Integral spinor norms in dyadic local fields II

by

Fei Xu (Hefei)

In the previous paper $[\mathrm{X}]$ we have generalized the results of $[\mathrm{BD}]$ to a dyadic local field with $e=$ ord $2=2$. In the present paper we generalize these results to an arbitrary dyadic local field, and we also point out that the bound for $\operatorname{ord}(d L)$ is the best possible. The results obtained are applied to improve the sufficient condition for the class number of an indefinite quadratic form over the ring of integers of a number field to be a divisor of the class number of the field, which is analogous to Satz 5 of $[\mathrm{K}]$.

Here we adopt the notations from $[\mathrm{O}]$ and $[\mathrm{X}]$. In particular, F denotes a dyadic local field, ϑ the ring of integers in F, p the maximal ideal of ϑ, U the group of units in $\vartheta, e=$ ord 2 the ramification index of 2 in F, π a fixed prime element in $F, D($,$) the quadratic defect function, \Delta$ a fixed unit of quadratic defect $4 \vartheta, V$ a regular quadratic space over F with associated symmetric bilinear form $B(x, y), L$ a lattice on $V, d L$ the determinant of L, $O^{+}(V)$ the group of rotations on $V, O^{+}(L)$ the corresponding subgroup of units of L, and $\theta($,$) the spinor norm function. We use the symbol \langle a, b, c, \ldots\rangle$ for lattices, and $[a, b, c, \ldots]$ for spaces.

Lemma 1. For any $i \geq 1,1+p^{i}$ is generated by $1+\lambda \pi^{i}$ with $\lambda \in U$.
Proof. This follows from the identity

$$
\left(1+\sigma \pi^{k+1}\right)=\left(1+\pi^{k}\right)\left(1+\left(1+\pi^{k}\right)^{-1}(\sigma \pi-1) \pi^{k}\right) .
$$

Lemma 2. Suppose $s L \subseteq \vartheta$ and $\operatorname{rank} L \geq 3$ and $e \geq 3$. If $\operatorname{ord}(d L) \leq 3$ then $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$.

Proof. Let $L=L_{1} \perp \ldots \perp L_{t}$ be a Jordan splitting of L. We assume $t \geq 2$ and $\operatorname{rank} L_{i} \leq 2, i=1, \ldots, t$. Since ord $(d L) \leq 3, t \leq 3$. We consider several cases.
(1) $L=L_{1} \perp L_{2}$ where L_{1} is unimodular with $\operatorname{rank} L_{1}=2$ and $L_{2}=\vartheta x_{2}$ with $Q\left(x_{2}\right)=\varepsilon_{2} \pi$ and $\varepsilon_{2} \in U$. Put $L_{1} \cong A\left(a_{1},-a_{1}^{-1} \delta_{1}\right)$ with the base $\left\{x_{1}, y_{1}\right\}$ and $0 \leq$ ord $a_{1} \leq e$ and $D\left(1+\delta_{1}\right)=\delta_{1} \vartheta$.

If $\operatorname{ord}\left(-a_{1}^{-1} \delta_{1}\right)<e$, then ord $a_{1} \equiv \operatorname{ord}\left(-a_{1}^{-1} \delta_{1}\right)+1 \bmod 2$.

When ord a_{1} is even, take $K=\vartheta x_{1} \perp \vartheta x_{2}$. Note that any maximal vector of K gives rise to a symmetry of L. So $\theta\left(O^{+}(L)\right) \supseteq Q\left(\left[1, \dot{a}_{1} \varepsilon_{2} \pi\right]\right)$ which does not contain Δ, but Δ is in $\theta\left(O^{+}\left(L_{1}\right)\right)$ by $[\mathrm{H}]$. Therefore $\theta\left(O^{+}(L)\right)=\dot{F}$.

When ord a_{1} is odd, then $\operatorname{ord}\left(-a_{1}^{-1} \delta_{1}\right)$ is even. Take $K=\vartheta y_{1} \perp \vartheta x_{2}$, and $\theta\left(O^{+}(L)\right)=\dot{F}$ by the same arguments as above.

If ord $\left(-a_{1}^{-1} \delta_{1}\right) \geq e$, write $a_{1}=\varepsilon_{1} \pi^{r_{1}}$ and $-\varepsilon_{1} \varepsilon_{2}^{-1}=\eta^{2}+\sigma \pi^{d}$ where d is an odd integer or $d \geq 2 e$.

When r_{1} is odd, consider a unimodular lattice $\bar{L}_{1}=\vartheta\left(x_{1}+\eta \pi^{\left(r_{1}-1\right) / 2} x_{2}\right)$ $+\vartheta y_{1}$ which splits L. Write $L=\bar{L}_{1} \perp \vartheta \bar{x}_{2}$ with $Q\left(\bar{x}_{2}\right)=\bar{\varepsilon}_{2} \pi$. Note

$$
\operatorname{ord}\left(Q\left(x_{1}+\eta \pi^{\left(r_{1}-1\right) / 2} x_{2}\right)\right)=r_{1}+d
$$

If $r_{1}+d \geq e$, then $\bar{L}_{1} \cong A(0,0)$ or $A(2,2 \varrho)$ by [O, 93:11]. Therefore $\theta\left(O^{+}(L)\right) \supseteq \theta\left(O^{+}\left(\bar{L}_{1}\right)\right)=U \dot{F}^{2}$ by [H, Lemma 1]. Otherwise, $r_{1}+d<e$ and $r_{1}+d$ is even. Take $K=\vartheta\left(x_{1}+\eta \pi^{\left(r_{1}-1\right) / 2} x_{2}\right) \perp \vartheta \bar{x}_{2}$. Therefore $\theta\left(O^{+}(L)\right)$ $=\dot{F}$.

When r_{1} is even, take $K=\vartheta x_{1} \perp \vartheta x_{2}$. So $\theta\left(O^{+}(L)\right)=\dot{F}$.
(2) $L=L_{1} \perp L_{2}$ where L_{1} is unimodular with $\operatorname{rank} L_{1}=2$ and $L_{2}=\vartheta x_{2}$ with $Q\left(x_{2}\right)=\varepsilon_{2} \pi^{2}$ and $\varepsilon_{2} \in U$. By the arguments similar to Case (1), we only need to consider $L_{1} \cong A\left(\varepsilon_{1},-\varepsilon_{1}^{-1} \delta_{1}\right)$ with the base $\left\{x_{1}, y_{1}\right\}$ where ε_{1} is in $U, D\left(1+\delta_{1}\right)=\delta_{1} \vartheta$ and $\operatorname{ord}\left(-\varepsilon_{1}^{-1} \delta_{1}\right)>e$. Put $D\left(\varepsilon_{1} \varepsilon_{2}\right)=p^{t}$ with $1 \leq t \leq 2 e$ or $t=\infty$.

If $t \leq e-1$, then $D\left(-\varepsilon_{1} \varepsilon_{2}\right)=D\left(\varepsilon_{1} \varepsilon_{2}\right)=p^{t}$. Take $K=\vartheta x_{1} \perp \vartheta x_{2}$. Note that any maximal vector of K gives rise to a symmetry of L, so $\theta\left(O^{+}(L)\right) \supseteq$ $Q\left(\left[1, \dot{\varepsilon}_{1} \varepsilon_{2}\right]\right)$. By [H, Lemma 3], there exists η in U such that $\left(\eta,-\varepsilon_{1} \varepsilon_{2}\right)=-1$ with $D(\eta)=p^{2 e-t}$. Since $2 e-t \geq e+1, \eta$ is in $\theta\left(O^{+}\left(L_{1}\right)\right)$ by [H, Lemma 2]. Therefore $\theta\left(O^{+}(L)\right)=\dot{F}$.

If $t>e-1$, write $\varepsilon_{2}^{-1} \varepsilon_{1}=\xi^{2}+\sigma \pi^{t}$ where ξ and σ are in U.
When e is odd, there exists u in ϑ such that

$$
\lambda+2 \pi^{-e} \xi\left(\pi^{(e-1) / 2}-\xi\right)-\sigma \pi^{t-e}-2 \pi^{-e} \varepsilon_{2}^{-1} u+\varepsilon_{1}^{-1} \varepsilon_{2}^{-1} \delta_{1} \pi^{-e} u^{2}=0
$$

for any $\lambda \in \vartheta$ by Hensel's Lemma. Put $z=\pi x_{1}+\pi u y_{1}+\left(\pi^{(e-1) / 2}-\xi\right) x_{2} \in L$, and

$$
\begin{aligned}
Q(z)= & \pi^{2} \varepsilon_{1}+\pi^{2} u^{2}\left(-\varepsilon_{1}^{-1} \delta_{1}\right)+2 \pi^{2} u+\left(\pi^{(e-1) / 2}-\xi\right)^{2} \varepsilon_{2} \pi^{2} \\
= & \varepsilon_{2} \pi^{2}\left(\xi^{2}+\sigma \pi^{t}+2 \varepsilon_{2}^{-1} u+\left(\pi^{(e-1) / 2}-\xi\right)^{2}-\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \delta_{1} u^{2}\right) \\
= & \varepsilon_{2} \pi^{2}\left(\pi^{e-1}-2 \xi\left(\pi^{(e-1) / 2}-\xi\right)+\sigma \pi^{t}+2 \varepsilon_{2}^{-1} u-\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \delta_{1} u^{2}\right) \\
= & \varepsilon_{2} \pi^{e+1}\left(1+\pi\left(-2 \pi^{-e} \xi\left(\pi^{(e-1) / 2}-\xi\right)\right.\right. \\
& \left.\left.+\sigma \pi^{t-e}+2 \pi^{-e} \varepsilon_{2}^{-1} u-\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \delta_{1} \pi^{-e} u^{2}\right)\right) \\
= & \varepsilon_{2} \pi^{e+1}(1+\lambda \pi)
\end{aligned}
$$

So τ_{z} is in $O(L)$ and $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$.

When e is even, there exists u in ϑ such that

$$
\lambda+2 \pi^{1-e} \xi\left(\pi^{(e-2) / 2}-\xi\right)-\sigma \pi^{t-e+1}-2 \pi^{-e} \varepsilon_{2}^{-1} u+\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \delta_{1} \pi^{-e-1} u^{2}=0
$$

for any $\lambda \in \vartheta$ by Hensel's Lemma if $\operatorname{ord}\left(\delta_{1}\right) \geq e+2$. Put

$$
z=\pi x_{1}+u y_{1}+\left(\pi^{(e-2) / 2}-\xi\right) x_{2} \in L .
$$

Since $Q(z)=\varepsilon_{2} \pi^{e}(1+\lambda \pi)$ by a direct computation, τ_{z} is in $O(L)$ and $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$.

Now we treat the case of $\operatorname{ord}\left(-\varepsilon_{1}^{-1} \delta_{1}\right)=e+1$. For any $\lambda \in U$, write

$$
\left(-\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \delta_{1} \pi^{-e-1}\right)^{-1}=\alpha^{2}+\beta \pi^{d}
$$

where α and β are in U, and $d \geq 1$. By Hensel's Lemma, there exists u in ϑ such that

$$
\begin{aligned}
&\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1}\left(\delta_{1} \pi^{-e-1}\right) \beta \pi^{d-1} \\
& \quad+\left(2 \pi^{-e} \alpha \varepsilon_{2}^{-1}-2 \xi \pi^{-e / 2}\right) u+\left(\sigma \pi^{t+2-e}+2 \xi^{2} \pi^{2-e}\right) u^{2}=0
\end{aligned}
$$

Put $z=\pi^{2} u x_{1}+\alpha y_{1}+\left(\pi^{(e-2) / 2}-\xi \pi u\right) x_{2} \in L$. So $Q(z)=\varepsilon_{2} \pi^{e}(1+\lambda \pi)$ and τ_{z} is in $O(L)$. Therefore we obtain $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$ by Lemma 1 .
(3) $L=L_{1} \perp L_{2}$ where L_{1} is unimodular with $\operatorname{rank} L_{1}=2$ and $L_{2}=\vartheta x_{2}$ with $Q\left(x_{2}\right)=\varepsilon_{2} \pi^{3}$ and $\varepsilon_{2} \in U$. By the arguments similar to Case (1), we only need to consider $L_{1} \cong A\left(\varepsilon_{1} \pi_{1},-\varepsilon_{1}^{-1} \pi^{-1} \delta_{1}\right)$ with the base $\left\{x_{1}, y_{1}\right\}$ where ε_{1} is in $U, D\left(1+\delta_{1}\right)=\delta_{1} \vartheta$ and $\operatorname{ord}\left(-\varepsilon_{1}^{-1} \pi^{-1} \delta_{1}\right)>e$. Put $D\left(\varepsilon_{1} \varepsilon_{2}\right)=p^{t}$ with $1 \leq t \leq 2 e$ or $t=\infty$.

If $t \leq e-2$, take $K=\vartheta x_{1} \perp \vartheta x_{2}$. By the same arguments as in Case (2), we have $\theta\left(O^{+}(L)\right)=\dot{F}$.

If $t>e-2$, write $\varepsilon_{2}^{-1} \varepsilon_{1}=\xi^{2}+\sigma \pi^{t}$ where ξ and σ are in U.
When e is even, there exists u in ϑ such that

$$
\lambda+2 \pi^{1-e} \xi\left(\pi^{(e-2) / 2}-\xi\right)-\sigma \pi^{t-e+1}-2 \pi^{-e} \varepsilon_{2}^{-1} u+\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \delta_{1} \pi^{-e-1} u^{2}=0
$$

for any $\lambda \in \vartheta$ by Hensel's Lemma. Put $z=\pi x_{1}+\pi u y_{1}+\left(\pi^{(e-2) / 2}-\xi\right) x_{2} \in L$ and $Q(z)=\varepsilon_{2} \pi^{e+1}(1+\lambda \pi)$; so τ_{z} is in $O(L)$ and $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$.

When e is odd, there exists u in ϑ such that

$$
\lambda+2 \pi^{2-e} \xi\left(\pi^{(e-3) / 2}-\xi\right)-\sigma \pi^{t-e+2}-2 \pi^{-e} \varepsilon_{2}^{-1} u+\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \pi^{-e-2} \delta_{1} u^{2}=0
$$

for any $\lambda \in \vartheta$ by Hensel's Lemma if $\operatorname{ord}\left(-\varepsilon_{1}^{-1} \pi^{-1} \delta_{1}\right)>e+1$. Put

$$
z=\pi x_{1}+u y_{1}+\left(\pi^{(e-3) / 2}-\xi\right) x_{2} \in L .
$$

Since $Q(z)=\varepsilon_{2} \pi^{e}(1+\pi \lambda), \tau_{z}$ is in $O(L)$ and $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$.
Now we treat the case of ord $\left(-\varepsilon_{1}^{-1} \pi^{-1} \delta_{1}\right)=e+1$. For any $\lambda \in U$, write

$$
\lambda\left(-\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \pi^{-2-e} \delta_{1}\right)^{-1}=\alpha^{2}+\beta \pi^{d}
$$

where α and β are in U and $d \geq 1$. By Hensel's Lemma, there exists u in ϑ such that

$$
\begin{aligned}
\beta \pi^{d}\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \pi^{-2-e} \delta_{1}+\left(2 \varepsilon_{2}^{-1} \alpha \pi^{-e}-2 \xi\right. & \left.\pi^{(1-e) / 2}\right) u \\
& +\left(\sigma \pi^{t-e+2}+2 \pi^{2-e} \xi^{2}\right) u^{2}=0
\end{aligned}
$$

Put $z=\pi u x_{1}+\alpha y_{1}+\left(\pi^{(e-3) / 2}-\xi u\right) x_{2} \in L$ and $Q(z)=\varepsilon_{2} \pi^{e}(1+\lambda \pi)$. So τ_{z} is in $O(L)$ and $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$ by Lemma 1 .
(4) $L=L_{1} \perp L_{2}$ where L_{1} is unimodular with $\operatorname{rank} L_{1}=2$ and L_{2} is p-modular with rank $L_{2}=2$. Write $L_{1} \cong A\left(\varepsilon_{1} \pi^{r_{1}},-\varepsilon_{1}^{-1} \pi^{-r_{1}} \delta_{1}\right)$ with the base $\left\{x_{1}, y_{1}\right\}$ and $0 \leq r_{1} \leq e$ and $D\left(1+\delta_{1}\right)=\delta_{1} \vartheta . \quad L_{2} \cong \pi A\left(\varepsilon_{2} \pi^{r_{2}}\right.$, $\left.-\varepsilon_{2}^{-1} \pi^{-r_{2}} \delta_{2}\right)$ with the base $\left\{x_{2}, y_{2}\right\}$ and $0 \leq r_{2} \leq e$ and $D\left(1+\delta_{2}\right)=\delta_{2} \vartheta$.

If $r_{1} \equiv r_{2} \bmod 2$, take $K=\vartheta x_{1} \perp \vartheta x_{2}$. By the same arguments as in Case (1), we obtain $\theta\left(O^{+}(L)\right)=\dot{F}$.

If $r_{1} \equiv r_{2}+1 \bmod 2$, write $-\varepsilon_{1} \varepsilon_{2}^{-1}=\xi^{2}+\sigma \pi^{d}$ with $\xi, \sigma \in U$ and $d \geq 1$.
When $\operatorname{ord}\left(-\varepsilon_{1}^{-1} \pi^{-r_{1}} \delta_{1}\right)<e$, take $K=\vartheta y_{1} \perp \vartheta x_{2}$; thus $\theta\left(O^{+}(L)\right)=\dot{\bar{F}}$.
When ord $\left(-\varepsilon_{2}^{-1} \pi^{-r_{2}} \delta_{2}\right)<e$, take $K=\vartheta x_{1} \perp \vartheta y_{2}$; thus $\theta\left(O^{+}(L)\right)=\dot{F}$.
Otherwise, we take $\bar{L}_{1}=\vartheta\left(x_{1}+\xi \pi^{\left(r_{1}-r_{2}-1\right) / 2} x_{2}\right)+\vartheta y_{1}$ splitting L if $r_{1} \geq r_{2}+1$, or $\bar{L}_{2}=\vartheta\left(x_{2}+\xi^{-1} \pi^{\left(r_{2}-r_{1}-1\right) / 2} x_{1}\right)+\vartheta y_{2}$ splitting L if $r_{1}<r_{2}+1$ by [$\mathrm{O}, 82: 15]$.

When $\operatorname{ord}\left(Q\left(x_{1}+\xi \pi^{\left(r_{1}-r_{2}-1\right) / 2} x_{2}\right)\right)=r_{1}+d \geq e \operatorname{or} \operatorname{ord}\left(Q\left(x_{2}+\right.\right.$ $\left.\left.\xi^{-1} \pi^{\left(r_{2}-r_{1}+1\right) / 2} x_{1}\right)\right)=r_{2}+d+1 \geq e$, then \bar{L}_{1} or $\bar{L}_{2} \cong A(0,0)$ or $A(2,2 \varrho)$, and $\theta\left(O^{+}(L)\right) \supseteq \theta\left(O^{+}\left(\bar{L}_{1}\right)\right)=U \dot{F}^{2}$ or $\theta\left(O^{+}\left(\bar{L}_{2}\right)\right)=U \dot{F}^{2}$.

If $\operatorname{ord}\left(Q\left(x_{1}+\xi \pi^{\left(r_{1}-r_{2}-1\right) / 2} x_{2}\right)\right)=r_{1}+d<e$ or $\operatorname{ord}\left(Q\left(x_{2}+\right.\right.$ $\left.\left.\xi^{-1} \pi^{\left(r_{2}-r_{1}+1\right) / 2} x_{1}\right)\right)=r_{2}+d+1<e$, then $L \cong \bar{L}_{1} \perp L_{2}^{\prime}$ or $L_{1}^{\prime} \perp \bar{L}_{2}$ respectively and we repeat the above arguments until we obtain the results as desired.
(5) $L=L_{1} \perp L_{2} \perp L_{3}$ where L_{1} is unimodular with rank $L_{1}=2$, and $L_{i}=$ ϑx_{i} with $Q\left(x_{i}\right) \vartheta=p^{i-1}, i=2,3$. Then $\theta\left(O^{+}(L)\right) \supseteq \theta\left(O^{+}\left(L_{1} \perp L_{2}\right)\right) \supseteq U \dot{F}^{2}$ by Case (1).
(6) $L=L_{1} \perp L_{2}$ with $\operatorname{rank} L_{1}=1$ and $\operatorname{rank} L_{2}=2$. We scale the dual lattice of L by π and reduce to Case (1).
(7) $L=L_{1} \perp L_{2} \perp L_{3}$ with $\operatorname{rank} L_{i}=1, i=1,2,3$. So $L_{i}=\vartheta x_{i}$ with $Q\left(x_{i}\right)=p^{i-1}, i=1,2,3$; and $\theta\left(O^{+}(L)\right)=\dot{F}$ by [X, Theorem 3.1].

We point out that the bound ord $(d L) \leq 3$ given in the above lemma cannot be unconditionally improved for any $e \geq 3$ in view of the following example.

Example. Suppose $L \cong A\left(1, \pi^{2 e-1}\right) \perp\left\langle\pi^{4}\right\rangle$ with the base $\{x, y, z\}$ and $e \geq 3$. Then $\theta\left(O^{+}(L)\right) \subseteq\left(1+p^{2}\right) \dot{F}^{2}$.

Proof. First we prove that $O(L)$ is generated by the symmetries of L.

Take σ in $O(L)$. Write $\sigma x=a x+b y+c z$. So $1-a^{2}=2 a b+b^{2} \pi^{2 e-1}+c^{2} \pi^{4} \in$ p^{3} and $(1-a) \in p^{2}$. We can assume ord $b \leq 1$, otherwise, instead of σ we consider $\tau_{\pi}{ }^{[e / 2]} x+y$ if necessary and $\tau_{\pi}{ }^{[e / 2]} x+y \in O(L)$. Since $Q(\sigma x-x)=$ $2((1-a)-b), \tau_{\sigma x-x} \in O(L)$. Therefore we assume $\sigma x=x, \sigma y=\alpha x+\beta y+\gamma z$. So

$$
\alpha+\beta=1, \quad \pi^{2 e-1}=\alpha^{2}+2 \alpha \beta+\beta^{2} \pi^{2 e-1}+\gamma^{2} Q(z)
$$

and

$$
Q(\sigma y-y)=2 \alpha\left(-1+\pi^{2 e-1}\right)
$$

When ord $\alpha \leq 4$, then $\tau_{\sigma y-y} \in O(L)$. So $\sigma=\tau_{\sigma y-y}$ or $\tau_{\sigma y-y} \tau_{z}$.
When ord $\alpha>4$, put $\xi=1+\pi^{[(e-2) / 2]}$ and $u=\pi^{2} x-\pi^{2} y+\xi z$. Then

$$
Q(u)=\pi^{4}\left(1+\xi^{2}\right)+\pi^{2 e+3}-2 \pi^{4}=\pi^{4+2[(e-2) / 2]}+2 \pi^{4+[(e-2) / 2]}+\pi^{2 e+3}
$$

So $\tau_{u} \in O(L)$ and $\tau_{u}(x)=x$. Write $\tau_{u} \sigma(y)=\alpha^{\prime} x+\beta^{\prime} y+\gamma^{\prime} z$. We can check ord $\alpha^{\prime} \leq 3$. Therefore we obtain the result as desired by the above arguments.

It is not difficult to check $Q(v) \in\left(1+p^{2}\right) \dot{F}^{2}$ for any maximal vector v of L which gives rise to a symmetry of L. So we obtain $\theta\left(O^{+}(L)\right) \subseteq\left(1+p^{2}\right) \dot{F}^{2}$.

Lemma 3. Suppose $s L \subseteq \vartheta$ and $\operatorname{rank} L \geq 4$ and $e \geq 3$. If $\operatorname{ord}(d L) \leq 7$ then $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$.

Proof. Using the above Lemma 2, considering components and dual lattices whenever necessary, there remain two cases to be treated.
(1) $L=L_{1} \perp L_{2}$ where L_{1} is a binary unimodular lattice and L_{2} is a binary p^{2}-modular lattice. Write $L_{1} \cong A\left(\varepsilon_{1} \pi^{r_{1}},-\varepsilon_{1}^{-1} \pi^{-r_{1}} \delta_{1}\right)$ with base $\left\{x_{1}, y_{1}\right\}$ and $0 \leq r_{1} \leq e$ and $D\left(1+\delta_{1}\right)=\delta_{1} \vartheta . L_{2} \cong \pi^{2} A\left(\varepsilon_{2} \pi^{r_{2}},-\varepsilon_{2}^{-1} \pi^{-r_{2}} \delta_{2}\right)$ with base $\left\{x_{2}, y_{2}\right\}$ and $0 \leq r_{2} \leq e$ and $D\left(1+\delta_{2}\right)=\delta_{2} \vartheta$.

By the same arguments as in Lemma 2, Case (4), and in [H, Lemma 1, Prop. C], and considering the dual lattice of L if necessary, we only need to consider the case $0 \leq r_{1}=r_{2} \leq e-2$ and $\operatorname{ord}\left(-\varepsilon_{1}^{-1} \pi^{-r_{1}} \delta_{1}\right)>e$ and $\operatorname{ord}\left(-\varepsilon_{2}^{-1} \pi^{-r_{2}} \delta_{2}\right)>e$. Put $D\left(\varepsilon_{1} \varepsilon_{2}\right)=p^{t}$ with $1 \leq t \leq 2 e$ or $t=+\infty$.

If $t \leq e-r_{1}-1$, take $K=\vartheta x_{1} \perp \vartheta x_{2}$. Then $\theta\left(O^{+}(L)\right)=\dot{F}$ by the same arguments as in Lemma 2, Case(2).

If $t>e-r_{1}-1$, write $\varepsilon_{2}^{-1} \varepsilon_{1}=\xi^{2}+\sigma \pi^{t}$ where ξ and σ are in U.
When $e-r_{1}$ is odd, there exists u in ϑ such that

$$
\begin{aligned}
& \lambda+2 \pi^{r_{1}-e} \xi\left(\pi^{\left(e-r_{1}-1\right) / 2}-\xi\right) \\
& \quad-\sigma \pi^{t+r_{1}-e}-2 \varepsilon_{2}^{-1} \pi^{-e} u+\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \pi^{-e-r_{1}} \delta_{1} u^{2}=0
\end{aligned}
$$

for any $\lambda \in \vartheta$ by Hensel's Lemma. Put $z=\pi x_{1}+\pi u y_{1}+\left(\pi^{\left(e-r_{1}-1\right) / 2}-\xi\right) x_{2}$ $\in L$. So $Q(z)=\varepsilon_{2} \pi^{e+1}(1+\lambda \pi)$ and τ_{z} is in $O(L)$. Therefore $\theta\left(O^{+}(L)\right) \supseteq$ $U \dot{F}^{2}$.

When $e-r_{1}$ is even, there exists u in ϑ such that

$$
\begin{aligned}
& \lambda+2 \pi^{r_{1}+1-e} \xi\left(\pi^{\left(e-r_{1}-2\right) / 2}-\xi\right)-\sigma \pi^{t+r_{1}+1-e}-2 \varepsilon_{2}^{-1} \pi^{-e} u \\
&+\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \pi^{-r_{1}-e-1} \delta_{1} u^{2}=0
\end{aligned}
$$

for any λ in ϑ by Hensel's Lemma provided ord $\left(-\varepsilon_{1}^{-1} \pi^{-r_{1}} \delta_{1}\right) \geq e+2$. Put $z=\pi x_{1}+u y_{1}+\left(\pi^{\left(e-r_{1}-2\right) / 2}-\xi\right) x_{2} \in L$. So $Q(z)=\varepsilon_{2} \pi^{e}(1+\lambda \pi)$ and τ_{z} is in $O(L)$. Therefore $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$.

Now we treat the case of $\operatorname{ord}\left(-\varepsilon_{1}^{-1} \pi^{-r_{1}} \delta_{1}\right)=e+1$. For any λ in U, write

$$
\lambda\left(-\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \pi^{-r_{1}-e-1} \delta_{1}\right)^{-1}=\alpha^{2}+\beta \pi^{d}
$$

with $\alpha, \beta \in U$ and $d \geq 1$. By Hensel's Lemma, there exists u in ϑ such that

$$
\begin{aligned}
\left(\left(\varepsilon_{1} \varepsilon_{2}\right)^{-1} \pi^{-r_{1}-1-e} \delta_{1}\right)\left(\beta \pi^{d}\right)+ & \left(2 \varepsilon_{2}^{-1} \pi^{-e} \alpha-2 \pi^{\left(r_{1}-e\right) / 2} \xi\right) u \\
& +\left(\sigma \pi^{r_{1}+1+t-e}+2 \pi^{r_{1}+1-e} \xi^{2}\right) u^{2}=0
\end{aligned}
$$

Put $z=\pi u x_{1}+\alpha y_{1}+\left(\pi^{\left(e-r_{1}-2\right) / 2}-\xi u\right) x_{2} \in L$. So $Q(z)=\varepsilon_{2} \pi^{e}(1+\lambda \pi)$ and τ_{z} is in $O(L)$. Therefore $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$ by Lemma 1 .
(2) $L=L_{1} \perp L_{2}$ where L_{1} is a binary unimodular lattice and L_{2} is a binary p^{3}-modular lattice. Write $L_{1} \cong A\left(\varepsilon_{1} \pi^{r_{1}},-\varepsilon_{1}^{-1} \pi^{-r_{1}} \delta_{1}\right)$ with base $\left\{x_{1}, y_{1}\right\}$ and $0 \leq r_{1} \leq e$ and $D\left(1+\delta_{1}\right)=\delta_{1} \vartheta . L_{2} \cong \pi^{3} A\left(\varepsilon_{2} \pi^{r_{2}},-\varepsilon_{2}^{-1} \pi^{-r_{2}} \delta_{2}\right)$ with base $\left\{x_{2}, y_{2}\right\}$ and $0 \leq r_{2} \leq e$ and $D\left(1+\delta_{2}\right)=\delta_{2} \vartheta$. By the arguments similar to Lemma 2, Case (4), and [H, Lemma 1, Prop. C], and considering the dual lattice of L if necessary, we only need to consider the case $0 \leq r_{1}$, $r_{2} \leq e-2 ; r_{1}=r_{2}+1$ or $r_{1}+1=r_{2} ;$ and $\operatorname{ord}\left(-\varepsilon_{1}^{-1} \pi^{-r_{1}} \delta_{1}\right)>e$ and $\operatorname{ord}\left(-\varepsilon_{2}^{-1} \pi^{-r_{2}} \delta_{2}\right)>e$.

When $r_{1}=r_{2}+1$, we can obtain the results as desired by the same arguments as in the above Case (1).

Now we treat the case $r_{2}=r_{1}+1$. Put $D\left(\varepsilon_{1} \varepsilon_{2}\right)=p^{t}$ with $1 \leq t \leq 2 e$ or $t=+\infty$.

If $t \leq e-r_{1}-2$, take $K=\vartheta x_{1} \perp \vartheta x_{2}$. Then $\theta\left(O^{+}(L)\right)=\dot{F}$ by the same arguments as in Lemma 2, Case (2).

If $t>e-r_{1}-2$, write $\varepsilon_{2}^{-1} \varepsilon_{1}=\xi^{2}+\sigma \pi^{t}$ where ξ and σ are in U.
When $e-r_{1}$ is even, there exists u in ϑ such that

$$
\begin{aligned}
-\lambda-2 \pi^{r_{1}+1-e}\left(\pi^{\left(e-r_{1}-2\right) / 2}-1\right) & +\sigma \pi^{t-e+r_{1}+1} \xi^{-2}\left(\pi^{\left(e-r_{1}-2\right) / 2}-1\right)^{2} \\
& +2 \varepsilon_{2}^{-1} \pi^{-e} u-\varepsilon_{2}^{-2} \pi^{-\left(r_{1}+1\right)-e} \delta_{2} u^{2}=0
\end{aligned}
$$

for any $\lambda \in \vartheta$ by Hensel's Lemma. Put $z=\pi^{2} \xi^{-1}\left(\pi^{\left(e-r_{1}-2\right) / 2}-1\right) x_{1}+$ $x_{2}+u y_{2} \in L$. So $Q(z)=\varepsilon_{2} \pi^{e+2}(1+\lambda \pi)$ and τ_{z} is in $O(L)$. Therefore $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$.

When $e-r_{1}$ is odd, $r_{1}+1=r_{2} \leq e-2$ and $r_{1} \leq e-3$. Then there exists u in ϑ such that

$$
\begin{aligned}
& \lambda+2 \pi^{-e+r_{1}+2}\left(\pi^{\left(e-r_{1}-3\right) / 2}-1\right)-\sigma \xi^{-2} \pi^{t-e+r_{1}+2}\left(\pi^{\left(e-r_{1}-3\right) / 2}-1\right)^{2} \\
&-2 \pi^{-e} \varepsilon_{2}^{-1} u+\varepsilon_{2}^{-2} \pi^{-\left(r_{1}+1\right)} \delta_{2} \pi^{-e-1} u^{2}=0
\end{aligned}
$$

for any $\lambda \in \vartheta$ provided $\operatorname{ord}\left(-\varepsilon_{2}^{-1} \pi^{-r_{2}} \delta_{2}\right) \geq e+2$. Put $z=\pi^{3}\left(\pi^{\left(e-r_{1}-3\right) / 2}\right.$ $-1) \xi^{-1} x_{1}+\pi x_{2}+u y_{2} \in L$. So $Q(z)=\varepsilon_{2} \pi^{e+3}(1+\lambda \pi)$ and τ_{z} is in $O(L)$. Therefore $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$.

Finally, we consider the case of $\operatorname{ord}\left(-\varepsilon_{2}^{-1} \pi^{-r_{2}} \delta_{2}\right)=e+1$. For any $\lambda \in U$, write $\lambda\left(-\varepsilon_{2}^{-2} \pi^{-\left(r_{1}+1\right)} \pi^{-e-1} \delta_{2}\right)^{-1}=\alpha^{2}+\beta \pi^{d}$ with $\alpha, \beta \in U$ and $d \geq 1$. By Hensel's Lemma, there exists u in ϑ such that

$$
\begin{aligned}
&\left(\varepsilon_{2}^{-2} \pi^{-\left(r_{1}+1\right)} \pi^{-e-1} \delta_{2}\right)\left(\beta \pi^{d}\right)+\sigma \xi^{-2} \pi^{t-1} \\
&+\left(2 \varepsilon_{2}^{-1} \pi^{-e} \alpha-2 \pi^{\left(r_{1}+1-e\right) / 2}-2 \sigma \xi^{-2} \pi^{t+\left(r_{1}-e+1\right) / 2}\right) u \\
&+\left(2 \pi^{-e+r_{1}+2}+\sigma \xi^{-2} \pi^{t-e+r_{1}+2}\right) u^{2}=0
\end{aligned}
$$

Put $z=\pi^{3}\left(\pi^{\left(e-r_{1}-3\right) / 2}-u\right) \xi^{-1} x_{1}+\pi u x_{2}+\alpha y_{2} \in L . \quad$ So $Q(z)=$ $\varepsilon_{2} \pi^{e+3}(1+\lambda \pi)$ and τ_{z} is in $O(L)$. Therefore $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$ by Lemma 1 .

By the above lemmas and [X, Theorem 3.1] and the same arguments as in $[\mathrm{BD}]$ and by the results in $[\mathrm{X}]$ and $[\mathrm{EH}]$, we have

Theorem. Let L be a regular ϑ lattice with $s L \subseteq \vartheta$ and $\operatorname{rank} L=n \geq 3$. If

$$
\operatorname{ord}(d L)< \begin{cases}n(n-2) & \text { if } n \text { is even } \\ (n-1)^{2} & \text { if } n \text { is odd }\end{cases}
$$

then $\theta\left(O^{+}(L)\right) \supseteq U \dot{F}^{2}$.
Remark. The bound on $\operatorname{ord}(d L)$ in the above theorem is the best possible. For $e=1$ this easily follows from [EH, Theorem 3.14]. Consider the following example for $e \geq 2$:

$$
L=\left\{\begin{array}{l}
A\left(1, \pi^{2 e-1}\right) \perp \pi^{4} A\left(1, \pi^{2 e-1}\right) \perp \ldots \perp \pi^{4(n / 2-1)} A\left(1, \pi^{2 e-1}\right) \\
\text { with base }\left\{x_{1}, y_{1} ; x_{2}, y_{2} ; \ldots ; x_{n / 2}, y_{n / 2}\right\} \quad \text { if } n \text { is even, } \\
A\left(1, \pi^{2 e-1}\right) \perp \pi^{4} A\left(1, \pi^{2 e-1}\right) \perp \ldots \perp \pi^{4((n-1) / 2-1)} A\left(1, \pi^{2 e-1}\right) \\
\quad \perp\left\langle\pi^{2(n-1)}\right\rangle \\
\quad \text { with base }\left\{x_{1}, y_{1} ; x_{2}, y_{2} ; \ldots ; x_{(n-1) / 2}, y_{(n-1) / 2} ; z\right\} \quad \text { if } n \text { is odd. }
\end{array}\right.
$$

We will show that $\theta\left(O^{+}(L)\right) \subset U \dot{F}^{2}$.
First, by the same arguments as in the above Example when $e \geq 3$, and by the arguments as in [X, Example 4.3] when $e=2$, we can prove $O(L)$ is generated by the symmetries of L. Next we compute the spinor norms. For convenience, we only treat the case of even n. When n is odd, the arguments are similar.

When $e \geq 3$, we take any maximal vector v of L which gives rise to a symmetry of L. Write $v=\sum_{i=1}^{n / 2}\left(a_{i} x_{i}+b_{i} y_{i}\right)$. Then
$(*) \quad \operatorname{ord}(Q(v))=\operatorname{ord}\left(\sum_{i=1}^{n / 2} \pi^{4(i-1)}\left(a_{i}^{2}+2 a_{i} b_{i}+b_{i}^{2} \pi^{2 e-1}\right)\right)$

$$
\leq e+\min _{1 \leq i \leq n / 2}\left\{4(i-1)+\text { ord } a_{i}, 4(i-1)+\text { ord } b_{i}\right\}
$$

We choose the largest k such that

$$
\begin{aligned}
\min \left\{4(k-1)+\operatorname{ord} a_{k}\right. & \left., 4(k-1)+\operatorname{ord} b_{k}\right\} \\
& =\min _{1 \leq i \leq n / 2}\left\{4(i-1)+\operatorname{ord} a_{i}, 4(i-1)+\operatorname{ord} b_{i}\right\}
\end{aligned}
$$

If ord $a_{k} \leq 1$, then

$$
\begin{aligned}
\operatorname{ord}\left(\pi ^ { 4 (i - 1) } \left(a_{i}^{2}+2 a_{i} b_{i}+b_{i}^{2}\right.\right. & \left.\left.\pi^{2 e-1}\right)\right) \\
& \quad-\operatorname{ord}\left(\pi^{4(k-1)}\left(a_{k}^{2}+2 a_{k} b_{k}+b_{k}^{2} \pi^{2 e-1}\right)\right) \geq 2
\end{aligned}
$$

for all $i \neq k$ by $(*)$.
If ord $a_{k} \geq 2$, note that

$$
\begin{aligned}
Q(v)=\left(\sum_{i=1}^{n / 2} \pi^{2(i-1)} a_{i}\right)^{2}-2 & \sum_{1 \leq s<t \leq n / 2} \pi^{2(s-1)+2(t-1)} a_{s} a_{t} \\
& +\sum_{i=1}^{n / 2} b_{i}^{2} \pi^{4(i-1)+2 e-1}+2 \sum_{i=1}^{n / 2} a_{i} b_{i} \pi^{4(i-1)}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \operatorname{ord}\left(-2 \pi^{2(s-1)+2(t-1)} a_{s} a_{t}\right)-\operatorname{ord} Q(v) \\
& \quad \geq e+2(s-1)+2(t-1)+\operatorname{ord} a_{s}+\operatorname{ord} a_{t}-\left(e+4(s-1)+\operatorname{ord} a_{s}\right) \\
& \quad=2(t-s)+\operatorname{ord} a_{t} \geq 2
\end{aligned}
$$

for any $1 \leq s<t \leq n / 2$ by $(*)$, and

$$
\begin{aligned}
& \operatorname{ord}\left(b_{i}^{2} \pi^{4(i-1)+2 e-1}\right)-\operatorname{ord} Q(v) \\
& \geq 2 \operatorname{ord} b_{i}+4(i-1)+(2 e-1)-\left(4(i-1)+\operatorname{ord} b_{i}+e\right) \\
& =\operatorname{ord} b_{i}+(e-1) \geq 2
\end{aligned}
$$

for any $1 \leq i \leq n / 2$ by $(*)$; also ord $a_{i} \geq 2$ for any $i \leq k$ by the choice of k.
So

$$
\begin{aligned}
& \operatorname{ord}\left(2 a_{i} b_{i} \pi^{4(i-1)}\right)-\operatorname{ord} Q(v) \\
& \quad \geq e+4(i-1)+\operatorname{ord} a_{i}+\operatorname{ord} b_{i}-\left(e+4(i-1)+\operatorname{ord} b_{i}\right)=\operatorname{ord} a_{i} \geq 2
\end{aligned}
$$

for any $i \leq k$ by $(*)$.

Suppose there exists $j>k$ such that ord $a_{i}=\operatorname{ord} b_{i}=0$ and

$$
4(j-1)=\min \left\{4(k-1)+\operatorname{ord} a_{k}, 4(k-1)+\operatorname{ord} b_{k}\right\}+1 .
$$

Then

$$
\begin{aligned}
& \operatorname{ord}\left(\pi^{4(i-1)}\left(a_{i}^{2}+2 a_{i} b_{i}+b_{i}^{2} \pi^{2 e-1}\right)\right) \\
& \quad-\operatorname{ord}\left(\pi^{4(j-1)}\left(a_{j}^{2}+2 a_{j} b_{j}+b_{j}^{2} \pi^{2 e-1}\right)\right) \geq 2
\end{aligned}
$$

for any $i \neq j$ by ($*$). Otherwise,

$$
\begin{aligned}
& \operatorname{ord}\left(2 a_{i} b_{i} \pi^{4(i-1)}\right)-\operatorname{ord} Q(v) \\
\geq & 4(i-1)+e+\operatorname{ord} a_{i}+\operatorname{ord} b_{i}-\left(e+\min \left\{4(k-1)+\operatorname{ord} a_{k}, 4(k-1)+\operatorname{ord} b_{k}\right\}\right) \geq 2
\end{aligned}
$$

for any $i>k$ by the choice of k.
Therefore we obtain $\theta\left(O^{+}(L)\right) \subseteq\left(1+p^{2}\right) \dot{F}^{2}$ by [H, Prop. D].
When $e=2$, the above arguments are still in force except

$$
\begin{aligned}
\operatorname{ord}\left(b_{i}^{2} \pi^{2 e-1}\right. & \left.\pi^{4(i-1)}\right)-\operatorname{ord} Q(v) \\
& \geq 2 \operatorname{ord} b_{i}+(2 e-1)+4(i-1)-\left(4(i-1)+\operatorname{ord} b_{i}+e\right) \\
& =e-1+\operatorname{ord} b_{i} \geq e-1=1 .
\end{aligned}
$$

Note that

$$
\begin{aligned}
Q(v)= & \left(\sum_{i=1}^{n / 2} \pi^{2(i-1)} a_{i}\right)^{2}+2\left(\sum_{i=1}^{n / 2} \pi^{2(i-1)} a_{i}\right)\left(\sum_{i=1}^{n / 2} \pi^{2(i-1)} b_{i}\right) \\
& +\left(\sum_{i=1}^{n / 2} \pi^{2(i-1)} b_{i}\right)^{2} \pi^{2 e-1}-2 \sum_{1 \leq s<t \leq n / 2} \pi^{2(s-1)+2(t-1)} a_{s} a_{t} \\
& -2 \sum_{1 \leq s<t \leq n / 2} \pi^{2(s-1)+2(t-1)} b_{s} b_{t} \pi^{2 e-1} \\
& -2 \sum_{1 \leq s \neq t \leq n / 2} \pi^{2(s-1)+2(t-1)} a_{s} b_{t} .
\end{aligned}
$$

We have

$$
\operatorname{ord}\left(2 \pi^{2(s-1)+2(t-1)} b_{s} b_{t} \pi^{2 e-1}\right)-\operatorname{ord} Q(v) \geq 2
$$

and

$$
\operatorname{ord}\left(2 \pi^{2(s-1)+2(t-1)} a_{s} b_{t}\right)-\operatorname{ord} Q(v) \geq 2
$$

for any $s \neq t$ by $(*)$. So we obtain $\theta\left(O^{+}(L)\right)=U \dot{F}^{2} \cap Q\left(\left[1, \dot{\pi}^{3}-1\right]\right)$ by $\left[\mathrm{X}_{0}\right]$ and [X, Remark 1].

By the above theorem, we can improve [BD, Prop. 4.1], in fact, we can modify $s_{p}(n)$ appearing there as follows:

$$
s_{p}(n)= \begin{cases}n(n-2) / 2 & \text { if } p \text { is nondyadic }, \\ s(n) & \text { if } p \text { is dyadic, }\end{cases}
$$

where

$$
s(n)= \begin{cases}n(n-2) & \text { if } n \text { is even } \\ (n-1)^{2} & \text { if } n \text { is odd }\end{cases}
$$

References

[BD] W. R. Bon Durant, Spinor norms of rotations of local integral quadratic forms, J. Number Theory 33 (1989), 83-94.
[EH] A. G. Earnest and J. S. Hsia, Spinor norms of local integral rotations, II, Pacific J. Math. 61 (1975), 71-86; errata 115 (1984), 493-494.
[H] J. S. Hsia, Spinor norms of local integral rotations, I, ibid. 57 (1975), 199-206.
[K] M. Kneser, Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen, Arch. Math. (Basel) 7 (1956), 323-332.
[O] O. T. O'Meara, Introduction to Quadratic Forms, Springer, New York 1963.
$\left[\mathrm{X}_{0}\right]$ F. Xu, A remark on spinor norms of local integral rotations, I, Pacific J. Math. 136 (1989), 81-84.
[X] -, Integral spinor norms in dyadic local fields, I, ibid., to appear.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA
HEFEI, ANHUI 230026
PEOPLE'S REPUBLIC OF CHINA

