On the Poincaré series for diagonal forms over algebraic number fields

by

JUN WANG (Dalian)

1. Introduction. Let p be a fixed prime and $f(x_1, \ldots, x_s)$ a polynomial with coefficients in \mathbb{Z}_p , the *p*-adic integers. Let c_n denote the number of solutions of f = 0 over the ring $\mathbb{Z}/p^n\mathbb{Z}$, with $c_0 = 1$. Then the Poincaré series $P_f(t)$ is the generating function

$$P_f(t) = \sum_{n=0}^{\infty} c_n t^n \,.$$

This series was introduced by Borevich and Shafarevich [1, p. 47], who conjectured that $P_f(t)$ is a rational function of t for all polynomials. This was proved by Igusa in 1975 in a more general setting, by using a mixture of analytic and algebraic methods [5, 6]. Since the proof is nonconstructive, deriving explicit formulas for $P_f(t)$ is an interesting problem. In this direction Goldman [2, 3] treated strongly nondegenerate forms and algebraic curves all of whose singularities are "locally" of the form $\alpha x^a = \beta y^b$, while polynomials of form $\sum x_i^{d_i}$ with $p \nmid d_i$ were investigated earlier by E. Stevenson [7], using Jacobi sums. In [8] explicit formulas for $P_f(t)$ were derived for diagonal forms. This paper generalizes the results of [8] to algebraic number fields.

Let F be a finite extension of the rational field, and P a prime ideal of F with norm N(P) = q which is a rational prime power. Using the previous notations, we let c_n denote the number of solutions of the congruence

(1)
$$a_1 x_1^{d_1} + \ldots + a_s x_s^{d_s} \equiv 0 \pmod{P^n}$$

where d_1, \ldots, d_s are positive integers, a_1, \ldots, a_s are integers of F prime to *P*, and write $P(t) = \sum_{n=0}^{\infty} c_n t^n$. It is clear that $c_n = q^{n(s-1)}$ if $d_i = 1$, for some $i, 1 \le i \le s$. Therefore

we assume that d_1, \ldots, d_s are all integers greater than 1.

Research supported by the National Natural Science Foundation of China.

J. Wang

Throughout this paper, we set $d = \operatorname{lcm}\{d_1, \ldots, d_s\}$, $f_i = d/d_i$, $r = f_1 + \ldots + f_s$ and $\overline{c}_n = q^{-n(s-1)}c_n$.

2. Exponential sums. For the prime ideal P of F, choose an ideal C of F such that (P, C) = 1 and $PC = (\theta)$ is principal. Then we may assume that any integer u in F is of the form

$$u = \theta^j \xi$$
 $(j \ge 0, (\xi, P) = 1)$.

In this case we write $\operatorname{ord}_P u = j$. Let D represent the different of F (see [4, Ch. 36]), and choose B, (B, P) = 1 such that $(\zeta) = B/P^n D$ is principal. We set $\zeta_m = \zeta \theta^{n-m}, 0 \leq m \leq n$, such that $\zeta = \zeta_n$, and define further

$$e_m(u) = e^{2\pi i \operatorname{tr}(u\zeta_m)},$$

where the symbol $tr(\gamma)$ denotes the trace in F. The function $e_m(u)$ defines an additive character (mod P^m) and has the following simple properties:

(2)
$$e_0(u) = 1, \quad e_m(u) = e_m(u') \quad \text{if } u \equiv u' \pmod{P^m},$$

(3)
$$e_m(u\theta^j) = e_{m-j}(u) \quad (0 \le j \le m),$$

(4)
$$\sum_{\substack{z \pmod{P^m}}} e_m(uz) = \begin{cases} q^m & \text{if } u \equiv 0 \pmod{P^m}, \\ 0 & \text{otherwise.} \end{cases}$$

For $k \geq 1$, we define

$$S_m(u,k) = \sum_{z \pmod{P^m}} e_m(uz^k), \quad S_0(u,k) = 1.$$

It is clear that if $m \ge j \ge 0$, then

(5)
$$S_m(u\theta^j,k) = q^j S_{m-j}(u,k).$$

The following lemmas are useful in the proof of the main theorem.

LEMMA 1. For any positive integer k, there is an integer $a \ge k$ such that whenever $m \ge a$, then

(6)
$$S_m(u,k) = q^{k-1}S_{m-k}(u,k), \quad (u,P) = 1.$$

Proof. Suppose $\operatorname{ord}_P k = l$. Then take *a* to be a positive integer which is greater than *k* and all of i(l+1)/(i-1), $i = 2, \ldots, k$. Thus, when $m \ge a$ we have

(7)
$$i(m-l-1) \ge m, \quad i=2,\ldots,k.$$

From this it follows that $m \ge l+1$ and

$$\{z \pmod{P^m}\} = \{y + x\theta^{m-l-1} \mid y \pmod{P^{m-l-1}}, x \pmod{P^{l+1}}\}.$$

Using the binomial theorem and (7) we have

$$(y + x\theta^{m-l-1})^k \equiv y^k + ky^{k-1}x\theta^{m-l-1} \pmod{P^m},$$

and

$$S_m(u,k) = \sum_{y \pmod{P^{m-l-1}}} e_m(uy^k) \sum_{x \pmod{P^{l+1}}} e_{l+1}(uky^{k-1}x).$$

Since $\operatorname{ord}_P k = l$, by (4), the inner sum is 0 unless $y \equiv 0 \pmod{P}$, in which case it has the value q^{l+1} . Hence we have, by setting $y = y_1\theta$, $y_1 \pmod{P^{m-l-2}}$,

$$S_m(u,k) = q^{l+1} \sum_{y_1 \pmod{P^{m-l-2}}} e_{m-k}(uy_1^k) = q^{k-1} S_{m-k}(u,k) . \quad \bullet$$

Let a(k) be the least positive integer such that (6) holds when $m \ge a(k)$, and write

(8)
$$\varrho = \max\{a(d_1), \dots, a(d_s)\}.$$

LEMMA 2. Put $T_m = q^{-ms} \sum_{(v,P^m)=1} S_m(va_1, d_1) \dots S_m(va_s, d_s)$. Then $T_{d+j} = q^{d-r}T_j$ for $j \ge \varrho - 1$.

Proof. Since $j \ge \varrho - 1$ and $d_i \ge 2$, we have $d_i + j \ge a(d_i)$. By Lemma 1 one gets

$$S_{d+j}(u, d_i) = q^{f_i(d_i-1)} S_j(u, d_i), \quad i = 1, 2, \dots, s.$$

Therefore,

$$T_{d+j} = q^{-(d+j)s} \sum_{(v,P^{d+j})=1} S_{d+j}(va_1, d_1) \dots S_{d+j}(va_s, d_s)$$
$$= q^{-(d+j)s} \sum_{(v,P^{d+j})=1} \prod_{i=1}^s q^{f_i(d_i-1)} S_j(va_i, d_i) = q^{d-r} T_j . \blacksquare$$

3. Main results

THEOREM. Let ρ be as in (8). We have

(i) recursion: for $n \ge \varrho$,

$$\overline{c}_{n+d} = c + q^{d-r}\overline{c}_n \,,$$

(ii) the Poincaré series is given by

$$P(t) = \frac{(1 - q^{s-1}t)(\sum_{i=0}^{\varrho+d-1} c_i t^i - q^{ds-r} \sum_{i=0}^{\varrho-1} c^i t^{d+i}) + cq^{(\varrho+d)(s-1)} t^{\varrho+d}}{(1 - q^{s-1}t)(1 - q^{ds-r}t^d)} \,,$$

where $c = \overline{c}_{\varrho+d-1} - q^{d-r}\overline{c}_{\varrho-1}$ is a constant depending only upon the diagonal form as in (1).

Proof. (i) From (4) we have

$$c_{n} = q^{-n} \sum_{x_{1},...,x_{s} \pmod{P^{n}}} \sum_{u \pmod{P^{n}}} e_{n}(u(a_{1}x_{1}^{d_{1}} + ... + a_{s}x_{s}^{d_{s}}))$$

= $q^{-n} \sum_{u \pmod{P^{n}}} S_{n}(ua_{1}, d_{1}) \dots S_{n}(ua_{s}, d_{s}).$

In the summation over $u \pmod{P^n}$, we may set $u = v\theta^{n-m}$, $0 \le m \le n$, $v \pmod{P^m}$ and $(v, P^m) = 1$. From (5) one has

$$c_n = q^{n(s-1)} \sum_{m=0}^n q^{-ms} \sum_{(v,P^m)=1}^n S_m(va_1, d_1) \dots S_m(va_s, d_s)$$
$$= q^{n(s-1)} \sum_{m=0}^n T_m.$$

Set $n = \rho + l$, $l \ge 0$. By Lemma 2, we have

$$\overline{c}_{n+d} = \sum_{m=0}^{n+d} T_m = \sum_{m=0}^{\varrho+d-1} T_m + \sum_{m=0}^{l} T_{\varrho+d+m} = \overline{c}_{\varrho+d-1} + \sum_{m=0}^{l} q^{d-r} T_{\varrho+m}$$
$$= \overline{c}_{\varrho+d-1} + q^{d-r} (\overline{c}_n - \overline{c}_{\varrho-1}) = c + q^{d-r} \overline{c}_n \,.$$

(ii) Put $q^{s-1}t = t_1$. Then

$$P(t) = \sum_{n=0}^{\infty} c_n t^n = \sum_{i=0}^{\varrho+d-1} c_i t^i + \sum_{n=\varrho}^{\infty} c_{n+d} t^{n+d}$$

=
$$\sum_{i=0}^{\varrho+d-1} c_i t^i + \sum_{n=\varrho}^{\infty} \overline{c}_{n+d} t_1^{n+d} = \sum_{i=0}^{\varrho+d-1} c_i t^i + \sum_{n=\varrho}^{\infty} (c+q^{d-r}\overline{c}_n) t_1^{n+d}$$

=
$$\sum_{i=0}^{\varrho+d-1} c_i t^i + c t_1^{\varrho+d} (1-t_1)^{-1} + q^{d-r} t_1^d \left(P(t) - \sum_{i=0}^{\varrho-1} c_i t^i \right).$$

This gives the result of the theorem. \blacksquare

References

- [1] Z. I. Borevich and I. R. Shafarevich, *Number Theory*, Academic Press, New York 1966.
- [2] J. R. Goldman, Numbers of solutions of congruences: Poincaré series for strongly nondegenerate forms, Proc. Amer. Math. Soc. 87 (1983), 586–590.
- [3] —, Numbers of solutions of congruences: Poincaré series for algebraic curves, Adv. in Math. 62 (1986), 68–83.
- [4] E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer, New York 1981.

100

- [5] J. Igusa, Complex powers and asymptotic expansions, II, J. Reine Angew. Math. 278/279 (1979), 307–321.
- [6] —, Some observations on higher degree characters, Amer. J. Math. 99 (1977), 393-417.
- [7] E. Stevenson, The rationality of the Poincaré series of a diagonal form, Thesis, Princeton University, 1978.
- [8] J. Wang, On the Poincaré series for diagonal forms, Proc. Amer. Math. Soc., to appear.

INSTITUTE OF MATHEMATICAL SCIENCES DALIAN UNIVERSITY OF TECHNOLOGY DALIAN 116024, PEOPLE'S REPUBLIC OF CHINA

Received on 4.7.1991 (2157)