On $B_{2 k}$-sequences

by
Martin Helm (Mainz)

Introduction. An old conjecture of P. Erdős repeated many times with a prize offer states that the counting function $A(n)$ of a B_{r}-sequence A satisfies

$$
\liminf _{n \rightarrow \infty} \frac{A(n)}{n^{1 / r}}=0
$$

The conjecture was proved for $r=2$ by P. Erdős himself (see [5]) and in the cases $r=4$ and $r=6$ by J. C. M. Nash in [4] and by Xing-De Jia in [2] respectively. A very interesting proof of the conjecture in the case of all even $r=2 k$ by Xing-De Jia is to appear in the Journal of Number Theory [3].

Here we present a different, very short proof of Erdős' hypothesis for all even $r=2 k$ which we developped independently of Jia's version.

Notation and terminology. We call a set of positive integers A a B_{r}-sequence if the equation $n=a_{1}+\ldots+a_{r}, a_{1} \leq \ldots \leq a_{r}, a_{i} \in A$, has at most one solution for all n.

We define

$$
\begin{aligned}
& B=k A=\left\{a_{1}+\ldots+a_{k}: a_{i} \in A\right\} \\
& S=\left\{\left(a_{1}, \ldots, a_{k} ; a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right): a_{i}, a_{i}^{\prime} \in A \cap\left[1, N^{2}\right]\right. \\
& \left.\quad 1 \leq\left(a_{1}+\ldots+a_{k}\right)-\left(a_{1}^{\prime}+\ldots+a_{k}^{\prime}\right) \leq N\right\} \\
& S^{\prime}=\left\{\left(b_{i}, b_{j}\right): 1 \leq b_{j}-b_{i} \leq N, b_{i}, b_{j} \in B \cap\left[1, N^{2}\right]\right\}
\end{aligned}
$$

Theorem. Let A be a $B_{2 k}$-sequence such that

$$
A\left(n^{2}\right) \ll(A(n))^{2}
$$

Then

$$
\begin{equation*}
\frac{A(n)}{n^{1 /(2 k)}}(\log n)^{1 /(2 k)}<\infty \tag{1}
\end{equation*}
$$

Proof. Erdős showed (see [5]) that every B_{2}-sequence A satisfies

$$
\begin{equation*}
\frac{A(n)}{n^{1 / 2}}(\log n)^{1 / 2}<\infty \tag{2}
\end{equation*}
$$

Using an idea of Erdős on which the proof of (2) is based (see [1, pp. 89-90]) in this case we get

$$
\left|S^{\prime}\right| \gg \tau_{B}(N)^{2} N
$$

where

$$
\tau_{B}(N)=\inf _{n>N} \frac{B(n)}{n^{1 / 2}}(\log n)^{1 / 2} .
$$

Since

$$
\begin{equation*}
\left|S^{\prime}\right| \leq|S| \tag{3}
\end{equation*}
$$

and as the $B_{2 k}$-property of A implies

$$
\begin{equation*}
B(n) \gg(A(n))^{k}, \tag{4}
\end{equation*}
$$

the proof of

$$
\begin{equation*}
|S| \ll N \tag{5}
\end{equation*}
$$

will lead to $\tau_{B}(N) \ll 1$, which implies (1) immediately.
It remains to prove (5). Consider an arbitrary $2 k$-tuple (a_{1}, \ldots, a_{k}; $\left.a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right)$ of S. It will be transformed into a new tuple according to the following procedure. Let u be the number of appearances of a_{1} in (a_{1}, \ldots, a_{k}) and let v be the number of appearances of a_{1} in $\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right)$. Now a_{1} will be eliminated $\min (u, v)$ times from $\left(a_{1}, \ldots, a_{k}\right)$ as well as from $\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right)$. In the next step the same procedure will be performed with the next component of $\left(a_{1}, \ldots, a_{k}\right)$ that is different from a_{1}, and so on till every component of (a_{1}, \ldots, a_{k}) has been checked once. Eventually, the $2 k$-tuple (a_{1}, \ldots, a_{k}; $a_{1}^{\prime}, \ldots, a_{k}^{\prime}$) is transformed into a new $2 j$-tuple ($a_{i 1}, \ldots, a_{i j} ; a_{h 1}^{\prime}, \ldots, a_{h j}^{\prime}$) where j is the number of components of $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right)$ that have not been dropped as above. Thus

$$
\left\{a_{i 1}, \ldots, a_{i j}\right\} \cap\left\{a_{h 1}^{\prime}, \ldots, a_{h j}^{\prime}\right\}=\emptyset
$$

for $1 \leq j \leq k$ as
$\left(a_{1}+\ldots+a_{k}\right)-\left(a_{1}^{\prime}+\ldots+a_{k}^{\prime}\right)>0 \quad \forall\left(a_{1}, \ldots, a_{k} ; a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right) \in S$.
Therefore it is possible to divide S into k disjoint classes S_{1}, \ldots, S_{k}, where S_{j} is the set of those $2 k$-tuples of S whose corresponding tuple according to the above procedure of successive "truncation" consists of $2 j$ components. Therefore

$$
|S|=\sum_{j=1}^{k}\left|S_{j}\right| .
$$

Since A is a $B_{2 k}$-sequence,

$$
\left|S_{k}\right| \ll N
$$

For if $\left(a_{1}, \ldots, a_{k} ; a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right)$ and $\left(b_{1}, \ldots, b_{k} ; b_{1}^{\prime}, \ldots, b_{k}^{\prime}\right)$ belong to S_{k} and

$$
\left(a_{1}+\ldots+a_{k}\right)-\left(a_{1}^{\prime}+\ldots+a_{k}^{\prime}\right)=\left(b_{1}+\ldots+b_{k}\right)-\left(b_{1}^{\prime}+\ldots+b_{k}^{\prime}\right)
$$

then the $B_{2 k}$-property of A in view of

$$
\left\{a_{1}, \ldots, a_{k}\right\} \cap\left\{a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right\}=\emptyset
$$

and

$$
\left\{b_{1}, \ldots, b_{k}\right\} \cap\left\{b_{1}^{\prime}, \ldots, b_{k}^{\prime}\right\}=\emptyset
$$

implies that the numbers $\left(b_{1}, \ldots, b_{k}\right)$ form a permutation of $\left(a_{1}, \ldots, a_{k}\right)$ and also the numbers $\left(b_{1}^{\prime}, \ldots, b_{k}^{\prime}\right)$ form a permutation of $\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right)$.

For $j=1, \ldots, k-1$ we define

$$
\begin{aligned}
\widehat{S}_{j}:=\left\{\left(a_{1}, \ldots, a_{j} ; a_{1}^{\prime}, \ldots, a_{j}^{\prime}\right):\right. & a_{i}, a_{i}^{\prime} \in A \cap\left[1, N^{2}\right] \\
& 1 \leq\left(a_{1}+\ldots+a_{j}\right)-\left(a_{1}^{\prime}+\ldots+a_{j}^{\prime}\right) \leq N, \\
& \left.\left\{a_{1}, \ldots, a_{j}\right\} \cap\left\{a_{1}^{\prime}, \ldots, a_{j}^{\prime}\right\}=\emptyset\right\}
\end{aligned}
$$

Since for every $\left(a_{1}, \ldots, a_{k} ; a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right) \in S_{j}$ the difference

$$
\left(a_{1}+\ldots+a_{k}\right)-\left(a_{1}^{\prime}+\ldots+a_{k}^{\prime}\right)
$$

may be written in the form

$$
\left(a_{i 1}-a_{h 1}^{\prime}\right)+\ldots+\left(a_{i j}-a_{h j}^{\prime}\right)+\left(a_{i, j+1}-a_{i, j+1}\right)+\ldots+\left(a_{i k}-a_{i k}\right)
$$

with

$$
\left\{a_{i 1}, \ldots, a_{i j}\right\} \cap\left\{a_{h 1}, \ldots, a_{h j}\right\}=\emptyset
$$

we have

$$
\begin{equation*}
\left|S_{j}\right| \ll\left|\widehat{S}_{j}\right|\left(A\left(N^{2}\right)\right)^{k-j} \tag{6}
\end{equation*}
$$

For every $\left(a_{1}, \ldots, a_{j} ; a_{1}^{\prime}, \ldots, a_{j}^{\prime}\right) \in \widehat{S}_{j}$ let t be the number of different subsets of $\{A \cap[1, N]\} \backslash\left\{\left\{a_{1}, \ldots, a_{j}\right\} \cup\left\{a_{1}^{\prime}, \ldots, a_{j}^{\prime}\right\}\right\}$ consisting of $2(k-j)$ different elements. An easy combinatorial argument shows that

$$
t \gg(A(N))^{2(k-j)}
$$

Thus there are $t \gg(A(N))^{2(k-j)}$ ways of transforming an element of \widehat{S}_{j} into a tuple of S_{k}^{\prime} where

$$
\begin{aligned}
S_{k}^{\prime}:=\left\{\left(a_{1}, \ldots, a_{k} ; a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right):\right. & a_{i}, a_{i}^{\prime} \in A \cap\left[1, N^{2}\right] \\
& 1 \leq\left(a_{1}+\ldots+a_{k}\right)-\left(a_{1}^{\prime}+\ldots+a_{k}^{\prime}\right) \leq k N \\
& \left.\left\{a_{1}, \ldots, a_{k}\right\} \cap\left\{a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right\}=\emptyset\right\}
\end{aligned}
$$

Obviously, since A is a $B_{2 k}$-sequence,

$$
\left|S_{k}^{\prime}\right| \ll N
$$

In the course of this procedure for every $\left(a_{1}, \ldots, a_{k} ; a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right) \in S_{j}$ every $\left(a_{1}, \ldots, a_{k} ; a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right) \in S_{k}^{\prime}$ can appear at most $\binom{k}{j}\binom{k}{j}$ times. Therefore

$$
\left|\widehat{S}_{j}\right|(A(N))^{2(k-j)} \ll N .
$$

Thus (6) and the assumption $(A(N))^{2} \gg A\left(N^{2}\right)$ imply

$$
\left|\widehat{S}_{j}\right|\left(A\left(N^{2}\right)\right)^{k-j} \ll N, \quad j=1, \ldots, k-1,
$$

and therefore

$$
\left|S_{j}\right| \ll N, \quad j=1, \ldots, k .
$$

This implies (5) and thus the proof is complete.
Corollary. Every $B_{2 k}$-sequence A satisfies

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{A(n)}{n^{1 /(2 k)}}=0 . \tag{7}
\end{equation*}
$$

Proof. It is easy to see that every $B_{2 k}$-sequence A satisfies $A(n) \ll$ $n^{1 /(2 k)}$. Therefore assuming that there exists a $B_{2 k}$-sequence A satisfying

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{A(n)}{n^{1 /(2 k)}}>0 \tag{8}
\end{equation*}
$$

A also satisfies $A\left(n^{2}\right) \ll(A(n))^{2}$. But then, as a consequence of the above theorem, (1) holds, which contradicts (8).

Remark. In the special case $r=4$ the more precise estimate for \widehat{S}_{1},

$$
\left|\widehat{S}_{1}\right| \sum_{l=1}^{N} A_{l}^{2} \ll N
$$

with

$$
A_{l}=|A \cap[(l-1) N, l N]|
$$

shows that here the assumption $A\left(N^{2}\right) \ll(A(N))^{2}$ is not necessary. This result was already achieved by Nash.

The above theorem also holds for $B_{2 k}$-sequences satisfying only the weaker condition $A\left(n^{2}\right) \leq \Lambda(A(n))^{2}$ for infinitely many n where Λ is any positive constant.

Acknowledgments. I am very thankful to Prof. Gerd Hofmeister for steady encouragement and a lot of helpful comments.

References

[1] H. Halberstam and K. F. Roth, Sequences, Springer, New York 1983.
[2] X.-D. Jia, On B6-sequences, J. Qufu Norm. Univ. Nat. Sci. 15 (3) (1989), 7-11.
[3] -, On $B_{2 k}$-sequences, J. Number Theory, to appear.
[4] J. C. M. Nash, On B_{4}-sequences, Canad. Math. Bull. 32 (1989), 446-449.
[5] A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. II, J. Reine Angew. Math. 194 (1955), 111-140.

FACHBEREICH MATHEMATIK
JOHANNES GUTENBERG-UNIVERSITÄT MAINZ
SAARSTR. 21
D-6500 MAINZ, GERMANY

Received on 10.7.1992
and in revised form on 24.9.1992

