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Integral spinor norms in dyadic local fields II
by

FE1 XU (Hefei)

In the previous paper [X] we have generalized the results of [BD] to a
dyadic local field with e = ord2 = 2. In the present paper we generalize
these results to an arbitrary dyadic local field, and we also point out that
the bound for ord(dL) is the best possible. The results obtained are applied
to improve the sufficient condition for the class number of an indefinite
quadratic form over the ring of integers of a number field to be a divisor of
the class number of the field, which is analogous to Satz 5 of [K].

Here we adopt the notations from [O] and [X]. In particular, F' denotes
a dyadic local field, ¥ the ring of integers in F', p the maximal ideal of ¥,
U the group of units in ¢, e = ord 2 the ramification index of 2 in F', 7 a
fixed prime element in F', D(, ) the quadratic defect function, A a fixed unit
of quadratic defect 49, V a regular quadratic space over F' with associated
symmetric bilinear form B(x,y), L a lattice on V, dL the determinant of L,
O™ (V) the group of rotations on V, O*(L) the corresponding subgroup of
units of L, and é(, ) the spinor norm function. We use the symbol (a, b, c, . . .)
for lattices, and [a, b, c,...] for spaces.

LEMMA 1. For any i > 1, 1+ p® is generated by 1 + \w® with A € U.
Proof. This follows from the identity
(1+or*) =1+ 71+ 1 +75)"Yor — 1)7").
LEMMA 2. Suppose sL C ¥ and rank L > 3 and e > 3. If ord(dL) < 3
then (0T (L)) D UF™2.

Proof. Let L = Ly 1 ... 1L; be a Jordan splitting of L. We assume
t>2and rank L; < 2,4=1,...,t. Since ord(dL) < 3, t < 3. We consider
several cases.

(1) L = Ly L Ly where Ly is unimodular with rank L; = 2 and Lo = Y5
with Q(z2) = eom and e € U. Put Ly ¥ A(al,—aflél) with the base
{z1,11} and 0 < orda; < e and D(1 + d;) = 619.

If ord(—a; '6,) < e, then ord a; = ord(—aj '61) + 1 mod 2.
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When ord a; is even, take K = Y21 LYx5. Note that any maximal vector
of K gives rise to a symmetry of L. So #(OT (L)) 2 Q([1, a1e27]) which does
not contain A, but A is in §(O*(L;)) by [H]. Therefore §(O* (L)) = F.

When ord a; is odd, then ord(—al_lél) is even. Take K = ¥y LYx,, and
0(Ot (L)) = F by the same arguments as above.

If ord(—a; '6;) > e, write a; = ;7" and —e165
an odd integer or d > 2e.

When r; is odd, consider a unimodular lattice L; = (1 —|—n7r(’"1_1)/2x2)
+ Yy, which splits L. Write L = Ly L9T> with Q(ZT2) = £27m. Note

ord(Q(xy 4+ TV 2g0)) =) +d.

If i +d > e, then Ly = A(0,0) or A(2,2¢) by [O, 93:11]. Therefore
9(O*(L)) 2 6(0O*(Ly)) = UF? by [H, Lemma 1]. Otherwise, r; +d < e and
r1 +d is even. Take K = d(z1 + nr(=1/229) 19Z,. Therefore (O (L))
=F.

When 7 is even, take K = 0z L0zs. So #(OT(L)) = F.

(2) L = Ly 1 Ly where L; is unimodular with rank L; = 2 and Ly = dz5
with Q(z2) = ean? and g3 € U. By the arguments similar to Case (1), we
only need to consider L; & A(eq, —61_1(51) with the base {z1,y1} where &;
is in U, D(1 4 61) = 619 and ord(—e;'6;) > e. Put D(eje3) = pt with
1<t<2o0rt=oc.

If t <e—1, then D(—e163) = D(g162) = p'. Take K = Yz1 LJx,. Note
that any maximal vector of K gives rise to a symmetry of L, so (O™ (L)) 2
Q([1,£1e2]). By [H, Lemma 3], there exists n in U such that (7, —e1e2) = —1
with D(n) = p?*~t. Since 2e —t > e+1, n is in (O* (L)) by [H, Lemma 2].
Therefore #(OF (L)) = F.

Ift >e— 1, write e, 'e; = €2 + ont where ¢ and o are in U.

When e is odd, there exists  in 9 such that

At 2nee(me /2 ) —ontme — 2 ey tu ey ey Lo U = 0

V=92 + on? where d is

for any A € 9 by Hensel’s Lemma. Put z = 7wz, +7ruy1+(7r(e_1)/2—§)m2 €L,
and

Q(2) = ne; + m2u?(—e7101) + 2n%u + (w712 — £)2e,n?
= e (€2 + ot + 265 tu+ (V2 — €)% — (e185) 7101 u?)
= eom?(me™t = 26(n V2 — ) 4 ont 4 265 u — (e169) L0 u?)
— eyt (1 4 m(—2meg(me V2 _¢)
+omt ¢ 42 ey tu — (e189) o T u?))
= gom“TH(1 + M)
So 7. is in O(L) and §(O* (L)) D UF?2,
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When e is even, there exists u in ¢ such that
A 2rteg(me=D/2 _ gy —optett _on—ees tu 4 (e180) Tt e = 0
for any A € ¥ by Hensel’s Lemma if ord(d;) > e+ 2. Put
z =mx] +uy + (77'(6_2)/2 — &z € L.
Since Q(z) = e2m°(1 + A7) by a direct computation, 7, is in O(L) and
(0" (L)) D UF2
Now we treat the case of ord(—e7'd;) = e + 1. For any A € U, write
(—(6162)71517(7671)71 = Oéz + ﬁﬂd
where o and § are in U, and d > 1. By Hensel’s Lemma, there exists u in
¥ such that
(e182) (G B!
+ (2n %aey ! — 267 u 4 (ot T2 26202 = 0.

Put z = m2ux, + ay; + (7722 — ¢ru)as € L. So Q(z) = eam®(1 + Am)
and 7, is in O(L). Therefore we obtain 6(O* (L)) 2 UF? by Lemma 1.

(3) L = L1 1 Ly where L; is unimodular with rank L; = 2 and Ly = Jz4
with Q(x2) = a7 and 5 € U. By the arguments similar to Case (1), we
only need to consider Ly = A(eymy, —51_177_161) with the base {x1,y; } where
g1 is in U, D(1 + 61) = 619 and ord(—sflﬂ_lél) > e. Put D(e1e2) = pt
with 1 <t <2eort=o0.

Ift <e—2, take K = Yz 1Jz,. By the same arguments as in Case (2),
we have (Ot (L)) = F.

If t > e— 2, write £, 'e; = €2 + ont where ¢ and o are in U.

When e is even, there exists u in ¢ such that

A 2rteg(me=D/2 _ gy —optett _on—ee by 4 (e180) T roim e = 0

for any A € ¥ by Hensel’s Lemma. Put z = 7z +7uyy —i—(7r(8_2)/2 =&z €L
and Q(z) = eam®T1(1 + A); so 7, is in O(L) and §(OT (L)) D UF?>.
When e is odd, there exists « in 9 such that

A+ 2727 (672 — ) —ontet? _ o e tu + (e160) T 200u% = 0
for any \ € ¥ by Hensel’s Lemma if ord(—e; 'n~16;) > e + 1. Put
z=7x1 +uy + (71'(6_3)/2 — &z € L.

Since Q(z) = ean®(1 +7\), 7, is in O(L) and #(O* (L)) D UF?2.
Now we treat the case of ord(—e; 'm~16;) = e+ 1. For any A € U, write

)\(—(5182)_17&'_2_651)_1 = 042 + ﬁﬂ'd
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where a and (8 are in U and d > 1. By Hensel’s Lemma, there exists u in
such that

57Td(€152)717f27651 + (2e5 tar ¢ — 2§7T(1*e)/2)u
+(omt =T 1 2r? )2 = 0.

Put z = 7uz; + ay + (7(e3)/2 —&u)ry € L and Q(z) = e2m*(1 + Am). So
7, is in O(L) and (O™ (L)) 2 UF? by Lemma 1.

(4) L = Ly 1Ly where Ly is unimodular with rank L; = 2 and Lo is
p-modular with rank Ly = 2. Write Ly & A(eyn"™, —sflw_rlél) with the
base {z1,y1} and 0 < r; < e and D(1 + 01) = 51¥. Lo = wA(ean™,
—52*1%*7“252) with the base {x3,y2} and 0 < ry < e and D(1 + d2) = d29.

If r1 = ro mod 2, take K = ¥x119z5. By the same arguments as in
Case (1), we obtain (01 (L)) = F.

If r1 = ro + 1 mod 2, write —51551 =2 4 ond withé,0 € U and d > 1.

When ord(—e;'n7"161) < e, take K = 0y, Ldxo; thus (O (L)) = F.

When ord(—e; 'n7728y) < e, take K = 0z L0ys; thus (O (L)) = F.

Otherwise, we take L1 = 9(z1 + 577(’"1_’”2_1)/2@) + Yy, splitting L if
r1 > ro+1, 0r Ly = O(w —1—5*177(7“2*“*1)/%1)4—193/2 splitting L if ry < ro+1
by [O, 82:15].

When ord(Q(z1 + §7r(7"1_7"2_1)/2x2)) =r+d > e or ord(Q(z2 +
g lgra=mA D/ 200)) = py +d + 1 > e, then Ly or Ly = A(0,0) or A(2,20),
and H(OT (L)) D 0(OH(Ly)) = UF? or (0Ot (L)) = UF2.

If ord(Q(z1 + §7r(”_”_1)/2:1:2)) = r +d < e or ord(Q(z2 +
Etprz=mt /20 )) =y +d+ 1 < e, then L = Ly 1Ly or Lj1 Ly re-
spectively and we repeat the above arguments until we obtain the results as
desired.

(5) L = Ly 1Ly 1 L3 where L is unimodular with rank L; = 2, and L; =
Ya; with Q(z;)9 = p*~t, i =2,3. Then §(OF(L)) D 0(O+(L1LLy)) D UF?
by Case (1).

(6) L = Ly 1Ly with rank Ly = 1 and rank Ly, = 2. We scale the dual
lattice of L by 7 and reduce to Case (1).

(7) L = Ll_LLQLLg with rankLi = 1,. 1= 1,2,3. So Lz = 19561 with
Q(z;) = p'~t i=1,2,3; and §(OT (L)) = F by [X, Theorem 3.1].

We point out that the bound ord(dL) < 3 given in the above lemma

cannot be unconditionally improved for any e > 3 in view of the following
example.

EXAMPLE. Suppose L = A(1,7r2e_1)J_<7r4> with the base {z,y,z} and
e > 3. Then (O* (L)) C (1 + p?)F2

Proof. First we prove that O(L) is generated by the symmetries of L.
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Take o in O(L). Write oz = ax+by+cz. So 1—a? = 2ab+b*n2¢" 14?1t €
p? and (1 —a) € p?. We can assume ordb < 1, otherwise, instead of o we
consider 7, (e/2,4,0 if necessary and 7 (e/2),4, € O(L). Since Q(oz — x) =
2((1=a)—=b), Tox—z € O(L). Therefore we assume ox = x, oy = ax+[y+7yz.
So

a+tpB=1, 7w '=0a>+2aB+ 37 ++°Q(z)
and
Qoy —y) = 2a(—1 + w271,
When ord a < 4, then 7,y_y € O(L). S0 0 = Tyy—y OF Tyy—yTs.
When orda > 4, put € = 1+ 7l(¢=2/2] and u = 72z — 72y + £2. Then

Qu) = 7r4(1 n 52) 4og2etd _ond _ 442[(e=2)/2] 4 o d+((e=2)/2] 4 2e+3

So 7, € O(L) and 7, (x) = x. Write 7,0(y) = &’z + 'y + v'2. We can
check orda’ < 3. Therefore we obtain the result as desired by the above
arguments.

It is not difficult to check Q(v) € (14-p?)F? for any maximal vector v of L
which gives rise to a symmetry of L. So we obtain (01 (L)) C (1 + p?)F2.

LEMMA 3. Suppose sL. C ¥ and rank L > 4 and e > 3. If ord(dL) <7
then (0T (L)) D UF2.

Proof. Using the above Lemma 2, considering components and dual
lattices whenever necessary, there remain two cases to be treated.

(1) L = Ly 1Ly where Ly is a binary unimodular lattice and Lo is a
binary p?-modular lattice. Write L; =2 A(slﬂ’"l,—sl_lﬂ_”él) with base
{z1,y1} and 0 < 7y < eand D(1+8;) = §19. Ly = w2 A(ea7"?, —52_17r_r252)
with base {z2,y2} and 0 < 19 < e and D(1 + d3) = 6290.

By the same arguments as in Lemma 2, Case (4), and in [H, Lemma 1,
Prop. C], and considering the dual lattice of L if necessary, we only need
to consider the case 0 < r; = rp < e — 2 and ord(—eflw*’"lél) > e and
ord(—€2_17r_7’2(52) > e. Put D(e1e2) = p' with 1 <t < 2e or t = 400.

Ift <e—ry —1, take K = ¥z Ldxs. Then (O (L)) = F by the same
arguments as in Lemma 2, Case(2).

Ift >e—ry — 1, write 55151 = &2 + ont where € and ¢ are in U.

When e — rq is odd, there exists u in ¥ such that

\+ 27_[_1”1—65(7_‘_(6—7"1—1)/2 o 5)
—opitri—e _ 25517r_6u + (e182) TS U = 0
for any A € 9 by Hensel’s Lemma. Put z = may +7wuy; + (r(6771~D/2 — ),y

€ L. So Q(z) = ean“1(1 4+ A7) and 7, is in O(L). Therefore (OT(L)) D
UF?.
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When e — rq is even, there exists u in ¥ such that
A + 27_[_1”1—&—1—65(77_(6—7“1—2)/2 _ 5) _ O_Trt+r1+1—e _ 26;1W_6U
+ (6182)7171'7741767151’&2 =0

for any A in ¥ by Hensel’s Lemma provided ord(—e; 77 "18;) > e 4 2. Put
2z =mxy +uyy + (77122 — s € L. So Q(2) = eom®(1 + M) and 7, is
in O(L). Therefore (Ot (L)) D UF?.

Now we treat the case of ord(—e; 'n~"6;) = e + 1. For any A in U,
write

)\(—(8182)_17T_r1_e_151)_1 = Oé2 + ﬁﬂ‘d
with «, 8 € U and d > 1. By Hensel’s Lemma, there exists w in 9 such that

((ere2) " r ™ 71726,) (Br) + (265 'mCa — 2019/ 2g)u
+ (O_ﬂ_rl—i-l—i-t—e + 27rr1+1—e§2)u2 =0.

Put z = muxy + oy + (wle7172)/2 - §u)ry € L. So Q(2) = eam®(1+ Am)
and 7, is in O(L). Therefore (O (L)) 2 UF? by Lemma 1.

(2) L = L1 LLy where L; is a binary unimodular lattice and Ly is a
binary p-modular lattice. Write L; = A(e 7", —e] 'n~"161) with base
{x1,y1} and 0 <y < eand D(1+61) = 619. Ly = w3 A(eqn™, —52_17r_r252)
with base {x2,y2} and 0 < 7y < e and D(1 + d2) = d21. By the arguments
similar to Lemma 2, Case (4), and [H, Lemma 1, Prop. C], and considering
the dual lattice of L if necessary, we only need to consider the case 0 < rq,
ro <e—2;rp =ro+1orr;+1=ry; and ord(—el_lw_’”lél) > e and
ord(—e; 'm7724,) > e.

When ry = r9 + 1, we can obtain the results as desired by the same
arguments as in the above Case (1).

Now we treat the case ro =11 + 1. Put D(e1e3) = pt with 1 <t < 2e or
t = +4o00.

Ift <e—r —2, take K = ¥z LY2s. Then (O (L)) = F by the same
arguments as in Lemma 2, Case (2).

Ift >e—ry — 2, write 52_151 = &2 + on? where € and o are in U.

When e — r; is even, there exists u in ¥ such that

S 27Tr1+1fe(7r(efr172)/2 o 1) + O_ﬂ_t*€+7‘1+1€72(71_(677'172)/2 o 1)2

+ 282_17r_eu — 52_271_(”+1)_852u2 =0

for any A € ¥ by Hensel’s Lemma. Put z = 726~ Y(x(e=m1=2/2 — 1)a; +
Ty +uys € L. So Q(z) = eam®"2(1 4+ M) and 7, is in O(L). Therefore
9(0O* (L)) D UF>.

When e —ry isodd, 11 +1 =13 < e—2 and r; < e — 3. Then there
exists u in ¥ such that
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A\ + 27_[_—€+7’1+2(7T(6—7’1—3)/2 _ 1) _ 0_5—271_1‘/—5—&—7“1—1—2(ﬂ,(e—rl—?))/2 _ 1)2
—on ey tu + ey 2 (MY g ey 2 = 0
for any A € ¥ provided ord(—e; '77"2d;) > e+ 2. Put z = 73 (nle—m1=3)/2
— 1) ey + mxs +uys € L. So Q(z) = eam®3(1+ M) and 7, is in O(L).
Therefore (O™ (L)) D UF2.

Finally, we consider the case of ord(—e; 'm~"283) = e+1. For any A € U,
write A(—ﬁ;QW_(T1+1)W_e_152)_1 = a? 4 pn? with a, 3 € U and d > 1. By
Hensel’s Lemma, there exists u in 19 such that

(82_27T_(T1+1)7T_e_152)(ﬂﬂ'd) + 0_5—27_‘_1‘/—1

+ (262—171_—8& - 271,(7‘1—‘1-1—6)/2 _ 20,6-—27.(.75"1‘(7"1—6-‘1-1)/2)”
4 (27T_8+T1+2 4 U£_27Tt_e+”+2)’u,2 — 0 .

Put z = m3(x(e="173)/2 — )¢ oy + muxs 4+ oy € L. So Q(z) =

gomeT3(1 4+ Ar) and 7, is in O(L). Therefore (O (L)) D UF? by Lemma 1.

By the above lemmas and [X, Theorem 3.1] and the same arguments as
in [BD] and by the results in [X] and [EH], we have

THEOREM. Let L be a reqular 9 lattice with sL C ¢ and rank L =n > 3.

If

n(n—2) ifn is even,
ord(dL) < { (n—1)2 ifn is odd,

then (Ot (L)) D UE2.

Remark. The bound on ord(dL) in the above theorem is the best
possible. For e = 1 this easily follows from [EH, Theorem 3.14]. Consider
the following example for e > 2:

AL, w2 D Lrt A1, w2e~ ) L. Lat(/2= D) A(1, 26 )

with base {Z1,y1; T2, Y2} Tn/2,Yny2}  if n is even,
L=¢ AQ, 72 Y LrtA(L, w2 ) L., Lat(n=D/2=1) A(] g2e-1)
J_<ﬂ.2(n71)>

with base {21, y1;T2,¥2; - -5 T(n—1)/2: Y(n—1)/2; 2}  if n is odd.

We will show that (0T (L)) c UF2.

First, by the same arguments as in the above Example when e > 3, and
by the arguments as in [X, Example 4.3] when e = 2, we can prove O(L) is
generated by the symmetries of L. Next we compute the spinor norms. For
convenience, we only treat the case of even n. When n is odd, the arguments
are similar.
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When e > 3, we take any maximal vector v of L which gives rise to a
symmetry of L. Write v = Z:L:/f(azxz + b;y;). Then

n/2
(%) ord(Q(v)) = ord (Z 740D (02 + 2a:b; + b?w%_l))
i=1
< in {43 —1 dag, 4(i — 1 db,}.
_e+1§1}1§12/2{ (t—1)4orda;,4(i — 1) + ord b;}
We choose the largest k such that
min{4(k — 1) + ord ag,4(k — 1) + ord b }

— min {4(i—1)+orda;,4(i — 1) +ordb;} .
1;;12/2{ (t—1)+orda;,4(i — 1) + ord b; }

If ordar < 1, then
ord (=Y (a? + 2a;b; + bin?e~h))
—ord(7** Y (a2 + 2ay,by, + b272Y)) > 2

for all i # k by (x).
If ord a;, > 2, note that

n/2

Q) = (ZWQ(iq)ai)Q _9 Z r2=D+2-1) o
i=1 1<s<t<n/2
n/2 n/2
+ Z bZZﬂA(i—l)—l-Ze—l 19 Z ;b1
i=1 i=1
We have

ord(—2r2(=D+20=Dg 4,) — ord Q(v)
>e+2(s—1)+2(t—1)+ordas +orda; — (e +4(s — 1) + ord as)
=2(t—s)+orda; > 2
for any 1 <s <t <n/2 by (%), and
ord(b2ri—D+2e=1) _ ord Q(v)
>2ordb; +4(i — 1)+ (2e — 1) — (4(s — 1) + ord b; + €)
= ordb; + (e —1) > 2

for any 1 <1i <n/2 by (x); also orda; > 2 for any ¢ < k by the choice of k.
So

ord(2a;b;7* 1) — ord Q(v)
>e+4(i—1)+orda; +ordb; — (e +4(i — 1) + ord b;) = orda; > 2
for any ¢ < k by (*).
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Suppose there exists j > k such that orda; = ord b; = 0 and
4(j —1) = min{4(k — 1) + ord a,4(k — 1) + ord by} + 1.
Then
ord(m* =Y (a2 + 2a;b; 4+ b2m2e71))
— ord(7r4(j_1)(a? + 2a;b; + bfﬂ%_l)) >2
for any i # j by (x). Otherwise,
ord(2a;b;7* 1) — ord Q(v)
> 4(i—1)+e+ord a;+ord b;—(e+min{4(k—1)+ord ax, 4(k—1)+ord by }) > 2
for any ¢ > k by the choice of k. .
Therefore we obtain (O (L)) C (1 + p?)F? by [H, Prop. D].
When e = 2, the above arguments are still in force except
ord(b2r2 1740 =1) — ord Q(v)
>2ordb; +(2e —1)+4(i—1) — (44 — 1) + ord b; +¢€)
=e—1+4+ordb; >e—1=1.

Note that
n/2 n/2 n/2

_ (1)) (i-1),, (i-1)p,
Qv) (;772 lal) +2(;7r2 laz)(;ﬂ2 1b1>

n/2

I (Z 7[_2(i—1)bi)27r2e—1 _9 Z p2s=D+20t-1) o
=1

1<s<t<n/2
_ 9 Z p2(s=DH2(=1)p p n2e—1
1<s<t<n/2
P T e
1<s#t<n/2
We have
ord(272(s= D201y p,n2e=1y —ord Q(v) > 2
and
ord(2r2(= V420D p,) — ord Q(v) > 2
for any s # t by (x). So we obtain (O (L)) = UF?NQ([1,#® — 1]) by [Xo]
and [X, Remark 1].

By the above theorem, we can improve [BD, Prop. 4.1], in fact, we can
modify s,(n) appearing there as follows:

5, (n) = n(n —2)/2 if p is nondyadic,
PR s(n) if p is dyadic,
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where

(n) = n(n —2) if n is even,
ST  (n=1)2  ifnis odd.
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