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1. Statement of the main results. Let K be a local field (i.e., a field
which is complete with respect to a discrete valuation) with perfect residue
field of characteristic p > 0. Let K∞/K be a totally ramified Zp-extension
and denote by

(1.1a) Km

the fixed field of K∞ under pmZp. So

(1.1b) Γm = Gal(Km/K)

is a cyclic group of order pm. Let

(1.1c) Om (respectively O)

be the integer ring of Km (respectively K).
Following Sen [5], given a finite Galois extension E/K, we consider the

semi-linear Km-representation of Γm

(1.2a) E⊗m = E ⊗K Km

where Γm and Km act on the right factor; see Section 2 for a discussion
of semi-linear representations. This yields a semi-linear Om-representation
of Γm

(1.2b) O(E⊗m)

by taking the unique maximal Om-order in the commutative separable f.d.
Km-algebra E⊗m (see [2, Proposition 26.10, p. 563]).

This work was completed (except for the final modifications) as the author was a
Postdoctoral Fellow of the CRM (Centre de recherches mathématiques, Université de
Montréal), and was supported in part by the Natural Sciences and Engineering Research
Council of Canada and by le fonds FCAR du Québec.



268 F. Destrempes

The main purpose of this paper is to prove the following generalization
of a theorem of Sen ([5, Theorem 2]).

Theorem 1. Assume that K has algebraically closed residue field. Two
finite Galois extensions E/K and E′/K are isomorphic if and only if for
some m large enough (depending only on the ramification of one of the
extensions, say E/K, if K has characteristic p > 0, and only on K and
the degrees of the extensions if K has characteristic 0) the semi-linear Om-
representations O(E⊗m) and O(E′⊗m) of Γm are isomorphic.

In [5], this is proved in the case of finite Galois p-extensions of p-adic fields
(i.e., in the unequal characteristic case). In this paper, we follow the basic
strategy used in [5], and, in particular, we make use of various crucial results
developed there, except for the ones in [5, Section 1]. Instead, we use our
Lemma 4 in Section 5, a result which does not depend on the characteristic
of K.

As in [5, Theorem 2′], Theorem 1 can be interpreted as follows (see
Proposition 1 and Remark 2 in Section 2).

Theorem 1A. Assume that K has algebraically closed residue field. A
finite Galois extension E/K is determined by the invariant

αm(E/K) ∈ H1(Γm, Gl(d,Om))

for m large enough (as in Theorem 1), where d = (E : K).

In Proposition 3 we present another interpretation of the cohomology set
H1(Γm, Gl(d,Om)) in terms of certain double cosets of Gl(d,Km). So we
have the following equivalent version of Theorems 1 and 1A (see Remark 2).

Theorem 1B. Assume that K has algebraically closed residue field. A
finite Galois extension E/K is determined by the invariant

βm(E/K) ∈ Gl(d,K)\Gl(d,Km)/Gl(d,Om)

for m large enough (as in Theorem 1), where d = (E : K).

Also, we scrutinize [5] in order to give an explicit lower bound for m
“large enough” in Theorems 1, 1A, and 1B.

Definitions 1. For the statement of the following results it will be
convenient to make the following conventions. Given a finite totally and
wildly ramified Galois extension of local fields E/L, denote by i(E/L) the
smallest integer i ≥ 0 for which the ramification group Gal(E/L)i+1 is
trivial. We have E = L if and only if i(E/L) = 0.

If E/K is a finite totally ramified Galois extension, and K∞/K is a
fixed totally ramified Zp-extension, let L be the maximal tamely ramified
subextension of E/K, and set L∞ = LK∞. So E/L is totally and wildly
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ramified. Denote the compositum of E and Km by Em. We define

(1.3)

i∗ = i∗(E/K) = i(E/E ∩ L∞) ,
i∗ = i∗(E/K) = i(E/L) ,

pn∗ = (E ∩ L∞ : L) ,
n∗ = smallest m ≥ n∗ such that Em+1/Em ramifies.

N o t e 1. We have: i∗ ≤ i∗ (see [6, Proposition 2, p. 62]); i∗ = 0 iff
E ⊆ L∞; and i∗ = 0 iff E = L. Moreover, one can easily check that
n∗ ≤ n∗ ≤ n, where pn = (E : L). If K has algebraically closed residue
field, any algebraic extension over K is totally ramified. Hence, in that case,
n∗ = n∗.

N o t e 2. Note that i∗, i∗, n∗, n∗ admit upper bounds which depend only
on the ramification of the extension E/K (and its degree). In characteristic
0, one has (cf. [6, Exercise 3(c), p. 72])

(1.4) i∗ ≤ pnleK/(p− 1)

where pn = (E : L), l = (L : K), and eK is the absolute ramification index
of K. So, in that case, i∗, i∗, n∗, n∗ are bounded by quantities depending
only on K (its absolute ramification index) and the degree of the extension
E/K.

Theorem 1C. Assume that K has algebraically closed residue field. Let
E/K and E′/K be two finite Galois extensions of the same degree d = pnl,
with (p, l) = 1. Then any integer m satisfying the inequality

m >

(
log p

log
{

1−
(

1−1
p

)
1
i∗

}−1 + 1

)
logp i

∗+4n+ logp(2l(l+1)) if n > 0 ,

m ≥ 0 if n = 0 ,

is “large enough”, in the sense of Theorems 1, 1A, and 1B, where i∗ =
i∗(E/K) = i(E/L) is as in (1.3).

N o t e 3. In Theorem 1C, E/K and E′/K are assumed to have the same
degree, since this is the case whenever O(E⊗m) ≈ O(E′⊗m) (see Remark 2
in Section 2). Moreover, the maximal tamely ramified subextension L/K of
E/K is determined by l (see Lemmas 2 and 3 in Section 5). Thus, if n = 0
(equivalently, if i∗ = 0, from Note 1) m can be taken to be 0, as is asserted
in Theorem 1C.

N o t e 4. The bound on m given in Theorem 1C is O(i∗ log i∗ + log d),
where d = (E : K) and i∗ = i(E/K) (as in (1.3)). This follows from Remark
3 in Section 3. If K has characteristic 0, this is O(d log d) (from (1.4)).
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If the residue field of K is not algebraically closed, we still have the
following result (see also [5, Remark 1]), which shows in particular that the
hypothesis of Theorem 1C cannot be removed.

Theorem 1D. Let E/K and E′/K be two finite Galois totally ramified
extensions of K. Then EF = E′F for some finite unramified extension F/K
if and only if the semi-linear Om-representations O(E⊗m) and O(E′⊗m) of
Γm are isomorphic for some m large enough (as in Theorem 1C).

In order to prove Theorem 1C, we need the following explicit version of
[4, Lemma 1, p. 40]. Here, L is not assumed to have an algebraically closed
residue field.

We observe that the proof given in [4] holds just as well in characteristic
p > 0. However, a uniform bound (in terms of the ground field and the
degree of the extension) can be given only in characteristic 0.

Lemma 1 (cf. [4, Lemma 1]). Let L∞/L be a totally ramified Zp-extension
of local fields, and let E/L be a totally ramified finite Galois p-extension.
Set Em = ELm, where Lm is the layer of the Zp-extension of degree pm.
Then the ramification filtration of the extension Em/Lm stabilizes for m
large enough; i.e., whenever m satisfies the condition

m > n∗ +
log(pn

∗−n∗i∗)

log
{

1−
(

1− 1
p

)
1

pn∗−n∗i∗

}−1 for i∗ ≥ 1 (i.e., E 6⊆ L∞) ,

m ≥ n∗ = n for i∗ = 0 (i.e., E ⊆ L∞) ,

where i∗ = i(E/E ∩ L∞), n∗, and n∗ are defined in (1.3).

N o t e 5. Note that, in the case where the residue field of K is alge-
braically closed, the factor pn

∗−n∗ is just 1 (see Note 1).

N o t e 6. From Remark 3 in Section 3, we see that the right-hand side
in the inequality of Lemma 1 is O((di∗) log(di∗)), where d = (E : L) and
i∗ = i∗(E/L) is as in (1.3). In the case where K has algebraically closed
residue field, we have n∗ = n∗ (see Note 1), so that, in Lemma 1, one can
take

m > n∗ +
log i∗

log
{

1−
(

1− 1
p

)
1
i∗

}−1 .

Assuming moreover that L has characteristic 0, we see, using (1.4), that

m > n+
log(pneL/(p− 1))

log
{

1− (p− 1)2

pn+1eL

}−1
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is large enough in Lemma 1, where eL is the absolute ramification index of
L. The right-hand side is O(d log d). At the present stage, we do not know
how much the bounds given in Theorem 1C and Lemma 1 can be improved.

2. Semi-linear representations

Semi-linear representations over commutative rings. Let R be a commu-
tative ring, Γ a finite group, and φ : Γ → Aut(R) a group homomorphism.
If σ ∈ Γ and λ ∈ R, we write σλ for φ(σ)(λ).

Definition 2. A semi-linear R-representation of Γ (with given homo-
morphism φ : Γ → Aut(R)) is a free R-module M of finite rank on which Γ
acts and which satisfies σ(λx+y) = σλσ(x)+σ(y), for any λ ∈ R, x, y ∈M ,
and σ ∈ Γ .

Note that in the case of a trivial group homomorphism φ : Γ → Aut(R)
we recover the notion of linear representation.

Recall (cf. [2, (28.1) and (28.2), p. 589]) that the twisted algebra R#Γ
is defined by

(2.1) (x#σ)(y#τ) = x σy#στ

with x, y ∈ R and σ, τ ∈ Γ . So, a semi-linear R-representation of Γ is the
same thing as an R#Γ -module which is a free R-module of finite rank.

If M is a semi-linear R-representation of Γ , with given R-basis {xi}di=1,
we define, for each σ ∈ Γ , a matrix A(σ) = (aij) by the equations

(2.2) σ(xj) =
d∑
i=1

aijxi

for 1 ≤ j ≤ d. The semi-linearity condition implies that the function A :
Γ → Gl(d,R), σ 7→ A(σ), is a 1-cocycle; i.e., A(στ) = A(σ) σA(τ), for any
σ, τ ∈ Γ (see [6, p. 123]). Moreover, if {x′i}di=1 is any other R-basis of M ,
an elementary computation shows that the corresponding 1-cocycle A′ is
cohomologous to A; namely, we have

A′(σ) = S−1A(σ) σS

where S ∈ Gl(d,R) is defined by x′j =
∑d
i=1 sijxi, for 1 ≤ j ≤ d.

We obtain in this manner a well-defined map from the set of isomorphism
classes of semi-linear R-representations of Γ of rank d, into the cohomology
set of Γ with values in Gl(d,R). This map is clearly surjective. Namely, a
1-cocycle A : Γ → Gl(d,R) defines a representation via the equations (2.2).
Moreover, the map is injective. In fact, if two representations M , M ′ have
cohomologous corresponding 1-cocycles A and A′, say A′(σ) = S−1A(σ) σS
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(σ ∈ Γ ), then the R-module homomorphism θ : M ′ →M defined by

θ(x′j) =
d∑
i=1

sijxi,

for 1 ≤ j ≤ d, is an isomorphism of semi-linear representations.
So we have proved the following description of semi-linear representa-

tions. (The only reference I have for this result, as well as for Proposition 3
below, is a set of notes from a talk given by Sen at Cornell University.)

Proposition 1. Equations (2.2) above yield a 1-1 correspondence be-
tween the isomorphism classes of semi-linear R-representations of Γ of rank
d, and the cohomology set H1(Γ,Gl(d,R)).

Hilbert’s 90

Proposition 2 (cf. [5, Proposition 1(a)]). Let F/K be a finite Galois
extension of fields, with Galois group Γ . Any semi-linear K-representation
V of Γ (with the obvious homomorphism Γ ↪→ Aut(F )) is isomorphic to
the representation V Γ ⊗K F (with F and Γ acting on the right factor).

P r o o f. See [5]. This follows from Proposition 1 and Hilbert’s 90 ([6,
Proposition 3, p. 151]).

R e m a r k 1. One can actually give a proof of Hilbert’s 90 as follows. As
noted in (2.1), a semi-linear F -representation V of Γ is the same thing as a
finitely generated F#Γ -module. But we have an isomorphism of K-algebras

F#Γ ≈−→EndK(F )

which maps x#σ to the endomorphism of F (as a f.d. vector space over K)
φ(y) = xσ(y) (see [3, Proposition 1.2(3,ii), pp. 80–81]). Since EndK(F ) is a
simple K-algebra, we see that the F#Γ -module V is determined by its di-
mension d over F . From Proposition 1, we conclude that H1(Γ ,Gl(d,F ))=1.

Next, consider F/K and Γ as in Proposition 2, and suppose that OF is
an integral domain for which F is the field of fractions. Hilbert’s 90 implies
that any 1-cocycle A : Γ → Gl(d,OF ) can be realized as a trivial 1-cocycle
in H1(Γ,Gl(d, F )); i.e., for some T ∈ Gl(d, F )

(2.3) A(σ) = T−1 σT

for any σ ∈ Γ . One easily checks that two matrices T, T ′ ∈ Gl(d, F ) define
the same 1-cocycle via (2.3) if and only if T ′ ∈ Gl(d,K)T . Also, if A and
A′ are cohomologous 1-cocycles in the set H1(Γ,Gl(d,OF )), say A′(σ) =
S−1A(σ) σS (σ ∈ Γ ), with S ∈ Gl(d,OF ), then A′(σ) = (TS)−1 σ(TS)
(σ ∈ Γ ).
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So equation (2.3) yields a well-defined map

H1(Γ,Gl(d,OF )) → Gl(d,K)\Gl(d, F )/Gl(d,OF ) .

It is straightforward to check that this map is 1-1 and onto the set of those
double cosets of matrices T ∈ Gl(d, F ) for which T−1σT ∈ Gl(d,OF ) for
any σ ∈ Γ . That is, we have the following description of semi-linear OF -
representations of Γ of rank d.

Proposition 3. Let F/K, OF be as above. Equations (2.2) and (2.3)
yield a 1-1 correspondence between the isomorphism classes of semi-linear
OF -representations of Γ of rank d, and the double cosets in

Gl(d,K)\Gl(d, F )∗/Gl(d,OF )

where Gl(d, F )∗ = {T ∈ Gl(d, F ) : T−1 σT ∈ Gl(d,OF ) for any σ ∈ Γ}.
R e m a r k 2. Let Km/K, Γm, Om be as at the beginning of Section 1.

Given a finite Galois extension E/K, its invariant O(E⊗m) has Om-rank
equal to the degree d = (E : K) of the extension. In fact, it is a full
Om-lattice in E ⊗K Km.

Applying equations (2.2) (with R = Om, Γ = Γm), and equation (2.3)
(with F/K = Km/K, Γ = Γm, OF = Om), to the representation O(E⊗m),
we obtain invariants αm(E/K) in H1(Γ,Gl(d,Om)), and βm(E/K) in
Gl(d,K)\Gl(d,Km)/Gl(d,Om) attached to the extension E/K.

It is clear that Theorems 1A and 1B follow at once from Theorem 1, and
Propositions 1 and 3.

Orders of semi-linear representations. We now consider a finite Galois
p-extension of local fields

Lm/L

which is totally ramified. We set Γm = Gal(Lm/L), and we denote the
integer ring of Lm (L) by OLm (respectively OL). We recall the following
results from Sen’s theory [5] (Lm/L and Γm play the role of F/K and H in
[5, Section 2]). We stress the fact that [5, Section 2] holds just as well in
characteristic p > 0. However, we present here a mildly simplified version
of it (this turns out to be enough for this paper).

If M is a semi-linear OLm
-representation of Γm of rank d, let V denote

the induced semi-linear Lm-representation of Γm, Lm ⊗OLm
M . An ultra-

metric is defined on V as follows:

(2.4) OrdM (x) = max{t ∈ Z : π−tLm
x ∈M}

where πLm
is a prime element of Lm.

Definition 3. We define the set of orders of M as follows:

Ord(M) = {OrdM (x)mod pm : x ∈MΓm} .
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So, Ord(M) is a subset of Z/pmZ.

N o t e 7. This corresponds to Sen’s notion of orders in [5, Section 2],
except that we do not take into account their multiplicities.

We recall here the following proposition of Sen (omitting multiplicities).

Proposition 4 ([5, Proposition 7]). Notation as above. Let E/L and
E′/L be totally ramified finite p-extensions of local fields, and consider the
semi-linear OLm-representation M defined by (a) M = O(E⊗LLm) and (b)
M = O(E⊗LLm ⊗Lm

E′⊗LLm) (where O(A) denotes the maximal order of
the commutative f.d. algebra A). Suppose that (EE′ : L) < pm. Assume
that L has algebraically closed residue field. Then the set of orders of M is
given by :

(a) {0, pm−n, 2pm−n, . . . , (pn − 1)pm−n}, where pn = (E : L).
(b) {0, pm−k, 2pm−k, . . . , (pk − 1)pm−k}, where pk = (EE′ : L).

P r o o f. The proof given in [5] holds also in characteristic p > 0.

The following result of Sen says that the invariants “orders” behave well
under “approximation” of semi-linear OLm

-representations of Γm.

Proposition 5 (cf. [5, Proposition 4]). Let M ⊆M ′ be two semi-linear
OLm

-representations of Γm, of the same rank d. Suppose that πsLm
M ′ ⊆M ,

where πLm is a prime element of OLm . Let {δ} (respectively {δ′}) be the set
of orders of M (respectively M ′). Then, for each δ, there exists a δ′ such
that

|δ − δ′ + cpm| ≤ s

where c is some integer ; and , for each δ′, there exists a δ such that

|δ′ − δ + cpm| ≤ s

for some integer c.

P r o o f. Note first, as in [5], that, for any x ∈M , we have

|OrdM (x)−OrdM ′(x)| ≤ s .

Since MΓm ⊆ (M ′)Γm , the first statement of the proposition is clear. For the
other statement, let πL be a prime element of L. Note that if x ∈ (M ′)Γm ,
then OrdM ′(x) = OrdM ′(πsLx) mod pm. But πsLx is an element of MΓm .
This proves the proposition.

3. Proof of Lemma 1. In this section, we consider a totally rami-
fied Zp-extension L∞/L of a local field L with residue field not necessarily
algebraically closed. Lm will denote the (cyclic) layer of degree pm of L∞/L.

Let E/L be a finite Galois p-extension which is totally ramified. Denote
by Em the composite field ELm, and set Gm = Gal(Em/Lm). We will
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scrutinize the proof of [4, Lemma 1], in order to find a number m∗ such
that the filtration Gm stabilizes for m ≥ m∗ (this will be valid also in
characteristic p > 0). We need to recall most of the proof of Sen’s Lemma.
Note that the roles of E and L in [4] are interchanged here!

For the moment, let m ≥ n∗, where Ln∗ = E ∩ L∞ (i.e., n∗ is as in
(1.3)); then there are canonical isomorphisms Gn∗ = Gal(E/E ∩ L∞) ≈
Gm ≈ Gm+1. If E ⊆ L∞ (equivalently, if i∗ = 0) then Gm = 1 for all
m ≥ n∗, and so, we may assume that E 6⊆ L∞. Consider elements τm 6= 1
and τm+1 which correspond to each other under this canonical identification.
Also, pick a generator σm of the cyclic group (of order p) Gal(Em+1/Em).
As in [4], define

(3.1)
i(σm) = the greatest i such that σm ∈ (〈σm〉)i ,
i(τm) = the greatest i such that τm ∈ (Gm)i .

Note that the i(σ) in [6] is equal to 1 plus the i(σ) in [4].
Now, let m ≥ n∗ ≥ n∗ (as in (1.3)); i.e., Em+1/Em is (totally) ramified.

In particular,

(3.2) i(σm) ≥ 1.

In [4], it is proved that

(3.3)
i(σm+1) ≥ pi(σm) for m ≥ n∗ ,

i(τm+1) ≤ pi(τm) for m ≥ n∗ .

For the first inequality one can use [4, Corollary (a)], since Em+2/Em is
wildly ramified for m ≥ n∗; the second inequality follows from [6, Proposi-
tion 3, p. 63]. Also, we have in [4] the inequalities

(3.4)
(p− (p− 1)αm)i(τm) ≥ i(τm+1) if i(σm) ≤ i(τm) ,

i(τm) = i(τm+1) if i(σm) > i(τm) ,

for any m ≥ n∗, where αm = i(σm)/i(τm) (this follows from [6, Proposition
3, p. 63]). For the first inequality, note that (3.2) implies that i(τm) ≥
i(σm) ≥ 1, so that αm makes sense.

Let m ≥ n∗ be an integer for which i(σm) ≤ i(τm). From (3.3), we see
that i(σm′) ≤ i(τm′) for any n∗ ≤ m′ ≤ m. So i(τm′) ≥ 1 (from (3.2)).
Hence, dividing by i(τm′), we obtain, from (3.3) again, as well as (3.4), the
inequalities

(3.5a)
i(σm′)/i(τm′) ≥ αn∗ ,

(p− (p− 1)αn∗)i(τm′) ≥ i(τm′+1) ,

for any n∗ ≤ m′ < m (where 0 < αn∗ = i(σn∗)/i(τn∗) ≤ 1). Hence, we have

(3.5b)
(p− (p− 1)αn∗)m−n

∗
i(τn∗) ≥ i(τm) ,

i(σm) ≥ pm−n
∗
i(σn∗) .
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Thus, if i(σm) ≤ i(τm), then m must satisfy the condition

(3.5c) αn∗ ≤
(

1−
(

1− 1
p

)
αn∗

)m−n∗
.

Now, let i∗ = i(E/E∩L∞) be as in (1.3). Since we are in the case where
E 6⊆ L∞, we have i∗ ≥ 1 (see (1.3)). So, since Ln∗ = E ∩ L∞,

(3.6a) i∗ = max{i(τn∗) : τn∗ 6= 1 ∈ Gal(E/E ∩ L∞)} .
From (3.2) and the second inequality in (3.3), we conclude that, for any
τn∗ 6= 1,

(3.6b) αn∗ ≥ α

where α is defined (for convenience within the proof) by

(3.6c) α = (pn
∗−n∗i∗)−1 .

Combining (3.5c) and (3.6b), we see that the inequality

(3.7a) α >

(
1−

(
1− 1

p

)
α

)m−n∗
implies that i(τm) < i(σm) (for any τm 6= 1), which in turn implies that
i(τm) = i(τm+1) (from (3.4)); i.e., the ramification filtration has stabilized.

Thus, making use of (3.7a), we conclude that any m satisfying

(3.7b) m > n∗ +
log(pn

∗−n∗i∗)

log
{

1−
(

1− 1
p

)
1

pn∗−n∗i∗

}−1

is large enough in [4, Lemma 1] (for i∗ ≥ 1).

R e m a r k 3. Since

f(t) =
− log(1− λt)

λt
= 1 +

∑
ν≥2

1
ν

(λt)ν−1 , where λ = 1− 1
p
,

we see that f(t) is O(1) for t ∈ (0, 1]. More precisely,

1 ≤ log{1− λt}−1

λt
≤ log{1− λ}−1

λ

for t ∈ (0, 1]. This can be used to give simpler bounds in Theorem 1C and
Lemma 1.

4. Some explicit bound. In this section, we consider a local field L
with algebraically closed residue field, and a Zp-extension L∞/L. The fixed
field of L∞ under pmZp is denoted by Lm.

Let E/L be a finite Galois p-extension of degree pn. Denote the com-
positum of E and Lm by Em.
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Set

(4.1) sm = valLm
d(Em/Lm)

where d(Em/Lm) denotes the discriminant ideal of Em/Lm. Since the ex-
tension Em/Lm is totally ramified, we have

sm = valEmD(Em/Lm) =
∑

τm 6=1∈Gm

(i(τm) + 1)

where D(Em/Lm) denotes the different ideal of the extension Em/Lm, using
[6, Proposition 4, p. 64].

We obtain from Lemma 1 (see Note 6) that sm = sm∗ for any m ≥ m∗,
where

(4.2)

m∗ = n+ 1 +
log i∗

log
{

1−
(

1− 1
p

)
1
i∗

}−1 if i∗ ≥ 1 ,

m∗ = n if i∗ = 0 .

Recall that i∗ = 0 iff E ⊆ L∞; in that case, sm = 0 for any m ≥ m∗ = n,
as stated in equation (4.3) below.

So consider the case where i∗ ≥ 1. We have i(τm∗) ≤ pm∗−n∗i(τn∗)
(using the second inequality in (3.3)), and i(τn∗) ≤ i∗ (from (3.6a)). Hence,

sm = sm∗ ≤ pm∗−n∗
∑

τn∗ 6=1∈Gn∗

i(τn∗) + (pn−n∗ − 1)

≤ pm∗−n∗(pn−n∗ − 1)i∗ + (pn−n∗ − 1)
≤ pm∗(pn − 1)i∗ + pm∗i∗ = pm∗+ni∗ .

We have shown that, for any m ≥ m∗ as in (4.2), we have

(4.3) sm ≤ s∗

where s∗ = pm∗+ni∗.

5. Proof of Theorem 1. Throughout this section, K is assumed to
have algebraically closed residue field. In particular, any finite extension
E/K is totally ramified. We start with the following observation.

Lemma 2. Let L/K be a tamely ramified extension of local fields. Let
l = (L : K) (so (p, l) = 1), and π be any prime element of K. Then
L = K(π1/l).

P r o o f. Let πL be a prime of L. We have π = uπlL for some unit
u ∈ O∗L. Since L has algebraically closed residue field and (p, l) = 1, Hensel’s
Lemma implies that there is an element v ∈ O∗L such that vl = u. Hence,
(vπL)l = π. Thus, π1/l = vπL is a prime of L. But the extension L/K is
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totally ramified, and is therefore generated by any prime of L. Hence, L is
the Kummer extension K(π1/l).

R e m a r k 4. The proof of Lemma 2 shows that, if K is a local field
with algebraically closed residue field of characteristic 0, then any finite
extension E/K is determined by its degree d; namely, E is the Kummer
extension K(π1/d), where π is an arbitrary fixed prime element of K.

Lemma 3. Let E/K and E′/K be extensions of local fields, with max-
imal tamely ramified subextensions L and L′, respectively. If O(E⊗m) ≈
O(E′⊗m), then L ≈ L′.

P r o o f. The hypothesis implies that (E : K) = (E′ : K). If l = (L : K)
and l′ = (L′ : K), we have (E : K) = lpn and (E′ : K) = l′pn

′
, where

(p, l) = (p, l′) = 1. Hence, l = l′, and by Lemma 2, L ≈ L′.

We now consider two finite Galois extensions E/K and E′/K, contained
in some fixed algebraic closure of K. We assume that the two extensions
have the same degree.

From Lemma 3, we have a tamely ramified extension L ⊆ E,E′, with
E/L and E′/L p-extensions of the same degree.

We set l = (L : K), pn = (E : L) = (E′ : L), Lm = LKm, and
OLm

= O(Lm).
We define the following OLm

-representations of Γm ≈ Gal(Lm/L):

(5.1)

Mm = O(E⊗m)⊗Om
OLm

⊗OLm
O(E′⊗m)⊗Om

OLm
,

M∗
m = O(E⊗m ⊗Km Lm)⊗OLm

O(E′⊗m ⊗Km Lm) ,

M ′
m = O(E⊗m ⊗Km

Lm ⊗Lm
E′⊗m ⊗Km

Lm) .

Of course, we have the inclusions Mm ⊆ M∗
m ⊆ M ′

m, and we wish to find
an integer t for which πtLm

M ′
m ⊆Mm, where πLm

is a prime of Lm.
The following lemma is a consequence of the product discriminant for-

mula. I wish to thank here S. U. Chase for suggesting to me the particularly
simple proof of equation (5.2) below presented here. (See also [1, Theorem
2.4, p. 220].)

Notation. If x is any real number, {x} denotes the least integer greater
than or equal to x.

Lemma 4. Let E1, E2 be two finite separable extensions of a local field K
(with residue field not necessarily algebraically closed). Denote by O(E1),
O(E2), and O, their respective ring of integers. Let d = min{valK d(Ei/K)},
where d(Ei/K) denotes the discriminant ideal of the extension Ei/K. Then

π{d/2}O(E1 ⊗K E2) ⊆ O(E1)⊗O O(E2)

where π is a prime element of K.
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P r o o f. Let E/K be a finite Galois extension containing E1E2. Consider
the isomorphism of E-algebras

ψ : E ⊗K E2 ≈
∏
σ

E

where σ ranges over the set of K-imbeddings of E2 into E, and which sends
x⊗ y (with x ∈ E and y ∈ E2) to the element {xσ(y)}.

This yields an imbedding of O(E)-algebras

O(E)⊗O O(E2)
ψ−→
∏
σ

O(E)

with the right side isomorphic to O(E ⊗K E2).
Now, let {xi} be an O-basis of O(E2). So {1 ⊗ xi} is an O(E)-basis

of O(E) ⊗O O(E2). Then the matrix of the O(E)-homomorphism ψ with
respect to that basis and the canonical basis of

∏
σ O(E) is given by (σ(xi)).

Hence, if det(σ(xi)) = π̃t (with π̃ a prime of E), we have

π̃tO(E ⊗K E2) ⊆ O(E)⊗O O(E2) .

From the product discriminant formula, we also have π̃2t = π̃ed2 , where
d2 = valKd(E2/K), and e is the ramification index of E/K. Thus,

(5.2) π{d2/2}O(E ⊗K E2) ⊆ O(E)⊗O O(E2) .

But under the natural imbedding ofK-algebras E1⊗KE2 → E⊗KE2, we
have O(E1⊗KE2) ⊆ O(E⊗KE2), and O(E1)⊗OO(E2) = O(E)⊗OO(E2)
∩ E1 ⊗K E2. Hence,

π{d2/2}O(E1 ⊗K E2) ⊆ O(E1)⊗O O(E2) .

Reversing the roles of E1 and E2, we obtain a similar inclusion with d1

replacing d2, and this proves the lemma.

Lemma 5. Notation as in (5.1).

(a) π
l{(l−1)/2}
Lm

O(E⊗m ⊗Km
Lm) ⊆ O(E⊗m)⊗Om

OLm
;

(b) π
2l{(l−1)/2}
Lm

M∗
m ⊆Mm .

P r o o f. The second inclusion follows easily from the first one. For the
first inclusion, consider the isomorphism of Lm-algebras

E⊗m ⊗Km
Lm ≈

∏
{ξ̃}

Em ⊗Km
Lm

which sends x⊗ y ⊗ z to {(ξ̃(x)y)⊗ z}, with x ∈ E, y ∈ Km, z ∈ Lm, and
where {ξ̃} is a set of representatives of Gal(E ∩Km/K) in Gal(E/K).
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Under this isomorphism, we have the identifications

O(E⊗m)⊗Om
OLm

≈
∏
{ξ̃}

O(Em)⊗Om
OLm

,

O(E⊗m ⊗Km Lm) ≈
∏
{ξ̃}

O(Em ⊗Km Lm) .

But the extension Lm/Km is totally and tamely ramified of degree l =
(E : K). Hence, d(Em/Km) = (πl−1

m ) (with πm a prime of Km). From
Lemma 4, we see that π{(l−1)/2}

m O(Em⊗KmLm) is contained in O(Em)⊗Om

OLm
.

The inclusion now follows from the equality (πm) = (πlLm
).

The following proposition is the analogue of [5, Propositions 6 and 7].

Proposition 6. Let E/K, E′/K, L, and l be as above.

(a) Let m∗ and s∗ = pm∗+ni∗ be as in (4.2) and (4.3) (with i∗ corre-
sponding to the extension E/K; i.e., i∗ = i(E/E ∩ L∞) as in (1.3)). Then

π
{s∗/2}+2l{(l−1)/2}
Lm

M ′
m ⊆Mm

where πLm is a prime of Lm, for any m ≥ m∗.
(b) The orders of M ′

m are

{0, pm−k, 2pm−k, . . . , (pk − 1)pm−k}

where pk = (EE′ : L).

P r o o f. (a) From Lemma 5, it remains to show that π{s∗/2}Lm
M ′
m ⊆M∗

m.
Now, consider the isomorphism of Lm-algebras

(5.3) E⊗m ⊗Km
Lm ≈

∏
ξ̃

Em

where {ξ̃} is a set of representatives of Gal(E∩L∞/K) in Gal(E/K), which
maps x⊗ y ⊗ z to {ξ̃(x)yz}. Under this isomorphism, we have the identifi-
cation

(5.4) O(E⊗m ⊗Km
Lm) ≈

∏
{ξ̃}

O(Em) .

Using (5.3) and (5.4) for E and E′, we obtain an isomorphism of Lm-
algebras

E⊗m ⊗Km
Lm ⊗Lm

E′⊗m ⊗Km
Lm ≈

∏
{ξ̃}

∏
{ξ̃′}

Em ⊗Lm
E′m
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under which we get the identifications

M∗
m ≈

∏
{ξ̃}

∏
{ξ̃′}

O(Em)⊗OLm
O(E′m)

and
M ′
m ≈

∏
{ξ̃}

∏
{ξ̃′}

O(Em ⊗Lm
E′m) .

Now use Lemma 4 (with E1 = Em, E2 = E′m, and K = Lm), as well as
(4.3).

(b) Consider the isomorphism of Lm-algebras

E⊗m ⊗Km Lm ≈
∏
{ξ̃}

E ⊗L Lm

where now {ξ̃} is a set of representatives of Gal(L/K) in Gal(E/K), which
maps x⊗y⊗z to {ξ̃(x)⊗(yz)}. We then get an isomorphism of OLm -algebras

M ′
m ≈

∏
{ξ̃}

∏
{ξ̃′}

O(E ⊗L Lm ⊗Lm
E′ ⊗L Lm)

which preserves the action of Γm. Now use Proposition 4 (i.e., [5, Proposi-
tion 7]).

R e m a r k 5. If K has characteristic 0, we see from Note 2 that m∗ and
s∗ can be replaced by

m∗ = n+ 1 +
log(pnleK/(p− 1))

log
{

1− (p− 1)2

pn+1leK

}−1 ,

s∗ = pm
∗+2nleK/(p− 1)

in Proposition 6(a) (with l = (L : K), and eK the absolute ramification
index of K).

We can finally derive Theorem 1 following the method in [5].

End of the proof of Theorems 1, 1A, 1B, 1C. We consider extensions
E/K and E′/K such that

(5.5) O(E⊗m) ≈ O(E′⊗m) .

So Lemma 3 applies.
We consider the semi-linear OLm

-representations of Γm ≈ Gal(Lm/L):
Mm, M ′

m (Nm, N ′
m), as in (5.1), corresponding to the pair of extensions E,

E′ (respectively E, E).
Now, (5.5) yields an isomorphism

(5.6) O(E⊗m)⊗Om OLm ≈ O(E′⊗m)⊗Om OLm
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of semi-linear OLm
-representations of Γm. Hence, Mm and Nm are isomor-

phic.
Let {δ}, {δ′}, {ε}, {ε′} be the orders of Mm, M ′

m, Nm, N ′
m, respectively.

Assume that

(5.7) pm > 2({s∗/2}+ 2l{(l − 1)/2})p2n

with s∗ as in (4.3).
If i∗ = 0, then m∗ = n (see (4.2)); so (5.7) implies that m ≥ m∗. If

i∗ ≥ 1, then s∗ ≥ pm∗ ; but (5.7) implies that pm > s∗, so that again
m ≥ m∗. Thus, Proposition 5 applies to the conclusion of Proposition 6(a),
and we deduce that, for any δ′, there is a δ and an integer cm such that

|δ′ − δ + cmp
m| ≤ {s∗/2}+ 2l{(l − 1)/2} .

Then, for that δ which is equal to some ε (from (5.6)), there is an ε′ and an
integer dm such that

|ε′ − ε+ dmp
m| ≤ {s∗/2}+ 2l{(l − 1)/2} .

We conclude that for each δ′ there is an ε′ and an integer am such that

(5.8) |δ′ − ε+ amp
m| ≤ 2({s∗/2}+ 2l{(l − 1)/2}).

Now, in view of Proposition 6(b), take δ′ = pm−k, and note that ε′ is of
the form bpm−n. Suppose, by way of contradiction, that E 6= E′; i.e., k > n.
Then pm−k is the highest power of p dividing δ′ − ε+ amp

m.
Henceforth, making use of (5.8), we obtain

pm−k ≤ 2({s∗/2}+ 2l{(l − 1)/2}) .

So we have

pm ≤ 2({s∗/2}+ 2l{(l − 1)/2})p2n ,

a contradiction with (5.7).
Hence E = E′. This completes the proof of Theorem 1 (and, hence, of

Theorems 1A and 1B).
For Theorem 1C, note that s∗ ≤ pm∗+ni∗ (cf. (4.3) and (1.3)); moreover,

as observed after the statement of Theorem 1C, we may assume that E 6= L
(i.e., i∗ ≥ 1). One can then check that {s∗/2}+2l{(l−1)/2}<pm∗+ni∗l(l+1).
So, in order to have (5.7), it is enough to take

pm ≥ 2pm∗+3ni∗l(l + 1);

i.e.,

(5.9) m ≥ m∗ + 3n+ logp i
∗ + logp(2l(l + 1)) .
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From (4.2) and (4.3), and since i∗ ≤ i∗, we see that it is enough to take

m >

(
log p

log
{

1−
(

1− 1
p

)
1
i∗

}−1 + 1
)

logp i
∗ + 4n+ logp (2l(l + 1))

as is asserted in Theorem 1 (in the case where i∗ ≥ 1).

6. Proof of Theorem 1D. In this section we consider a totally ramified
Zp-extension of local fields K∞/K, without the assumption that K has
algebraically closed residue field. We use the notation O, Km, Om, etc., as
in Section 1.

The completion K̂ of the maximal unramified extension Knr over K
is a local field with algebraically closed residue field (in fact, equal to the
algebraic closure of the residue field of K). The integer ring of K̂ will be
denoted by Ô.

Given any (finite) totally ramified extension E/K, the extension Enr =
EKnr/Knr is totally ramified (of the same degree). Moreover, since E ∩
Knr = K, there is a natural isomorphism

(6.1a) Enr ≈ E ⊗K Knr .

Hence, its completion Ê is naturally isomorphic to Enr ⊗Knr K̂ (see [6,
Theorem 1, p. 30]), and therefore we have

(6.1b) Ê ≈ E ⊗K K̂ .

Applying the previous remarks to E = Km ⊆ K∞, we see that the
compositum field K̂∞ = K̂K∞ is a Zp-extension over K̂ (which is, in any
case, necessarily totally ramified since K̂ has algebraically closed residue
field). Its mth layer is given by

(6.2) K̂m ≈ Km ⊗K K̂ .

Now, for the remainder of this section, let E/K be a finite Galois exten-
sion (of local fields) which is totally ramified. Then, with the notation as
above, we have a natural isomorphism of K̂m-algebras

(6.3) (E ⊗K Km)⊗Km
K̂m ≈ Ê ⊗

K̂
K̂m

(making use of (6.1a) and (6.2)). Namely, (x⊗y)⊗ z is mapped to x⊗ (yz),
for any x ∈ E, y ∈ Km, and z ∈ K̂m. Moreover, upon identifying Γm =
Gal(Km/K) and Gal(K̂m/K̂), (6.3) is actually an isomorphism of K̂m-semi-
linear representations of Γm, where K̂m and Γm act as in (1.1).

The following observation allows us to compare O(E ⊗K Km) with
O(Ê ⊗

K̂
K̂m).
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Lemma 6. Notation as above. The isomorphism of (6.3) restricts to an
isomorphism

O(E ⊗K Km)⊗Om
Ôm ≈ O(Ê ⊗

K̂
K̂m)

of Ôm-semi-linear representations of Γm.

P r o o f. We have a decomposition of Km-algebras

E ⊗K Km ≈
∏

Em .

To this decomposition corresponds the isomorphism of Om-algebras

(6.4) O(E ⊗K Km) ≈
∏

O(Em)

(by taking maximal orders).
Now, for any finite unramified extension Fm/Km, Lemma 4 (with E1 =

Em, E2 = Fm, K = Km) implies that

O(Em)⊗Om O(Fm) = O(Em ⊗Km Fm) .

We obtain
O(Em)⊗Om Onr

m = O(Em ⊗Km Knr
m )

and, hence, using (6.4), we have

(6.5) O(E ⊗K Km)⊗Om Ôm = O((E ⊗K Km)⊗Km Knr
m )⊗Onr

m
Ôm

after tensoring with Ôm over Onr
m .

Next, (E⊗KKm)⊗Km K
nr
m decomposes into a product

∏
j Ej where the

Ej ’s are finite extensions of Knr
m . Since taking maximal orders and taking

completions are two operations which commute, using [6, Proposition 4,
p. 32], we see that

(6.6) O((E ⊗K Km)⊗Km
Knr
m )⊗Onr

m
Ôm = O((E ⊗K Km)⊗Km

K̂m) .

So, combining (6.5) and (6.6), we obtain

(6.7) O(E ⊗K Km)⊗Om
Ôm = O((E ⊗K Km)⊗Km

K̂m) .

Lemma 6 now follows from (6.3) and (6.7).

Now let E/K and E′/K be two finite Galois extensions which are totally
ramified. Assume that the semi-linear Om-representations O(E⊗KKm) and
O(E′ ⊗K Km) of Γm are isomorphic for some m large enough (in the sense
of Theorem 1C; note that i∗(E/K) = i∗(Ê/K̂), see (1.3) and [6, Exercise,
p. 65]).

Then O(E⊗KKm)⊗Om
Ôm and O(E′⊗KKm)⊗Om

Ôm are isomorphic
semi-linear Ôm-representations of Γm. With Ê and Ê′ as above, we see
from Lemma 6 that O(Ê⊗

K̂
K̂m) and O(Ê′⊗

K̂
K̂m) are isomorphic. From

Theorem 1C, it follows that Ê = Ê′. Hence (as is easily seen from [6,
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Exercises 1 and 2, p. 30]) EF = E′F for some finite unramified extension
F/K. This proves one implication of Theorem 1D.

In the other direction, suppose that EF = E′F for some finite un-
ramified extension F/K. Consider the totally ramified Zp-extension F∞ =
FK∞/F . Then, of course, the semi-linear O(Fm)-representations of Γm =
Gal(Km/K) ≈ Gal(Fm/F ) O(EF ⊗F Fm) and O(E′F ⊗F Fm) are isomor-
phic (for any m).

Now we have a natural isomorphism of Fm-algebras

(E ⊗K Km)⊗Km Fm ≈ EF ⊗F Fm
which maps x⊗ y ⊗ z to x⊗ (yz), for x ∈ E, y ∈ Km, z ∈ Fm. Here we use
the fact that E ⊗K F ≈ EF , since E ∩ F = K. Taking maximal orders, we
obtain an isomorphism of semi-linear O(Fm)-representations of Γm
(6.8) O((E ⊗K Km)⊗Km Fm) ≈ O(E′F ⊗F Fm) .

Since F/K is unramified, Lemma 4 implies the equality

(6.9) O(E ⊗K Km)⊗Om
O(Fm) = O((E ⊗K Km)⊗Km

Fm) .

Thus, combining (6.8) and (6.9), and using the fact that O(Fm) is a free
Om-module of rank (F : K), we obtain an isomorphism

O(EF ⊗F Fm) ≈
∐

(F :K)

O(E ⊗K Km)

of semi-linear Om-representations of Γm.
Henceforth EF = E′F implies that

(6.10)
∐

(F :K)

O(E ⊗K Km) ≈
∐

(F :K)

O(E′ ⊗K Km) .

In order to finish the proof of Theorem 1D, recall from (2.1) that a semi-
linear Om-representation of Γm is the same thing as an Om#Γm-module
which is a free Om-module of finite rank. But the ring Om#Γm is finitely
generated as an Om-module, and Om is a discrete valuation ring. Thus the
Krull–Schmidt–Azumaya Theorem applies (cf. [2, (6.12), p. 128]), and we
conclude from (6.10) that O(E ⊗K Km) and O(E′ ⊗K Km) are isomorphic
semi-linear representations.

Acknowledgements. I wish to thank the referee for pointing out minor
corrections.
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