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In the previous paper [X] we have generalized the results of [BD] to a
dyadic local field with e = ord 2 = 2. In the present paper we generalize
these results to an arbitrary dyadic local field, and we also point out that
the bound for ord(dL) is the best possible. The results obtained are applied
to improve the sufficient condition for the class number of an indefinite
quadratic form over the ring of integers of a number field to be a divisor of
the class number of the field, which is analogous to Satz 5 of [K].

Here we adopt the notations from [O] and [X]. In particular, F denotes
a dyadic local field, ϑ the ring of integers in F , p the maximal ideal of ϑ,
U the group of units in ϑ, e = ord 2 the ramification index of 2 in F , π a
fixed prime element in F , D( , ) the quadratic defect function, ∆ a fixed unit
of quadratic defect 4ϑ, V a regular quadratic space over F with associated
symmetric bilinear form B(x, y), L a lattice on V , dL the determinant of L,
O+(V ) the group of rotations on V , O+(L) the corresponding subgroup of
units of L, and θ( , ) the spinor norm function. We use the symbol 〈a, b, c, . . .〉
for lattices, and [a, b, c, . . .] for spaces.

Lemma 1. For any i ≥ 1, 1 + pi is generated by 1 + λπi with λ ∈ U .

P r o o f. This follows from the identity

(1 + σπk+1) = (1 + πk)(1 + (1 + πk)−1(σπ − 1)πk) .

Lemma 2. Suppose sL ⊆ ϑ and rank L ≥ 3 and e ≥ 3. If ord(dL) ≤ 3
then θ(O+(L)) ⊇ UḞ 2.

P r o o f. Let L = L1⊥ . . .⊥Lt be a Jordan splitting of L. We assume
t ≥ 2 and rankLi ≤ 2, i = 1, . . . , t. Since ord(dL) ≤ 3, t ≤ 3. We consider
several cases.

(1) L = L1⊥L2 where L1 is unimodular with rankL1 = 2 and L2 = ϑx2

with Q(x2) = ε2π and ε2 ∈ U . Put L1
∼= A(a1,−a−1

1 δ1) with the base
{x1, y1} and 0 ≤ ord a1 ≤ e and D(1 + δ1) = δ1ϑ.

If ord(−a−1
1 δ1) < e, then ord a1 ≡ ord(−a−1

1 δ1) + 1 mod 2.
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When ord a1 is even, take K = ϑx1⊥ϑx2. Note that any maximal vector
of K gives rise to a symmetry of L. So θ(O+(L)) ⊇ Q([1, ȧ1ε2π]) which does
not contain ∆, but ∆ is in θ(O+(L1)) by [H]. Therefore θ(O+(L)) = Ḟ .

When ord a1 is odd, then ord(−a−1
1 δ1) is even. Take K = ϑy1⊥ϑx2, and

θ(O+(L)) = Ḟ by the same arguments as above.
If ord(−a−1

1 δ1) ≥ e, write a1 = ε1π
r1 and −ε1ε

−1
2 = η2 + σπd where d is

an odd integer or d ≥ 2e.
When r1 is odd, consider a unimodular lattice L1 = ϑ(x1+ηπ(r1−1)/2x2)

+ ϑy1 which splits L. Write L = L1⊥ϑx2 with Q(x2) = ε2π. Note

ord(Q(x1 + ηπ(r1−1)/2x2)) = r1 + d .

If r1 + d ≥ e, then L1
∼= A(0, 0) or A(2, 2%) by [O, 93:11]. Therefore

θ(O+(L)) ⊇ θ(O+(L1)) = UḞ 2 by [H, Lemma 1]. Otherwise, r1 +d < e and
r1 + d is even. Take K = ϑ(x1 + ηπ(r1−1)/2x2)⊥ϑx2. Therefore θ(O+(L))
= Ḟ .

When r1 is even, take K = ϑx1⊥ϑx2. So θ(O+(L)) = Ḟ .

(2) L = L1⊥L2 where L1 is unimodular with rankL1 = 2 and L2 = ϑx2

with Q(x2) = ε2π
2 and ε2 ∈ U . By the arguments similar to Case (1), we

only need to consider L1
∼= A(ε1,−ε−1

1 δ1) with the base {x1, y1} where ε1

is in U , D(1 + δ1) = δ1ϑ and ord(−ε−1
1 δ1) > e. Put D(ε1ε2) = pt with

1 ≤ t ≤ 2e or t = ∞.
If t ≤ e− 1, then D(−ε1ε2) = D(ε1ε2) = pt. Take K = ϑx1⊥ϑx2. Note

that any maximal vector of K gives rise to a symmetry of L, so θ(O+(L)) ⊇
Q([1, ε̇1ε2]). By [H, Lemma 3], there exists η in U such that (η,−ε1ε2) = −1
with D(η) = p2e−t. Since 2e− t ≥ e+1, η is in θ(O+(L1)) by [H, Lemma 2].
Therefore θ(O+(L)) = Ḟ .

If t > e− 1, write ε−1
2 ε1 = ξ2 + σπt where ξ and σ are in U .

When e is odd, there exists u in ϑ such that

λ + 2π−eξ(π(e−1)/2 − ξ)− σπt−e − 2π−eε−1
2 u + ε−1

1 ε−1
2 δ1π

−eu2 = 0

for any λ ∈ ϑ by Hensel’s Lemma. Put z = πx1+πuy1+(π(e−1)/2−ξ)x2 ∈ L,
and

Q(z) = π2ε1 + π2u2(−ε−1
1 δ1) + 2π2u + (π(e−1)/2 − ξ)2ε2π

2

= ε2π
2(ξ2 + σπt + 2ε−1

2 u + (π(e−1)/2 − ξ)2 − (ε1ε2)−1δ1u
2)

= ε2π
2(πe−1 − 2ξ(π(e−1)/2 − ξ) + σπt + 2ε−1

2 u− (ε1ε2)−1δ1u
2)

= ε2π
e+1(1 + π(−2π−eξ(π(e−1)/2 − ξ)

+ σπt−e + 2π−eε−1
2 u− (ε1ε2)−1δ1π

−eu2))

= ε2π
e+1(1 + λπ) .

So τz is in O(L) and θ(O+(L)) ⊇ UḞ 2.
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When e is even, there exists u in ϑ such that

λ + 2π1−eξ(π(e−2)/2 − ξ)− σπt−e+1 − 2π−eε−1
2 u + (ε1ε2)−1δ1π

−e−1u2 = 0

for any λ ∈ ϑ by Hensel’s Lemma if ord(δ1) ≥ e + 2. Put

z = πx1 + uy1 + (π(e−2)/2 − ξ)x2 ∈ L .

Since Q(z) = ε2π
e(1 + λπ) by a direct computation, τz is in O(L) and

θ(O+(L)) ⊇ UḞ 2.
Now we treat the case of ord(−ε−1

1 δ1) = e + 1. For any λ ∈ U , write

(−(ε1ε2)−1δ1π
−e−1)−1 = α2 + βπd

where α and β are in U , and d ≥ 1. By Hensel’s Lemma, there exists u in
ϑ such that

(ε1ε2)−1(δ1π
−e−1)βπd−1

+ (2π−eαε−1
2 − 2ξπ−e/2)u + (σπt+2−e + 2ξ2π2−e)u2 = 0 .

Put z = π2ux1 + αy1 + (π(e−2)/2 − ξπu)x2 ∈ L. So Q(z) = ε2π
e(1 + λπ)

and τz is in O(L). Therefore we obtain θ(O+(L)) ⊇ UḞ 2 by Lemma 1.

(3) L = L1⊥L2 where L1 is unimodular with rankL1 = 2 and L2 = ϑx2

with Q(x2) = ε2π
3 and ε2 ∈ U . By the arguments similar to Case (1), we

only need to consider L1
∼= A(ε1π1,−ε−1

1 π−1δ1) with the base {x1, y1} where
ε1 is in U , D(1 + δ1) = δ1ϑ and ord(−ε−1

1 π−1δ1) > e. Put D(ε1ε2) = pt

with 1 ≤ t ≤ 2e or t = ∞.
If t ≤ e− 2, take K = ϑx1⊥ϑx2. By the same arguments as in Case (2),

we have θ(O+(L)) = Ḟ .
If t > e− 2, write ε−1

2 ε1 = ξ2 + σπt where ξ and σ are in U .
When e is even, there exists u in ϑ such that

λ + 2π1−eξ(π(e−2)/2 − ξ)− σπt−e+1 − 2π−eε−1
2 u + (ε1ε2)−1δ1π

−e−1u2 = 0

for any λ ∈ ϑ by Hensel’s Lemma. Put z = πx1+πuy1+(π(e−2)/2−ξ)x2 ∈ L
and Q(z) = ε2π

e+1(1 + λπ); so τz is in O(L) and θ(O+(L)) ⊇ UḞ 2.
When e is odd, there exists u in ϑ such that

λ + 2π2−eξ(π(e−3)/2 − ξ)− σπt−e+2 − 2π−eε−1
2 u + (ε1ε2)−1π−e−2δ1u

2 = 0

for any λ ∈ ϑ by Hensel’s Lemma if ord(−ε−1
1 π−1δ1) > e + 1. Put

z = πx1 + uy1 + (π(e−3)/2 − ξ)x2 ∈ L .

Since Q(z) = ε2π
e(1 + πλ), τz is in O(L) and θ(O+(L)) ⊇ UḞ 2.

Now we treat the case of ord(−ε−1
1 π−1δ1) = e + 1. For any λ ∈ U , write

λ(−(ε1ε2)−1π−2−eδ1)−1 = α2 + βπd
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where α and β are in U and d ≥ 1. By Hensel’s Lemma, there exists u in ϑ
such that

βπd(ε1ε2)−1π−2−eδ1 + (2ε−1
2 απ−e − 2ξπ(1−e)/2)u

+(σπt−e+2 + 2π2−eξ2)u2 = 0 .

Put z = πux1 + αy1 + (π(e−3)/2 − ξu)x2 ∈ L and Q(z) = ε2π
e(1 + λπ). So

τz is in O(L) and θ(O+(L)) ⊇ UḞ 2 by Lemma 1.

(4) L = L1⊥L2 where L1 is unimodular with rankL1 = 2 and L2 is
p-modular with rank L2 = 2. Write L1

∼= A(ε1π
r1 ,−ε−1

1 π−r1δ1) with the
base {x1, y1} and 0 ≤ r1 ≤ e and D(1 + δ1) = δ1ϑ. L2

∼= πA(ε2π
r2 ,

−ε−1
2 π−r2δ2) with the base {x2, y2} and 0 ≤ r2 ≤ e and D(1 + δ2) = δ2ϑ.
If r1 ≡ r2 mod 2, take K = ϑx1⊥ϑx2. By the same arguments as in

Case (1), we obtain θ(O+(L)) = Ḟ .
If r1 ≡ r2 + 1 mod 2, write −ε1ε

−1
2 = ξ2 + σπd with ξ, σ ∈ U and d ≥ 1.

When ord(−ε−1
1 π−r1δ1) < e, take K = ϑy1⊥ϑx2; thus θ(O+(L)) = Ḟ .

When ord(−ε−1
2 π−r2δ2) < e, take K = ϑx1⊥ϑy2; thus θ(O+(L)) = Ḟ .

Otherwise, we take L1 = ϑ(x1 + ξπ(r1−r2−1)/2x2) + ϑy1 splitting L if
r1 ≥ r2+1, or L2 = ϑ(x2+ξ−1π(r2−r1−1)/2x1)+ϑy2 splitting L if r1 < r2+1
by [O, 82:15].

When ord(Q(x1 + ξπ(r1−r2−1)/2x2)) = r1 + d ≥ e or ord(Q(x2 +
ξ−1π(r2−r1+1)/2x1)) = r2 + d + 1 ≥ e, then L1 or L2

∼= A(0, 0) or A(2, 2%),
and θ(O+(L)) ⊇ θ(O+(L1)) = UḞ 2 or θ(O+(L2)) = UḞ 2.

If ord(Q(x1 + ξπ(r1−r2−1)/2x2)) = r1 + d < e or ord(Q(x2 +
ξ−1π(r2−r1+1)/2x1)) = r2 + d + 1 < e, then L ∼= L1⊥L′2 or L′1⊥L2 re-
spectively and we repeat the above arguments until we obtain the results as
desired.

(5) L = L1⊥L2⊥L3 where L1 is unimodular with rank L1 = 2, and Li =
ϑxi with Q(xi)ϑ = pi−1, i = 2, 3. Then θ(O+(L)) ⊇ θ(O+(L1⊥L2)) ⊇ UḞ 2

by Case (1).

(6) L = L1⊥L2 with rank L1 = 1 and rankL2 = 2. We scale the dual
lattice of L by π and reduce to Case (1).

(7) L = L1⊥L2⊥L3 with rankLi = 1, i = 1, 2, 3. So Li = ϑxi with
Q(xi) = pi−1, i = 1, 2, 3; and θ(O+(L)) = Ḟ by [X, Theorem 3.1].

We point out that the bound ord(dL) ≤ 3 given in the above lemma
cannot be unconditionally improved for any e ≥ 3 in view of the following
example.

Example. Suppose L ∼= A(1, π2e−1)⊥〈π4〉 with the base {x, y, z} and
e ≥ 3. Then θ(O+(L)) ⊆ (1 + p2)Ḟ 2.

P r o o f. First we prove that O(L) is generated by the symmetries of L.
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Take σ in O(L). Write σx = ax+by+cz. So 1−a2 = 2ab+b2π2e−1+c2π4 ∈
p3 and (1 − a) ∈ p2. We can assume ord b ≤ 1, otherwise, instead of σ we
consider τπ[e/2]x+yσ if necessary and τπ[e/2]x+y ∈ O(L). Since Q(σx − x) =
2((1−a)−b), τσx−x ∈ O(L). Therefore we assume σx = x, σy = αx+βy+γz.
So

α + β = 1 , π2e−1 = α2 + 2αβ + β2π2e−1 + γ2Q(z)

and

Q(σy − y) = 2α(−1 + π2e−1) .

When ordα ≤ 4, then τσy−y ∈ O(L). So σ = τσy−y or τσy−yτz.
When ordα > 4, put ξ = 1 + π[(e−2)/2] and u = π2x− π2y + ξz. Then

Q(u) = π4(1 + ξ2) + π2e+3 − 2π4 = π4+2[(e−2)/2] + 2π4+[(e−2)/2] + π2e+3 .

So τu ∈ O(L) and τu(x) = x. Write τuσ(y) = α′x + β′y + γ′z. We can
check ordα′ ≤ 3. Therefore we obtain the result as desired by the above
arguments.

It is not difficult to check Q(v) ∈ (1+p2)Ḟ 2 for any maximal vector v of L
which gives rise to a symmetry of L. So we obtain θ(O+(L)) ⊆ (1 + p2)Ḟ 2.

Lemma 3. Suppose sL ⊆ ϑ and rank L ≥ 4 and e ≥ 3. If ord(dL) ≤ 7
then θ(O+(L)) ⊇ UḞ 2.

P r o o f. Using the above Lemma 2, considering components and dual
lattices whenever necessary, there remain two cases to be treated.

(1) L = L1⊥L2 where L1 is a binary unimodular lattice and L2 is a
binary p2-modular lattice. Write L1

∼= A(ε1π
r1 ,−ε−1

1 π−r1δ1) with base
{x1, y1} and 0 ≤ r1 ≤ e and D(1+δ1) = δ1ϑ. L2

∼= π2A(ε2π
r2 ,−ε−1

2 π−r2δ2)
with base {x2, y2} and 0 ≤ r2 ≤ e and D(1 + δ2) = δ2ϑ.

By the same arguments as in Lemma 2, Case (4), and in [H, Lemma 1,
Prop. C], and considering the dual lattice of L if necessary, we only need
to consider the case 0 ≤ r1 = r2 ≤ e − 2 and ord(−ε−1

1 π−r1δ1) > e and
ord(−ε−1

2 π−r2δ2) > e. Put D(ε1ε2) = pt with 1 ≤ t ≤ 2e or t = +∞.
If t ≤ e− r1 − 1, take K = ϑx1⊥ϑx2. Then θ(O+(L)) = Ḟ by the same

arguments as in Lemma 2, Case(2).
If t > e− r1 − 1, write ε−1

2 ε1 = ξ2 + σπt where ξ and σ are in U .
When e− r1 is odd, there exists u in ϑ such that

λ + 2πr1−eξ(π(e−r1−1)/2 − ξ)
− σπt+r1−e − 2ε−1

2 π−eu + (ε1ε2)−1π−e−r1δ1u
2 = 0

for any λ ∈ ϑ by Hensel’s Lemma. Put z = πx1 +πuy1 +(π(e−r1−1)/2−ξ)x2

∈ L. So Q(z) = ε2π
e+1(1 + λπ) and τz is in O(L). Therefore θ(O+(L)) ⊇

UḞ 2.
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When e− r1 is even, there exists u in ϑ such that

λ + 2πr1+1−eξ(π(e−r1−2)/2 − ξ)− σπt+r1+1−e − 2ε−1
2 π−eu

+ (ε1ε2)−1π−r1−e−1δ1u
2 = 0

for any λ in ϑ by Hensel’s Lemma provided ord(−ε−1
1 π−r1δ1) ≥ e + 2. Put

z = πx1 + uy1 + (π(e−r1−2)/2 − ξ)x2 ∈ L. So Q(z) = ε2π
e(1 + λπ) and τz is

in O(L). Therefore θ(O+(L)) ⊇ UḞ 2.
Now we treat the case of ord(−ε−1

1 π−r1δ1) = e + 1. For any λ in U ,
write

λ(−(ε1ε2)−1π−r1−e−1δ1)−1 = α2 + βπd

with α, β ∈ U and d ≥ 1. By Hensel’s Lemma, there exists u in ϑ such that

((ε1ε2)−1π−r1−1−eδ1)(βπd) + (2ε−1
2 π−eα− 2π(r1−e)/2ξ)u

+ (σπr1+1+t−e + 2πr1+1−eξ2)u2 = 0 .

Put z = πux1 +αy1 +(π(e−r1−2)/2− ξu)x2 ∈ L. So Q(z) = ε2π
e(1+λπ)

and τz is in O(L). Therefore θ(O+(L)) ⊇ UḞ 2 by Lemma 1.

(2) L = L1⊥L2 where L1 is a binary unimodular lattice and L2 is a
binary p3-modular lattice. Write L1

∼= A(ε1π
r1 ,−ε−1

1 π−r1δ1) with base
{x1, y1} and 0 ≤ r1 ≤ e and D(1+δ1) = δ1ϑ. L2

∼= π3A(ε2π
r2 ,−ε−1

2 π−r2δ2)
with base {x2, y2} and 0 ≤ r2 ≤ e and D(1 + δ2) = δ2ϑ. By the arguments
similar to Lemma 2, Case (4), and [H, Lemma 1, Prop. C], and considering
the dual lattice of L if necessary, we only need to consider the case 0 ≤ r1,
r2 ≤ e − 2; r1 = r2 + 1 or r1 + 1 = r2; and ord(−ε−1

1 π−r1δ1) > e and
ord(−ε−1

2 π−r2δ2) > e.
When r1 = r2 + 1, we can obtain the results as desired by the same

arguments as in the above Case (1).
Now we treat the case r2 = r1 + 1. Put D(ε1ε2) = pt with 1 ≤ t ≤ 2e or

t = +∞.
If t ≤ e− r1 − 2, take K = ϑx1⊥ϑx2. Then θ(O+(L)) = Ḟ by the same

arguments as in Lemma 2, Case (2).
If t > e− r1 − 2, write ε−1

2 ε1 = ξ2 + σπt where ξ and σ are in U .
When e− r1 is even, there exists u in ϑ such that

−λ− 2πr1+1−e(π(e−r1−2)/2 − 1) + σπt−e+r1+1ξ−2(π(e−r1−2)/2 − 1)2

+ 2ε−1
2 π−eu− ε−2

2 π−(r1+1)−eδ2u
2 = 0

for any λ ∈ ϑ by Hensel’s Lemma. Put z = π2ξ−1(π(e−r1−2)/2 − 1)x1 +
x2 + uy2 ∈ L. So Q(z) = ε2π

e+2(1 + λπ) and τz is in O(L). Therefore
θ(O+(L)) ⊇ UḞ 2.

When e − r1 is odd, r1 + 1 = r2 ≤ e − 2 and r1 ≤ e − 3. Then there
exists u in ϑ such that
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λ + 2π−e+r1+2(π(e−r1−3)/2 − 1)− σξ−2πt−e+r1+2(π(e−r1−3)/2 − 1)2

−2π−eε−1
2 u + ε−2

2 π−(r1+1)δ2π
−e−1u2 = 0

for any λ ∈ ϑ provided ord(−ε−1
2 π−r2δ2) ≥ e + 2. Put z = π3(π(e−r1−3)/2

− 1)ξ−1x1 + πx2 + uy2 ∈ L. So Q(z) = ε2π
e+3(1 + λπ) and τz is in O(L).

Therefore θ(O+(L)) ⊇ UḞ 2.
Finally, we consider the case of ord(−ε−1

2 π−r2δ2) = e+1. For any λ ∈ U ,
write λ(−ε−2

2 π−(r1+1)π−e−1δ2)−1 = α2 + βπd with α, β ∈ U and d ≥ 1. By
Hensel’s Lemma, there exists u in ϑ such that

(ε−2
2 π−(r1+1)π−e−1δ2)(βπd) + σξ−2πt−1

+ (2ε−1
2 π−eα− 2π(r1+1−e)/2 − 2σξ−2πt+(r1−e+1)/2)u

+ (2π−e+r1+2 + σξ−2πt−e+r1+2)u2 = 0 .

Put z = π3(π(e−r1−3)/2 − u)ξ−1x1 + πux2 + αy2 ∈ L. So Q(z) =
ε2π

e+3(1+λπ) and τz is in O(L). Therefore θ(O+(L)) ⊇ UḞ 2 by Lemma 1.

By the above lemmas and [X, Theorem 3.1] and the same arguments as
in [BD] and by the results in [X] and [EH], we have

Theorem. Let L be a regular ϑ lattice with sL ⊆ ϑ and rank L = n ≥ 3.
If

ord(dL) <

{
n(n− 2) if n is even,
(n− 1)2 if n is odd ,

then θ(O+(L)) ⊇ UḞ 2.

R e m a r k. The bound on ord(dL) in the above theorem is the best
possible. For e = 1 this easily follows from [EH, Theorem 3.14]. Consider
the following example for e ≥ 2:

L =


A(1, π2e−1)⊥π4A(1, π2e−1)⊥ . . .⊥π4(n/2−1)A(1, π2e−1)

with base {x1, y1;x2, y2; . . . ;xn/2, yn/2} if n is even,

A(1, π2e−1)⊥π4A(1, π2e−1)⊥ . . .⊥π4((n−1)/2−1)A(1, π2e−1)
⊥〈π2(n−1)〉
with base {x1, y1;x2, y2; . . . ;x(n−1)/2, y(n−1)/2; z} if n is odd.

We will show that θ(O+(L)) ⊂ UḞ 2.
First, by the same arguments as in the above Example when e ≥ 3, and

by the arguments as in [X, Example 4.3] when e = 2, we can prove O(L) is
generated by the symmetries of L. Next we compute the spinor norms. For
convenience, we only treat the case of even n. When n is odd, the arguments
are similar.



230 F. Xu

When e ≥ 3, we take any maximal vector v of L which gives rise to a
symmetry of L. Write v =

∑n/2
i=1(aixi + biyi). Then

ord(Q(v)) = ord
( n/2∑

i=1

π4(i−1)(a2
i + 2aibi + b2

i π
2e−1)

)
(∗)

≤ e + min
1≤i≤n/2

{4(i− 1) + ord ai, 4(i− 1) + ord bi} .

We choose the largest k such that

min{4(k − 1) + ord ak, 4(k − 1) + ord bk}
= min

1≤i≤n/2
{4(i− 1) + ord ai, 4(i− 1) + ord bi} .

If ord ak ≤ 1, then

ord(π4(i−1)(a2
i + 2aibi + b2

i π
2e−1))
− ord(π4(k−1)(a2

k + 2akbk + b2
kπ2e−1)) ≥ 2

for all i 6= k by (∗).
If ord ak ≥ 2, note that

Q(v) =
( n/2∑

i=1

π2(i−1)ai

)2

− 2
∑

1≤s<t≤n/2

π2(s−1)+2(t−1)asat

+
n/2∑
i=1

b2
i π

4(i−1)+2e−1 + 2
n/2∑
i=1

aibiπ
4(i−1) .

We have

ord(−2π2(s−1)+2(t−1)asat)− ordQ(v)
≥ e + 2(s− 1) + 2(t− 1) + ord as + ord at − (e + 4(s− 1) + ord as)

= 2(t− s) + ord at ≥ 2

for any 1 ≤ s < t ≤ n/2 by (∗), and

ord(b2
i π

4(i−1)+2e−1)− ordQ(v)
≥ 2 ord bi + 4(i− 1) + (2e− 1)− (4(i− 1) + ord bi + e)

= ord bi + (e− 1) ≥ 2

for any 1 ≤ i ≤ n/2 by (∗); also ord ai ≥ 2 for any i ≤ k by the choice of k.
So

ord(2aibiπ
4(i−1))− ordQ(v)

≥ e + 4(i− 1) + ord ai + ord bi − (e + 4(i− 1) + ord bi) = ord ai ≥ 2

for any i ≤ k by (∗).
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Suppose there exists j > k such that ord ai = ord bi = 0 and

4(j − 1) = min{4(k − 1) + ord ak, 4(k − 1) + ord bk}+ 1 .

Then

ord(π4(i−1)(a2
i + 2aibi + b2

i π
2e−1))
− ord(π4(j−1)(a2

j + 2ajbj + b2
jπ

2e−1)) ≥ 2

for any i 6= j by (∗). Otherwise,

ord(2aibiπ
4(i−1))− ordQ(v)

≥ 4(i−1)+e+ord ai+ord bi−(e+min{4(k−1)+ord ak, 4(k−1)+ord bk}) ≥ 2

for any i > k by the choice of k.
Therefore we obtain θ(O+(L)) ⊆ (1 + p2)Ḟ 2 by [H, Prop. D].
When e = 2, the above arguments are still in force except

ord(b2
i π

2e−1π4(i−1))− ordQ(v)
≥ 2 ord bi + (2e− 1) + 4(i− 1)− (4(i− 1) + ord bi + e)

= e− 1 + ord bi ≥ e− 1 = 1 .

Note that

Q(v) =
( n/2∑

i=1

π2(i−1)ai

)2

+ 2
( n/2∑

i=1

π2(i−1)ai

)( n/2∑
i=1

π2(i−1)bi

)

+
( n/2∑

i=1

π2(i−1)bi

)2

π2e−1 − 2
∑

1≤s<t≤n/2

π2(s−1)+2(t−1)asat

− 2
∑

1≤s<t≤n/2

π2(s−1)+2(t−1)bsbtπ
2e−1

− 2
∑

1≤s 6=t≤n/2

π2(s−1)+2(t−1)asbt .

We have
ord(2π2(s−1)+2(t−1)bsbtπ

2e−1)− ordQ(v) ≥ 2
and

ord(2π2(s−1)+2(t−1)asbt)− ordQ(v) ≥ 2
for any s 6= t by (∗). So we obtain θ(O+(L)) = UḞ 2 ∩Q([1, π̇3− 1]) by [X0]
and [X, Remark 1].

By the above theorem, we can improve [BD, Prop. 4.1], in fact, we can
modify sp(n) appearing there as follows:

sp(n) =
{

n(n− 2)/2 if p is nondyadic,
s(n) if p is dyadic,
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where

s(n) =
{

n(n− 2) if n is even,
(n− 1)2 if n is odd.

References

[BD] W. R. Bon Durant, Spinor norms of rotations of local integral quadratic forms,
J. Number Theory 33 (1989), 83–94.

[EH] A. G. Earnest and J. S. Hs ia, Spinor norms of local integral rotations, II , Pacific
J. Math. 61 (1975), 71–86; errata 115 (1984), 493–494.

[H] J. S. Hs ia, Spinor norms of local integral rotations, I , ibid. 57 (1975), 199–206.
[K] M. Kneser, Klassenzahlen indefiniter quadratischer Formen in drei oder mehr

Veränderlichen, Arch. Math. (Basel) 7 (1956), 323–332.
[O] O. T. O’Meara, Introduction to Quadratic Forms, Springer, New York 1963.

[X0] F. Xu, A remark on spinor norms of local integral rotations, I , Pacific J. Math.
136 (1989), 81–84.

[X] —, Integral spinor norms in dyadic local fields, I , ibid., to appear.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

HEFEI, ANHUI 230026

PEOPLE’S REPUBLIC OF CHINA

Received on 26.3.1991
and in revised form on 9.8.1991 and 3.8.1992 (2128)


