Integral spinor norms in dyadic local fields II

by

Fei Xu (Hefei)

In the previous paper [X] we have generalized the results of [BD] to a dyadic local field with $e = \operatorname{ord} 2 = 2$. In the present paper we generalize these results to an arbitrary dyadic local field, and we also point out that the bound for $\operatorname{ord}(dL)$ is the best possible. The results obtained are applied to improve the sufficient condition for the class number of an indefinite quadratic form over the ring of integers of a number field to be a divisor of the class number of the field, which is analogous to Satz 5 of [K].

Here we adopt the notations from [O] and [X]. In particular, F denotes a dyadic local field, ϑ the ring of integers in F, p the maximal ideal of ϑ , U the group of units in ϑ , $e = \operatorname{ord} 2$ the ramification index of 2 in F, π a fixed prime element in F, D(,) the quadratic defect function, Δ a fixed unit of quadratic defect 4ϑ , V a regular quadratic space over F with associated symmetric bilinear form B(x, y), L a lattice on V, dL the determinant of L, $O^+(V)$ the group of rotations on V, $O^+(L)$ the corresponding subgroup of units of L, and $\theta(,)$ the spinor norm function. We use the symbol $\langle a, b, c, \ldots \rangle$ for lattices, and $[a, b, c, \ldots]$ for spaces.

LEMMA 1. For any $i \ge 1$, $1 + p^i$ is generated by $1 + \lambda \pi^i$ with $\lambda \in U$.

Proof. This follows from the identity

 $(1 + \sigma \pi^{k+1}) = (1 + \pi^k)(1 + (1 + \pi^k)^{-1}(\sigma \pi - 1)\pi^k).$

LEMMA 2. Suppose $sL \subseteq \vartheta$ and rank $L \geq 3$ and $e \geq 3$. If $\operatorname{ord}(dL) \leq 3$ then $\theta(O^+(L)) \supseteq U\dot{F}^2$.

Proof. Let $L = L_1 \perp \ldots \perp L_t$ be a Jordan splitting of L. We assume $t \geq 2$ and rank $L_i \leq 2, i = 1, \ldots, t$. Since $\operatorname{ord}(dL) \leq 3, t \leq 3$. We consider several cases.

(1) $L = L_1 \perp L_2$ where L_1 is unimodular with rank $L_1 = 2$ and $L_2 = \vartheta x_2$ with $Q(x_2) = \varepsilon_2 \pi$ and $\varepsilon_2 \in U$. Put $L_1 \cong A(a_1, -a_1^{-1}\delta_1)$ with the base $\{x_1, y_1\}$ and $0 \leq \operatorname{ord} a_1 \leq e$ and $D(1 + \delta_1) = \delta_1 \vartheta$.

If $\operatorname{ord}(-a_1^{-1}\delta_1) < e$, then $\operatorname{ord} a_1 \equiv \operatorname{ord}(-a_1^{-1}\delta_1) + 1 \mod 2$.

F. Xu

When ord a_1 is even, take $K = \vartheta x_1 \perp \vartheta x_2$. Note that any maximal vector of K gives rise to a symmetry of L. So $\theta(O^+(L)) \supseteq Q([1, \dot{a}_1 \varepsilon_2 \pi])$ which does not contain Δ , but Δ is in $\theta(O^+(L_1))$ by [H]. Therefore $\theta(O^+(L)) = \dot{F}$.

When ord a_1 is odd, then $\operatorname{ord}(-a_1^{-1}\delta_1)$ is even. Take $K = \vartheta y_1 \perp \vartheta x_2$, and $\theta(O^+(L)) = \dot{F}$ by the same arguments as above.

If $\operatorname{ord}(-a_1^{-1}\delta_1) \ge e$, write $a_1 = \varepsilon_1 \pi^{r_1}$ and $-\varepsilon_1 \varepsilon_2^{-1} = \eta^2 + \sigma \pi^d$ where d is an odd integer or $d \ge 2e$.

When r_1 is odd, consider a unimodular lattice $\overline{L}_1 = \vartheta(x_1 + \eta \pi^{(r_1 - 1)/2} x_2) + \vartheta y_1$ which splits L. Write $L = \overline{L}_1 \perp \vartheta \overline{x}_2$ with $Q(\overline{x}_2) = \overline{\varepsilon}_2 \pi$. Note

ord
$$(Q(x_1 + \eta \pi^{(r_1 - 1)/2} x_2)) = r_1 + d$$
.

If $r_1 + d \ge e$, then $\overline{L}_1 \cong A(0,0)$ or $A(2,2\varrho)$ by [O, 93:11]. Therefore $\theta(O^+(L)) \supseteq \theta(O^+(\overline{L}_1)) = U\dot{F}^2$ by [H, Lemma 1]. Otherwise, $r_1 + d < e$ and $r_1 + d$ is even. Take $K = \vartheta(x_1 + \eta \pi^{(r_1-1)/2} x_2) \perp \vartheta \overline{x}_2$. Therefore $\theta(O^+(L)) = \dot{F}$.

When r_1 is even, take $K = \vartheta x_1 \perp \vartheta x_2$. So $\theta(O^+(L)) = \dot{F}$.

(2) $L = L_1 \perp L_2$ where L_1 is unimodular with rank $L_1 = 2$ and $L_2 = \vartheta x_2$ with $Q(x_2) = \varepsilon_2 \pi^2$ and $\varepsilon_2 \in U$. By the arguments similar to Case (1), we only need to consider $L_1 \cong A(\varepsilon_1, -\varepsilon_1^{-1}\delta_1)$ with the base $\{x_1, y_1\}$ where ε_1 is in U, $D(1 + \delta_1) = \delta_1 \vartheta$ and $\operatorname{ord}(-\varepsilon_1^{-1}\delta_1) > e$. Put $D(\varepsilon_1 \varepsilon_2) = p^t$ with $1 \le t \le 2e$ or $t = \infty$.

If $t \leq e-1$, then $D(-\varepsilon_1\varepsilon_2) = D(\varepsilon_1\varepsilon_2) = p^t$. Take $K = \vartheta x_1 \perp \vartheta x_2$. Note that any maximal vector of K gives rise to a symmetry of L, so $\theta(O^+(L)) \supseteq Q([1, \dot{\varepsilon}_1\varepsilon_2])$. By [H, Lemma 3], there exists η in U such that $(\eta, -\varepsilon_1\varepsilon_2) = -1$ with $D(\eta) = p^{2e-t}$. Since $2e-t \geq e+1$, η is in $\theta(O^+(L_1))$ by [H, Lemma 2]. Therefore $\theta(O^+(L)) = \dot{F}$.

If t > e - 1, write $\varepsilon_2^{-1} \varepsilon_1 = \xi^2 + \sigma \pi^t$ where ξ and σ are in U. When e is odd, there exists u in ϑ such that

$$\lambda + 2\pi^{-e}\xi(\pi^{(e-1)/2} - \xi) - \sigma\pi^{t-e} - 2\pi^{-e}\varepsilon_2^{-1}u + \varepsilon_1^{-1}\varepsilon_2^{-1}\delta_1\pi^{-e}u^2 = 0$$

for any $\lambda \in \vartheta$ by Hensel's Lemma. Put $z = \pi x_1 + \pi u y_1 + (\pi^{(e-1)/2} - \xi) x_2 \in L$, and

$$\begin{aligned} Q(z) &= \pi^2 \varepsilon_1 + \pi^2 u^2 (-\varepsilon_1^{-1} \delta_1) + 2\pi^2 u + (\pi^{(e-1)/2} - \xi)^2 \varepsilon_2 \pi^2 \\ &= \varepsilon_2 \pi^2 (\xi^2 + \sigma \pi^t + 2\varepsilon_2^{-1} u + (\pi^{(e-1)/2} - \xi)^2 - (\varepsilon_1 \varepsilon_2)^{-1} \delta_1 u^2) \\ &= \varepsilon_2 \pi^2 (\pi^{e-1} - 2\xi (\pi^{(e-1)/2} - \xi) + \sigma \pi^t + 2\varepsilon_2^{-1} u - (\varepsilon_1 \varepsilon_2)^{-1} \delta_1 u^2) \\ &= \varepsilon_2 \pi^{e+1} (1 + \pi (-2\pi^{-e} \xi (\pi^{(e-1)/2} - \xi) \\ &+ \sigma \pi^{t-e} + 2\pi^{-e} \varepsilon_2^{-1} u - (\varepsilon_1 \varepsilon_2)^{-1} \delta_1 \pi^{-e} u^2)) \\ &= \varepsilon_2 \pi^{e+1} (1 + \lambda \pi) \,. \end{aligned}$$

So τ_z is in O(L) and $\theta(O^+(L)) \supseteq U\dot{F}^2$.

When e is even, there exists u in ϑ such that

$$\lambda + 2\pi^{1-e}\xi(\pi^{(e-2)/2} - \xi) - \sigma\pi^{t-e+1} - 2\pi^{-e}\varepsilon_2^{-1}u + (\varepsilon_1\varepsilon_2)^{-1}\delta_1\pi^{-e-1}u^2 = 0$$

for any $\lambda \in \vartheta$ by Hensel's Lemma if $\operatorname{ord}(\delta_1) \ge e + 2$. Put

$$z = \pi x_1 + uy_1 + (\pi^{(e-2)/2} - \xi)x_2 \in L$$

Since $Q(z) = \varepsilon_2 \pi^e (1 + \lambda \pi)$ by a direct computation, τ_z is in O(L) and $\theta(O^+(L)) \supseteq U\dot{F}^2$.

Now we treat the case of $\operatorname{ord}(-\varepsilon_1^{-1}\delta_1) = e + 1$. For any $\lambda \in U$, write

$$(-(\varepsilon_1\varepsilon_2)^{-1}\delta_1\pi^{-e-1})^{-1} = \alpha^2 + \beta\pi^d$$

where α and β are in U, and $d \ge 1$. By Hensel's Lemma, there exists u in ϑ such that

$$(\varepsilon_1 \varepsilon_2)^{-1} (\delta_1 \pi^{-e-1}) \beta \pi^{d-1} + (2\pi^{-e} \alpha \varepsilon_2^{-1} - 2\xi \pi^{-e/2}) u + (\sigma \pi^{t+2-e} + 2\xi^2 \pi^{2-e}) u^2 = 0.$$

Put $z = \pi^2 u x_1 + \alpha y_1 + (\pi^{(e-2)/2} - \xi \pi u) x_2 \in L$. So $Q(z) = \varepsilon_2 \pi^e (1 + \lambda \pi)$ and τ_z is in O(L). Therefore we obtain $\theta(O^+(L)) \supseteq U\dot{F}^2$ by Lemma 1.

(3) $L = L_1 \perp L_2$ where L_1 is unimodular with rank $L_1 = 2$ and $L_2 = \vartheta x_2$ with $Q(x_2) = \varepsilon_2 \pi^3$ and $\varepsilon_2 \in U$. By the arguments similar to Case (1), we only need to consider $L_1 \cong A(\varepsilon_1 \pi_1, -\varepsilon_1^{-1} \pi^{-1} \delta_1)$ with the base $\{x_1, y_1\}$ where ε_1 is in U, $D(1 + \delta_1) = \delta_1 \vartheta$ and $\operatorname{ord}(-\varepsilon_1^{-1} \pi^{-1} \delta_1) > e$. Put $D(\varepsilon_1 \varepsilon_2) = p^t$ with $1 \leq t \leq 2e$ or $t = \infty$.

If $t \leq e-2$, take $K = \vartheta x_1 \perp \vartheta x_2$. By the same arguments as in Case (2), we have $\theta(O^+(L)) = \dot{F}$.

If t > e - 2, write $\varepsilon_2^{-1} \varepsilon_1 = \xi^2 + \sigma \pi^t$ where ξ and σ are in U. When e is even, there exists u in ϑ such that

$$\lambda + 2\pi^{1-e}\xi(\pi^{(e-2)/2} - \xi) - \sigma\pi^{t-e+1} - 2\pi^{-e}\varepsilon_2^{-1}u + (\varepsilon_1\varepsilon_2)^{-1}\delta_1\pi^{-e-1}u^2 = 0$$

for any $\lambda \in \vartheta$ by Hensel's Lemma. Put $z = \pi x_1 + \pi u y_1 + (\pi^{(e-2)/2} - \xi) x_2 \in L$ and $Q(z) = \varepsilon_2 \pi^{e+1} (1 + \lambda \pi)$; so τ_z is in O(L) and $\theta(O^+(L)) \supseteq U\dot{F}^2$.

When e is odd, there exists u in ϑ such that

$$\lambda + 2\pi^{2-e}\xi(\pi^{(e-3)/2} - \xi) - \sigma\pi^{t-e+2} - 2\pi^{-e}\varepsilon_2^{-1}u + (\varepsilon_1\varepsilon_2)^{-1}\pi^{-e-2}\delta_1u^2 = 0$$

for any $\lambda \in \vartheta$ by Hensel's Lemma if $\operatorname{ord}(-\varepsilon_1^{-1}\pi^{-1}\delta_1) > e+1$. Put

$$z = \pi x_1 + u y_1 + (\pi^{(e-3)/2} - \xi) x_2 \in L.$$

Since $Q(z) = \varepsilon_2 \pi^e (1 + \pi \lambda)$, τ_z is in O(L) and $\theta(O^+(L)) \supseteq U\dot{F}^2$.

Now we treat the case of $\operatorname{ord}(-\varepsilon_1^{-1}\pi^{-1}\delta_1) = e+1$. For any $\lambda \in U$, write

$$\lambda(-(\varepsilon_1\varepsilon_2)^{-1}\pi^{-2-e}\delta_1)^{-1} = \alpha^2 + \beta\pi^d$$

where α and β are in U and $d \geq 1$. By Hensel's Lemma, there exists u in ϑ such that

$$\beta \pi^{d} (\varepsilon_{1} \varepsilon_{2})^{-1} \pi^{-2-e} \delta_{1} + (2\varepsilon_{2}^{-1} \alpha \pi^{-e} - 2\xi \pi^{(1-e)/2}) u + (\sigma \pi^{t-e+2} + 2\pi^{2-e} \xi^{2}) u^{2} = 0.$$

Put $z = \pi u x_1 + \alpha y_1 + (\pi^{(e-3)/2} - \xi u) x_2 \in L$ and $Q(z) = \varepsilon_2 \pi^e (1 + \lambda \pi)$. So τ_z is in O(L) and $\theta(O^+(L)) \supseteq U\dot{F}^2$ by Lemma 1.

(4) $L = L_1 \perp L_2$ where L_1 is unimodular with rank $L_1 = 2$ and L_2 is *p*-modular with rank $L_2 = 2$. Write $L_1 \cong A(\varepsilon_1 \pi^{r_1}, -\varepsilon_1^{-1} \pi^{-r_1} \delta_1)$ with the base $\{x_1, y_1\}$ and $0 \leq r_1 \leq e$ and $D(1 + \delta_1) = \delta_1 \vartheta$. $L_2 \cong \pi A(\varepsilon_2 \pi^{r_2}, \delta_1)$ $-\varepsilon_2^{-1}\pi^{-r_2}\delta_2$ with the base $\{x_2, y_2\}$ and $0 \le r_2 \le e$ and $D(1+\delta_2) = \delta_2\vartheta$.

If $r_1 \equiv r_2 \mod 2$, take $K = \vartheta x_1 \perp \vartheta x_2$. By the same arguments as in Case (1), we obtain $\theta(O^+(L)) = F$.

If $r_1 \equiv r_2 + 1 \mod 2$, write $-\varepsilon_1 \varepsilon_2^{-1} = \xi^2 + \sigma \pi^d$ with $\xi, \sigma \in U$ and $d \ge 1$. When $\operatorname{ord}(-\varepsilon_1^{-1}\pi^{-r_1}\delta_1) < e$, take $K = \vartheta y_1 \perp \vartheta x_2$; thus $\theta(O^+(L)) = \dot{F}$. When $\operatorname{ord}(-\varepsilon_2^{-1}\pi^{-r_2}\delta_2) < e$, take $K = \vartheta x_1 \perp \vartheta y_2$; thus $\theta(O^+(L)) = \dot{F}$. Otherwise, we take $\overline{L}_1 = \vartheta(x_1 + \xi \pi^{(r_1 - r_2 - 1)/2} x_2) + \vartheta y_1$ splitting L if $r_1 \ge r_2 + 1$, or $\overline{L}_2 = \vartheta(x_2 + \xi^{-1}\pi^{(r_2 - r_1 - 1)/2} x_1) + \vartheta y_2$ splitting L if $r_1 < r_2 + 1$

by [O, 82:15].

When $\operatorname{ord}(Q(x_1 + \xi \pi^{(r_1 - r_2 - 1)/2} x_2)) = r_1 + d \ge e \text{ or } \operatorname{ord}(Q(x_2 + \xi \pi^{(r_1 - r_2 - 1)/2} x_2))$
$$\begin{split} \xi^{-1} \pi^{(r_2 - r_1 + 1)/2} x_1) &= r_2 + d + 1 \ge e, \text{ then } \overline{L}_1 \text{ or } \overline{L}_2 \cong A(0,0) \text{ or } A(2,2\varrho), \\ \text{and } \theta(O^+(L)) \supseteq \theta(O^+(\overline{L}_1)) = U\dot{F}^2 \text{ or } \theta(O^+(\overline{L}_2)) = U\dot{F}^2. \end{split}$$

If $\operatorname{ord}(Q(x_1 + \xi \pi^{(r_1 - r_2 - 1)/2} x_2)) = r_1 + d \leq e \text{ or } \operatorname{ord}(Q(x_2 + \xi \pi^{(r_1 - r_2 - 1)/2} x_2))$ $\xi^{-1}\pi^{(r_2-r_1+1)/2}x_1) = r_2 + d + 1 < e$, then $L \cong \overline{L}_1 \perp L'_2$ or $L'_1 \perp \overline{L}_2$ respectively and we repeat the above arguments until we obtain the results as desired.

(5) $L = L_1 \perp L_2 \perp L_3$ where L_1 is unimodular with rank $L_1 = 2$, and $L_i =$ ϑx_i with $Q(x_i)\vartheta = p^{i-1}, i = 2, 3$. Then $\theta(O^+(L)) \supseteq \theta(O^+(L_1 \perp L_2)) \supseteq U\dot{F}^2$ by Case (1).

(6) $L = L_1 \perp L_2$ with rank $L_1 = 1$ and rank $L_2 = 2$. We scale the dual lattice of L by π and reduce to Case (1).

(7) $L = L_1 \perp L_2 \perp L_3$ with rank $L_i = 1, i = 1, 2, 3$. So $L_i = \vartheta x_i$ with $Q(x_i) = p^{i-1}, i = 1, 2, 3;$ and $\theta(O^+(L)) = \dot{F}$ by [X, Theorem 3.1].

We point out that the bound $\operatorname{ord}(dL) \leq 3$ given in the above lemma cannot be unconditionally improved for any $e \geq 3$ in view of the following example.

EXAMPLE. Suppose $L \cong A(1, \pi^{2e-1}) \perp \langle \pi^4 \rangle$ with the base $\{x, y, z\}$ and $e \geq 3$. Then $\theta(O^+(L)) \subseteq (1+p^2)\dot{F}^2$.

Proof. First we prove that O(L) is generated by the symmetries of L.

Take σ in O(L). Write $\sigma x = ax + by + cz$. So $1 - a^2 = 2ab + b^2 \pi^{2e-1} + c^2 \pi^4 \in p^3$ and $(1-a) \in p^2$. We can assume ord $b \leq 1$, otherwise, instead of σ we consider $\tau_{\pi^{[e/2]}x+y}\sigma$ if necessary and $\tau_{\pi^{[e/2]}x+y} \in O(L)$. Since $Q(\sigma x - x) = 2((1-a)-b), \tau_{\sigma x-x} \in O(L)$. Therefore we assume $\sigma x = x, \sigma y = \alpha x + \beta y + \gamma z$. So

$$\alpha + \beta = 1$$
, $\pi^{2e-1} = \alpha^2 + 2\alpha\beta + \beta^2\pi^{2e-1} + \gamma^2Q(z)$

and

$$Q(\sigma y - y) = 2\alpha(-1 + \pi^{2e-1}).$$

When $\operatorname{ord} \alpha \leq 4$, then $\tau_{\sigma y-y} \in O(L)$. So $\sigma = \tau_{\sigma y-y}$ or $\tau_{\sigma y-y}\tau_z$. When $\operatorname{ord} \alpha > 4$, put $\xi = 1 + \pi^{[(e-2)/2]}$ and $u = \pi^2 x - \pi^2 y + \xi z$. Then

 $Q(u) = \pi^4(1+\xi^2) + \pi^{2e+3} - 2\pi^4 = \pi^{4+2[(e-2)/2]} + 2\pi^{4+[(e-2)/2]} + \pi^{2e+3}.$

So $\tau_u \in O(L)$ and $\tau_u(x) = x$. Write $\tau_u \sigma(y) = \alpha' x + \beta' y + \gamma' z$. We can check ord $\alpha' \leq 3$. Therefore we obtain the result as desired by the above arguments.

It is not difficult to check $Q(v) \in (1+p^2)\dot{F}^2$ for any maximal vector v of L which gives rise to a symmetry of L. So we obtain $\theta(O^+(L)) \subseteq (1+p^2)\dot{F}^2$.

LEMMA 3. Suppose $sL \subseteq \vartheta$ and rank $L \ge 4$ and $e \ge 3$. If $\operatorname{ord}(dL) \le 7$ then $\theta(O^+(L)) \supseteq U\dot{F}^2$.

Proof. Using the above Lemma 2, considering components and dual lattices whenever necessary, there remain two cases to be treated.

(1) $L = L_1 \perp L_2$ where L_1 is a binary unimodular lattice and L_2 is a binary p^2 -modular lattice. Write $L_1 \cong A(\varepsilon_1 \pi^{r_1}, -\varepsilon_1^{-1} \pi^{-r_1} \delta_1)$ with base $\{x_1, y_1\}$ and $0 \leq r_1 \leq e$ and $D(1+\delta_1) = \delta_1 \vartheta$. $L_2 \cong \pi^2 A(\varepsilon_2 \pi^{r_2}, -\varepsilon_2^{-1} \pi^{-r_2} \delta_2)$ with base $\{x_2, y_2\}$ and $0 \leq r_2 \leq e$ and $D(1+\delta_2) = \delta_2 \vartheta$.

By the same arguments as in Lemma 2, Case (4), and in [H, Lemma 1, Prop. C], and considering the dual lattice of L if necessary, we only need to consider the case $0 \leq r_1 = r_2 \leq e - 2$ and $\operatorname{ord}(-\varepsilon_1^{-1}\pi^{-r_1}\delta_1) > e$ and $\operatorname{ord}(-\varepsilon_2^{-1}\pi^{-r_2}\delta_2) > e$. Put $D(\varepsilon_1\varepsilon_2) = p^t$ with $1 \leq t \leq 2e$ or $t = +\infty$.

If $t \leq e - r_1 - 1$, take $K = \vartheta x_1 \perp \vartheta x_2$. Then $\theta(O^+(L)) = \dot{F}$ by the same arguments as in Lemma 2, Case(2).

If $t > e - r_1 - 1$, write $\varepsilon_2^{-1} \varepsilon_1 = \xi^2 + \sigma \pi^t$ where ξ and σ are in U. When $e - r_1$ is odd, there exists u in ϑ such that

$$\lambda + 2\pi^{r_1 - e} \xi(\pi^{(e - r_1 - 1)/2} - \xi) - \sigma \pi^{t + r_1 - e} - 2\varepsilon_2^{-1} \pi^{-e} u + (\varepsilon_1 \varepsilon_2)^{-1} \pi^{-e - r_1} \delta_1 u^2 = 0$$

for any $\lambda \in \vartheta$ by Hensel's Lemma. Put $z = \pi x_1 + \pi u y_1 + (\pi^{(e-r_1-1)/2} - \xi) x_2 \in L$. So $Q(z) = \varepsilon_2 \pi^{e+1} (1 + \lambda \pi)$ and τ_z is in O(L). Therefore $\theta(O^+(L)) \supseteq U\dot{F}^2$.

When $e - r_1$ is even, there exists u in ϑ such that

$$\lambda + 2\pi^{r_1 + 1 - e} \xi(\pi^{(e - r_1 - 2)/2} - \xi) - \sigma \pi^{t + r_1 + 1 - e} - 2\varepsilon_2^{-1} \pi^{-e} u + (\varepsilon_1 \varepsilon_2)^{-1} \pi^{-r_1 - e - 1} \delta_1 u^2 = 0$$

for any λ in ϑ by Hensel's Lemma provided $\operatorname{ord}(-\varepsilon_1^{-1}\pi^{-r_1}\delta_1) \ge e+2$. Put $z = \pi x_1 + uy_1 + (\pi^{(e-r_1-2)/2} - \xi)x_2 \in L$. So $Q(z) = \varepsilon_2 \pi^e (1 + \lambda \pi)$ and τ_z is in O(L). Therefore $\theta(O^+(L)) \supseteq U\dot{F}^2$.

Now we treat the case of $\operatorname{ord}(-\varepsilon_1^{-1}\pi^{-r_1}\delta_1) = e+1$. For any λ in U, write

$$\lambda(-(\varepsilon_1\varepsilon_2)^{-1}\pi^{-r_1-e-1}\delta_1)^{-1} = \alpha^2 + \beta\pi^d$$

with $\alpha, \beta \in U$ and $d \geq 1$. By Hensel's Lemma, there exists u in ϑ such that

$$((\varepsilon_1\varepsilon_2)^{-1}\pi^{-r_1-1-e}\delta_1)(\beta\pi^d) + (2\varepsilon_2^{-1}\pi^{-e}\alpha - 2\pi^{(r_1-e)/2}\xi)u + (\sigma\pi^{r_1+1+t-e} + 2\pi^{r_1+1-e}\xi^2)u^2 = 0.$$

Put $z = \pi u x_1 + \alpha y_1 + (\pi^{(e-r_1-2)/2} - \xi u) x_2 \in L$. So $Q(z) = \varepsilon_2 \pi^e (1 + \lambda \pi)$ and τ_z is in O(L). Therefore $\theta(O^+(L)) \supseteq U\dot{F}^2$ by Lemma 1.

(2) $L = L_1 \perp L_2$ where L_1 is a binary unimodular lattice and L_2 is a binary p^3 -modular lattice. Write $L_1 \cong A(\varepsilon_1 \pi^{r_1}, -\varepsilon_1^{-1} \pi^{-r_1} \delta_1)$ with base $\{x_1, y_1\}$ and $0 \leq r_1 \leq e$ and $D(1+\delta_1) = \delta_1 \vartheta$. $L_2 \cong \pi^3 A(\varepsilon_2 \pi^{r_2}, -\varepsilon_2^{-1} \pi^{-r_2} \delta_2)$ with base $\{x_2, y_2\}$ and $0 \leq r_2 \leq e$ and $D(1 + \delta_2) = \delta_2 \vartheta$. By the arguments similar to Lemma 2, Case (4), and [H, Lemma 1, Prop. C], and considering the dual lattice of L if necessary, we only need to consider the case $0 \leq r_1$, $r_2 \leq e - 2$; $r_1 = r_2 + 1$ or $r_1 + 1 = r_2$; and $\operatorname{ord}(-\varepsilon_1^{-1}\pi^{-r_1}\delta_1) > e$ and $\operatorname{ord}(-\varepsilon_2^{-1}\pi^{-r_2}\delta_2) > e$.

When $r_1 = r_2 + 1$, we can obtain the results as desired by the same arguments as in the above Case (1).

Now we treat the case $r_2 = r_1 + 1$. Put $D(\varepsilon_1 \varepsilon_2) = p^t$ with $1 \le t \le 2e$ or $t = +\infty$.

If $t \leq e - r_1 - 2$, take $K = \vartheta x_1 \perp \vartheta x_2$. Then $\theta(O^+(L)) = \dot{F}$ by the same arguments as in Lemma 2, Case (2).

If $t > e - r_1 - 2$, write $\varepsilon_2^{-1} \varepsilon_1 = \xi^2 + \sigma \pi^t$ where ξ and σ are in U.

When $e - r_1$ is even, there exists u in ϑ such that

$$-\lambda - 2\pi^{r_1+1-e}(\pi^{(e-r_1-2)/2} - 1) + \sigma\pi^{t-e+r_1+1}\xi^{-2}(\pi^{(e-r_1-2)/2} - 1)^2 + 2\varepsilon_2^{-1}\pi^{-e}u - \varepsilon_2^{-2}\pi^{-(r_1+1)-e}\delta_2u^2 = 0$$

for any $\lambda \in \vartheta$ by Hensel's Lemma. Put $z = \pi^2 \xi^{-1} (\pi^{(e-r_1-2)/2} - 1) x_1 + x_2 + u y_2 \in L$. So $Q(z) = \varepsilon_2 \pi^{e+2} (1 + \lambda \pi)$ and τ_z is in O(L). Therefore $\theta(O^+(L)) \supseteq U\dot{F}^2$.

When $e - r_1$ is odd, $r_1 + 1 = r_2 \le e - 2$ and $r_1 \le e - 3$. Then there exists u in ϑ such that

$$\begin{split} \lambda + 2\pi^{-e+r_1+2}(\pi^{(e-r_1-3)/2}-1) &- \sigma\xi^{-2}\pi^{t-e+r_1+2}(\pi^{(e-r_1-3)/2}-1)^2 \\ &- 2\pi^{-e}\varepsilon_2^{-1}u + \varepsilon_2^{-2}\pi^{-(r_1+1)}\delta_2\pi^{-e-1}u^2 = 0 \end{split}$$

for any $\lambda \in \vartheta$ provided $\operatorname{ord}(-\varepsilon_2^{-1}\pi^{-r_2}\delta_2) \ge e+2$. Put $z = \pi^3(\pi^{(e-r_1-3)/2}-1)\xi^{-1}x_1 + \pi x_2 + uy_2 \in L$. So $Q(z) = \varepsilon_2\pi^{e+3}(1+\lambda\pi)$ and τ_z is in O(L). Therefore $\theta(O^+(L)) \supseteq U\dot{F}^2$.

Finally, we consider the case of $\operatorname{ord}(-\varepsilon_2^{-1}\pi^{-r_2}\delta_2) = e+1$. For any $\lambda \in U$, write $\lambda(-\varepsilon_2^{-2}\pi^{-(r_1+1)}\pi^{-e-1}\delta_2)^{-1} = \alpha^2 + \beta\pi^d$ with $\alpha, \beta \in U$ and $d \ge 1$. By Hensel's Lemma, there exists u in ϑ such that

$$\begin{split} (\varepsilon_2^{-2}\pi^{-(r_1+1)}\pi^{-e-1}\delta_2)(\beta\pi^d) &+ \sigma\xi^{-2}\pi^{t-1} \\ &+ (2\varepsilon_2^{-1}\pi^{-e}\alpha - 2\pi^{(r_1+1-e)/2} - 2\sigma\xi^{-2}\pi^{t+(r_1-e+1)/2})u \\ &+ (2\pi^{-e+r_1+2} + \sigma\xi^{-2}\pi^{t-e+r_1+2})u^2 = 0\,. \end{split}$$

Put $z = \pi^3 (\pi^{(e-r_1-3)/2} - u)\xi^{-1}x_1 + \pi ux_2 + \alpha y_2 \in L$. So $Q(z) = \varepsilon_2 \pi^{e+3}(1+\lambda\pi)$ and τ_z is in O(L). Therefore $\theta(O^+(L)) \supseteq U\dot{F}^2$ by Lemma 1.

By the above lemmas and [X, Theorem 3.1] and the same arguments as in [BD] and by the results in [X] and [EH], we have

THEOREM. Let L be a regular ϑ lattice with $sL \subseteq \vartheta$ and rank $L = n \ge 3$. If

$$\operatorname{ord}(dL) < \begin{cases} n(n-2) & \text{if } n \text{ is even}, \\ (n-1)^2 & \text{if } n \text{ is odd}, \end{cases}$$

then $\theta(O^+(L)) \supseteq U\dot{F}^2$.

Remark. The bound on $\operatorname{ord}(dL)$ in the above theorem is the best possible. For e = 1 this easily follows from [EH, Theorem 3.14]. Consider the following example for $e \geq 2$:

$$L = \begin{cases} A(1, \pi^{2e-1}) \perp \pi^4 A(1, \pi^{2e-1}) \perp \dots \perp \pi^{4(n/2-1)} A(1, \pi^{2e-1}) \\ \text{with base} \{x_1, y_1; x_2, y_2; \dots; x_{n/2}, y_{n/2}\} & \text{if } n \text{ is even,} \\ A(1, \pi^{2e-1}) \perp \pi^4 A(1, \pi^{2e-1}) \perp \dots \perp \pi^{4((n-1)/2-1)} A(1, \pi^{2e-1}) \\ \perp \langle \pi^{2(n-1)} \rangle \\ \text{with base} \{x_1, y_1; x_2, y_2; \dots; x_{(n-1)/2}, y_{(n-1)/2}; z\} & \text{if } n \text{ is odd.} \end{cases}$$

We will show that $\theta(O^+(L)) \subset U\dot{F}^2$.

First, by the same arguments as in the above Example when $e \ge 3$, and by the arguments as in [X, Example 4.3] when e = 2, we can prove O(L) is generated by the symmetries of L. Next we compute the spinor norms. For convenience, we only treat the case of even n. When n is odd, the arguments are similar. When $e \ge 3$, we take any maximal vector v of L which gives rise to a symmetry of L. Write $v = \sum_{i=1}^{n/2} (a_i x_i + b_i y_i)$. Then

(*)
$$\operatorname{ord}(Q(v)) = \operatorname{ord}\left(\sum_{i=1}^{n/2} \pi^{4(i-1)} (a_i^2 + 2a_i b_i + b_i^2 \pi^{2e-1})\right)$$

 $\leq e + \min_{1 \leq i \leq n/2} \{4(i-1) + \operatorname{ord} a_i, 4(i-1) + \operatorname{ord} b_i\}.$

We choose the largest k such that

$$\min\{4(k-1) + \operatorname{ord} a_k, 4(k-1) + \operatorname{ord} b_k\} = \min_{1 \le i \le n/2} \{4(i-1) + \operatorname{ord} a_i, 4(i-1) + \operatorname{ord} b_i\}$$

If ord $a_k \leq 1$, then

$$\operatorname{ord}(\pi^{4(i-1)}(a_i^2 + 2a_ib_i + b_i^2\pi^{2e-1})) - \operatorname{ord}(\pi^{4(k-1)}(a_k^2 + 2a_kb_k + b_k^2\pi^{2e-1})) \ge 2$$

for all $i \neq k$ by (*).

If ord $a_k \geq 2$, note that

$$\begin{aligned} Q(v) &= \Big(\sum_{i=1}^{n/2} \pi^{2(i-1)} a_i\Big)^2 - 2\sum_{1 \le s < t \le n/2} \pi^{2(s-1)+2(t-1)} a_s a_t \\ &+ \sum_{i=1}^{n/2} b_i^2 \pi^{4(i-1)+2e-1} + 2\sum_{i=1}^{n/2} a_i b_i \pi^{4(i-1)} \,. \end{aligned}$$

We have

$$\operatorname{ord}(-2\pi^{2(s-1)+2(t-1)}a_sa_t) - \operatorname{ord}Q(v)$$

$$\geq e + 2(s-1) + 2(t-1) + \operatorname{ord}a_s + \operatorname{ord}a_t - (e + 4(s-1) + \operatorname{ord}a_s)$$

$$= 2(t-s) + \operatorname{ord}a_t \geq 2$$

for any $1 \le s < t \le n/2$ by (*), and

$$\operatorname{ord}(b_i^2 \pi^{4(i-1)+2e-1}) - \operatorname{ord} Q(v)$$

$$\geq 2 \operatorname{ord} b_i + 4(i-1) + (2e-1) - (4(i-1) + \operatorname{ord} b_i + e)$$

$$= \operatorname{ord} b_i + (e-1) \geq 2$$

for any $1 \le i \le n/2$ by (*); also ord $a_i \ge 2$ for any $i \le k$ by the choice of k. So

$$\operatorname{ord}(2a_i b_i \pi^{4(i-1)}) - \operatorname{ord} Q(v)$$

$$\geq e + 4(i-1) + \operatorname{ord} a_i + \operatorname{ord} b_i - (e + 4(i-1) + \operatorname{ord} b_i) = \operatorname{ord} a_i \geq 2$$

for any $i \leq k$ by (*).

Suppose there exists j > k such that $\operatorname{ord} a_i = \operatorname{ord} b_i = 0$ and

$$4(j-1) = \min\{4(k-1) + \operatorname{ord} a_k, 4(k-1) + \operatorname{ord} b_k\} + 1.$$

Then

$$\operatorname{ord}(\pi^{4(i-1)}(a_i^2 + 2a_ib_i + b_i^2\pi^{2e-1})) - \operatorname{ord}(\pi^{4(j-1)}(a_j^2 + 2a_jb_j + b_j^2\pi^{2e-1})) \ge$$

for any $i \neq j$ by (*). Otherwise,

$$\begin{aligned} & \operatorname{ord}(2a_ib_i\pi^{4(i-1)}) - \operatorname{ord}Q(v) \\ & \geq 4(i-1) + e + \operatorname{ord}a_i + \operatorname{ord}b_i - (e + \min\{4(k-1) + \operatorname{ord}a_k, 4(k-1) + \operatorname{ord}b_k\}) \geq 2 \end{aligned}$$

for any i > k by the choice of k.

Therefore we obtain $\theta(O^+(L)) \subseteq (1+p^2)\dot{F}^2$ by [H, Prop. D].

When e = 2, the above arguments are still in force except

$$\operatorname{ord}(b_i^2 \pi^{2e-1} \pi^{4(i-1)}) - \operatorname{ord} Q(v)$$

$$\geq 2 \operatorname{ord} b_i + (2e-1) + 4(i-1) - (4(i-1) + \operatorname{ord} b_i + e)$$

$$= e - 1 + \operatorname{ord} b_i \geq e - 1 = 1.$$

Note that

$$\begin{aligned} Q(v) &= \Big(\sum_{i=1}^{n/2} \pi^{2(i-1)} a_i\Big)^2 + 2\Big(\sum_{i=1}^{n/2} \pi^{2(i-1)} a_i\Big)\Big(\sum_{i=1}^{n/2} \pi^{2(i-1)} b_i\Big) \\ &+ \Big(\sum_{i=1}^{n/2} \pi^{2(i-1)} b_i\Big)^2 \pi^{2e-1} - 2\sum_{1 \le s < t \le n/2} \pi^{2(s-1)+2(t-1)} a_s a_t \\ &- 2\sum_{1 \le s < t \le n/2} \pi^{2(s-1)+2(t-1)} b_s b_t \pi^{2e-1} \\ &- 2\sum_{1 \le s \neq t \le n/2} \pi^{2(s-1)+2(t-1)} a_s b_t \,. \end{aligned}$$

We have

$$\operatorname{ord}(2\pi^{2(s-1)+2(t-1)}b_sb_t\pi^{2e-1}) - \operatorname{ord}Q(v) \ge 2$$

and

$$\operatorname{ord}(2\pi^{2(s-1)+2(t-1)}a_sb_t) - \operatorname{ord}Q(v) \ge 2$$

for any $s \neq t$ by (*). So we obtain $\theta(O^+(L)) = U\dot{F}^2 \cap Q([1, \dot{\pi}^3 - 1])$ by [X₀] and [X, Remark 1].

By the above theorem, we can improve [BD, Prop. 4.1], in fact, we can modify $s_p(n)$ appearing there as follows:

$$s_p(n) = \begin{cases} n(n-2)/2 & \text{if } p \text{ is nondyadic,} \\ s(n) & \text{if } p \text{ is dyadic,} \end{cases}$$

 $\mathbf{2}$

where

$$s(n) = \begin{cases} n(n-2) & \text{if } n \text{ is even,} \\ (n-1)^2 & \text{if } n \text{ is odd.} \end{cases}$$

.

References

- [BD] W. R. Bon Durant, Spinor norms of rotations of local integral quadratic forms, J. Number Theory 33 (1989), 83-94.
- [EH] A. G. Earnest and J. S. Hsia, Spinor norms of local integral rotations, II, Pacific J. Math. 61 (1975), 71-86; errata 115 (1984), 493-494.
- [H] J. S. Hsia, Spinor norms of local integral rotations, I, ibid. 57 (1975), 199–206.
- [K] M. Kneser, Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen, Arch. Math. (Basel) 7 (1956), 323–332.
- [O] O. T. O'Meara, Introduction to Quadratic Forms, Springer, New York 1963.
- [X₀] F. Xu, A remark on spinor norms of local integral rotations, I, Pacific J. Math. 136 (1989), 81–84.
- [X] —, Integral spinor norms in dyadic local fields, I, ibid., to appear.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA HEFEI, ANHUI 230026 PEOPLE'S REPUBLIC OF CHINA

> Received on 26.3.1991 and in revised form on 9.8.1991 and 3.8.1992 (2128)

232