1 ≤ H3/4, H −H3/4 ≤ T2 ≤ H, such that for some K (≥ 30)

max
σ≥0

(|F (σ + iT1)|+ |F (σ + iT2)|) ≤ K .

Finally, let
∑∞

n=1 |an|λ−B
n ≤ HA where A (≥ 1) is an integer constant.

Then there exists a δ1 (> 0) (depending only on A, B, C) such that for all
H ≥ H0(A,B,C)

1
H

H∫
0

|F (it)|2dt ≥ 1
2

∑
λn≤Hδ1

|an|2

provided H−1 log log K does not exceed a small positive constant.

R e m a r k 1. We have used the symbol δ1 (in place of δ) so that it should
not clash with the δ already introduced. Also we conjecture that 1/2 can
be replaced by a quantity ∼ 1 provided H−1 log log K → 0 as H → ∞.
Whenever we have succeeded in proving this conjecture we have proved it
in this stronger form.

R e m a r k 2. We need this conjecture only for an defined (for large σ)
by

F (s) = (G(1/2 + δ + s))1/q =
∞∑

n=1

anλ−s
n

and for any fixed δ > 0 and a suitable rectangle (σ ≥ 0, T ≤ t ≤ T + H)
where G(1/2 + δ + s) has no zeros. We choose q to be any integer (≥ 2).

We now quote the corollaries to the main theorem of [4].

Theorem 2∗. Let µn = n. Then the conjecture is true.

Theorem 3∗. Let n0 (≥ 2) be any integer constant and

µn = (n0 + n− 1)n−1
0 .

Then the conjecture is true.

Theorem 4∗. Let β (> 0) be any algebraic constant and

µn = (n + β)(1 + β)−1 .

Then the conjecture is true (the conjecture is also true for the choice µ1 = 1
and µn = n + β − 1 for n > 1).

R e m a r k. It is possible to state a more general corollary than Theo-
rem 4∗. But we do not state it since our ambition is to prove a sufficiently
general result.

We now record two important observations as Lemmas 1∗ and 2∗.
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Lemma 1∗. Let µn = (n0 + n − 1)n−1
0 where n0 (≥ 1) is an integer

constant and G(s) = 1 −
∑∞

n=2 bnµ−s
n be absolutely convergent for some

complex s. Then we have, for any integer q (> 0) and all σ large enough,
and any δ > 0,

G(1/2 + δ + s) =
∞∑

n=1

anλ−s
n

where the λ’s are formed as in the conjecture, a1 = 1 and further whenever
n0 + n− 1 is prime, |an| = q−1|bn|µ−1/2−δ

n and so∑
λn≤Hδ1

|an|2 ≥ q−2
∑′

µn≤Hδ1

|bn|2µ−1−2δ

where the accent denotes the restriction of the sum to those n for which
n0 + n− 1 is prime.

P r o o f. See Lemma 1 of [2].

Lemma 2∗. Let G(s) = 1 −
∑∞

n=2 bnµ−s
n where the bn are non-negative

and the sum involved converges for some complex s. Then for any integer q
(> 0) and for all large σ and any δ > 0

(G(1/2 + δ + s))1/q =
∞∑

n=1

anλ−s
n

where the λ’s are formed as in the conjecture, a1 = 1 and further for n ≥ 2,
an ≤ 0 and −an ≥ bnµ

−1/2−δ
n q−1 whenever λn = µn and so∑

λn≤Hδ1

|an|2 ≥ q−2
∑

µn≤Hδ1

b2
nµ−1−2δ

n .

P r o o f. Trivial.

3. An outline of the method. Instead of giving a detailed proof of
Theorems 1, 2 and 3 we give a rough sketch of the proof. We begin with

Lemma 1. Let t0 ≥ 100 and let D(s) be any function analytic in (σ ≥
1/2 + δ, |t − t0| ≤ C(δ)) where δ is any positive constant and C(δ) is a
large positive constant depending on δ and D0 to follow. In this region
let the maximum of |D(s)| be ≤ M (≥ 30) and also D(s) 6= 0. Suppose
further that for all σ exceeding a constant D0 we have |log D(s)| ≤ 1/2.
Then log D(s) = O(log M) in (σ ≥ 1/2 + 3δ/2, |t − t0| ≤ C(δ)/2) and
log D(s) = O((log M)θ), with a θ (< 1) not depending on t0 in (σ ≥ 1/2+2δ,
|t− t0| ≤ C(δ)/3). Here the O-constants depend on δ and D0.

R e m a r k. For the purposes of the present paper the conclusion log D(s)
= o(log M) will do in place of O((log M)θ). But we have stated the lemma
in this form since we will need it in a later paper [5].
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P r o o f. The proof is essentially due to J. E. Littlewood. See pages 336–
337 of [8] for a proof which can be easily generalised to give this lemma.

We introduce small positive constants ε1, ε2, ε3, ε and δ (all < 1/100)
and these will be fixed in a suitable way. The only free parameters will be
T and H (H will be fixed to be a large constant in the end).

Lemma 2. Let A(s) =
∑

n≤T ν bnµ−s
n where b1 = −1, µ1 = 1 ν = µ/2

and bn as before. Then, for σ ≥ 1/2 + δ,
T+T µ∫
T

|A(s)|2 dt ≤ Tµ(1 + ε2)
∞∑

n=1

|bn|2µ−2σ
n ,

for arbitrary ε2 > 0 and all large T .

P r o o f. The lemma follows by standard arguments.

Divide the interval [T, T + Tµ] into N abutting t-intervals J (ignoring
a bit at one end) each of length H where N ∼ TµH−1. With any interval
J associate the interval J1 obtained by deleting intervals of length H1/2 at
both ends. If the maximum of |G(s)| taken over the rectangle (σ ≥ 1/2+2δ,
t ∈ J1) is ≥ T ε, then by Lemma 1 (applied to G(s) and by taking M to be a
large positive constant power of T ) the rectangle (σ ≥ 1/2 + δ, t ∈ J) must
contain a zero of G(s). Otherwise we are easily led to the contradiction
T ε = O(exp((log T )θ)). If there are ≥ ε1N (ε1 > 0 a small constant) such
rectangles (σ ≥ 1/2 + 2δ, t ∈ J1) where max |G(s)| ≥ T ε then there is
nothing to prove, since each rectangle (σ ≥ 1/2 + δ, t ∈ J) will contain
a zero and the total number of zeros would be ≥ ε1N � TµH−1. Hence
we assume that the number of rectangles (σ ≥ 1/2 + 2δ, t ∈ J1) where
max |G(s)| ≥ T ε is < ε1N . Hence for ≥ (1 − ε1)N (∼ (1 − ε1)TµH−1)
such rectangles (σ ≥ 1/2 + 2δ, t ∈ J1) max |G(s)| < T ε. Denote the set
of these rectangles by S. We prove that a (positive) constant proportion of
these rectangles must contain a zero of G(s). Denote by J2 the t-intervals
J1 of S with intervals of length H1/2 deleted from both ends. For t0 ∈ J2

we now apply convexity Theorem 1∗ taking A = 1 and M to be a large
(positive) constant power of T ; r = [ε log T ],H large enough, a = 1/2+2δ, b
a large (positive) constant independent of ε and δ, σ0 = a, σ2 = b, b/2 ≥
σ1 ≥ 1/2 + 3δ,D =

√
H and f(s) = (G(s))2 − (A(s))2 where A(s) is as in

Lemma 2. It follows that

(1) |2πf(s1)| ≤ 2{Iσ2−σ1
0 (I2 + T−3)σ1−σ0}(σ2−σ0)

−1
T ε + T−3 ,

where

(2) I0 =
∫

|v|≤
√

H

∣∣∣∣f(σ0 + it0 + iv)
dv

σ0 − σ1 + iv

∣∣∣∣
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and

(3) I2 =
∫

|v|≤
√

H

∣∣∣∣f(σ2 + it0 + iv)
dv

σ2 − σ1 + iv

∣∣∣∣ .

Notice that for rectangles of S we have |G(s)|2 < T 2ε. We now integrate
(1) with respect to t0 ∈ J2. Now as t0 varies over J2, t0 + v runs over at
most J1. Thus we get from (1)

2π

|J2|
∫

t0∈J2

|f(s1)| dt0

≤2
{(

1
|J2|

∫
t0∈J2

I0 dt0

)σ2−σ1
(

1
|J2|

∫
t0∈J2

I2 dt0+T−3

)σ1−σ0
}(σ2−σ0)

−1

+T−3

= O

((
1
H

∫
t0∈J1

|f(σ0 + it0)| dt0

)σ2−σ1

×
(

1
H

∫
t0∈J1

|f(σ2 + it0)| dt0 + T−3

)σ1−σ0
)(σ2−σ0)

−1

+ T−3 .

Hence

(4)
1
H

∫
t0∈J2

|f(s1)| dt0

= O

({(
1
H

∫
t0∈J1

|A(σ0 + it0)|2 dt0 + T 2ε

)σ2−σ1

× (TC0−µσ2/2 + T−3)σ1−σ0

}(σ2−σ0)
−1)

+ O(T−3) .

By Lemma 2 we have∑
J1

∫
t0∈J1

|A(σ0 + it0)|2 dt0 < Tµ(1 + ε2)
∞∑

n=1

|bn|2µ−1−4δ
n ,

and so ∫
t0∈J1

|A(σ0 + it0)|2 dt0 > H(1 + ε2)(1 + 3ε2)
∞∑

n=1

|bn|2µ−1−4δ
n ,

for at most ≤ (1+3ε2)−1TµH−1 intervals J1. Hence for ≥ (1−2ε1)TµH−1−
(1 + 3ε2)−1TµH−1 � TµH−1 (provided ε2 = 10ε1) rectangles of S we have
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|G(s)|2 < T 2ε and also
∫

t0∈J1

|A(σ0 + it0)|2 dt0 = O(H). Thus from (4) we

obtain (for � TµH−1 out of these rectangles of S)

1
H

∫
t0∈J2

|f(s1)| dt0 = O((T 2ε(σ2−σ1)T−3(σ1−σ0))(σ2−σ0)
−1

+ T−3)

by choosing σ2 such that C0 − µσ2/2 ≤ −3. Now choose ε such that

2ε(σ2 − σ1) ≤ 3(σ1 − σ0)− ε .

Then we have
1
H

∫
t0∈J2

|f(s1)| dt0 = O(T−ε(σ2−σ0)
−1

) .

Again since |G(s1)|2 ≤ |f(s1)|+ |A(s1)|2 we have

(5)
1
H

∫
t0∈J2

|G(s1)|2 dt0 ≤ (1 + 10ε2)
∞∑

n=1

|bn|2µ−2σ1
n ,

by Lemma 2. Since the absolute value of an analytic function at a point
is majorised by its mean-value taken over a disc of radius δ/10 about that
point as centre, we see that the maximum of |G(s)| taken over the rectangle
(σ ≥ 1/2 + 3δ, t ∈ J3) is ≤ H2 (J3 being J2 with the intervals of length
H1/2 deleted at both ends). Hence by Theorems 2∗, 3∗ and 4∗ and Lemmas
1∗ and 2∗ we have

1
H

∫
t0∈J3

|G(1/2 + 3δ + it0)|2/q dt0 ≥ q−2(1− ε3)
∑′

µn≤Hδ1

|bn|2µ−1−6δ
n

where the accent indicates the inclusion of only those n for which |an| ≥
q−1|bn|µ−1/2−3δ

n . Also ε3 is an arbitrarily small constant which is fixed. (We
have applied the theorems and lemmas with δ replaced by 3δ.) We compare
this with the upper bound{

(1 + 10ε2)
( ∞∑

n=1

|bn|2µ−1−6δ
n

)}1/q

obtained from (5) by Hölder’s inequality. This leads to a contradiction (for
� TµH−1 out of the rectangles of S) to our assumption of Theorem 2 (resp.
Theorem 3). This completes the proof of Theorems 1, 2 and 3 stated in the
introduction.
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