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1. Introduction. Let Z, N, Q be the sets of integers, positive integers
and rational numbers respectively, and let [P be the set of primes and prime
powers. The solutions (*) (x,y,m,n) of the equation

(1) i

z—1
which satisfy x € P and y € IP are connected with many questions in number
theory and group theory (see [2], [3], [4] and [7]). In [8], the authors proved
that equation (1) has only finitely many solutions (z,y, m,n) for fixed x € P
or y € P. In this note we prove the following thorem.

=y", x>1,y>1,m>2,n>1,

THEOREM. If (z,y,m,n) is a solution of equation (1) satisfying x € P
and y = 1 (mod z), then 2™ < C, where C is an effectively computable
absolute constant.

2. Preliminaries. For any real numbers «, § and -, the hypergeometric
function F(«, 3,7, z) is defined by the series

a+7)B+7
©) Ples =143 ([[ 2000
=1 “j=0 T ’

and satisfies the differential equation

2z-1DF"+(a+8+1)z—79)F +aBF =0.

Let n,t,t1,to € N be such that n > 1, ¢ > 1 and t; + to = t. Further, let

G(z) = F(—te — 1/n,—t1,—t,2), H(z) = F(—t; + 1/n,—ta, —t, z) and
F(t2+1at1 +(TL* 1)/n7t+272)

E(z) =
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(1) Throughout this paper, “solution” and “positive solution” are abbreviations for
“integer solution” and “positive integer solution” respectively.
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From (2), we have

® (Dew =3 (=" (e

=0

(4) (ttl)H(z) - ; <t1 —il/n> <t; z) (—2)".

This implies that G(z) and H(z) are polynomials of degree t; and t5 respec-
tively. The proofs of the following two lemmas may be found in [9].

LEMMA 1. G(2) — (1 — 2)Y/"H(2) = 2**'G(1)E(2). =

LEMMA 2. Let G(2) = F(~ty+1—1/n,—t; —1,—t,2), H(z) = F(—t; —
1+1/n,—ta+1,—t,2) and
E( ) _ F(tZatl —{—1—|—(TL— 1)/n7t+272)
VT Flati A1+ (n- D)/t +2,1)

Then G(2)H(z) — G(2)H(z) = A\2'*L for some non-zero constant \. m

LEMMA 3. Let a,b,k,lg € Z with k > 0, and let
lo+k—1

L= ] (a+bv).

I=lo
If p is a prime with pta and p® || k!, then p | L.
Proof. Since pfa, the congruence
(5) ax+b=0 (mod p")

is solvable for any » € N. Let N(r) denote the number of solutions of (5)
which satisfy lo < x <ly+ k — 1. Then

(6) N(r) > [ﬂ .
If p? || L, from (6) we get
ﬁzizv(r)zi[;] .

LEMMA 4. If n is a prime, then
i/ (n= 1) <t2 +.1/”) €z, it/ (tl —.1/”) c7
7 7

for any v € N,
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Proof. Let p be a prime, and let p* || 4! for any ¢ € N. By Lemma 3, if
p # n, then

H 2—] ) 1 €N.

If p =n, then

[ =i i
o = — | < - = 5 7 S N
Z {nT] — n’ n—1
Therefore,

7

i/ (n=1)] <t1 —.1/n> c7
i
for any i € N. m
LEMMA 5. If |z| > 2 and [t/2] > t; > [t/2] — 1, then

(Jecl<x (o). [

Proof. By (3), we get

t1 . t1 .
t to+1\ ([t =i\ . to+1 [(t—1)\ [t i
‘<t1>G(2) <§< i ><t2 )M _;tz—ﬂrl(h)(i)h"

Notice that (t241)/(tz—t1+1) < t/2+2and (*, ") <2771 (i =0,1,...,t).
If |z| > 2, then we have

(ool (s 8) e (i

Similarly, from (4) we get

}(;)H(z) <§<t:) <tt1 >| i< ot 1<1+| !) <2l

LEMMA 6. Let D € N be square free, and let k € Z with ged(k,2D) = 1.
Let K = Q(\V/D), and let h(D) denote the class number of K. Further, let
w1 + v1VD be the fundamental solution of the equation

(7) u? — Dv* =1.
If |k| > 1 and (X,Y, Z) is a solution of the equation
(8) X2_-DY?=k%, ged(X,Y)=1, Z>0,

i/ (n=1)] <t2 +_1/n> €Z. ieN.

Similarly, we can prove

< 2zt
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then

(9) Z=271t, X+YVD=(X;+Y1VD) (u+vVD),

where t € N, (u,v) is a solution of (7), (X1,Y1,Z1) is a positive solution of
(8) which satisfies Z1 | 3h(D) and

X1+Y1

2
(10) 1< f‘ < (u1 +v1VD)?.

Proof. Since gcd(X, Y) = ged(k,2D) =1, X + YD and X — YD
are relatively prime in Z[w], where

w:{(1+\/ﬁ)/2 if D=1 (mod 4),

D otherwise.
From [X +YVD][X — YVD] = [k]? we get Z = Zit, Zy,t € N, Z; | h(D)
and [X + Y VD] = [a]?, where o € Z[w]. This implies that

(11) X+Y\/5=A<X°+2Y‘“/5>t,
where A is a unit in Z[w] with norm one and XU, Yy € Z satisty
X2 - DYE =4k, Xy =Y, (mod 2),

T - () TDZ e 20,
If D#1 (mod 4), then from (11) and (12) we get

(13) X +YVD = (X, +YjVD)'(u' +v'VD),

where (u’,v") is a solution of (7) and X, Y, € Z satisfy

(14) X2 - DYy? =k%,  ged(X),Y)) =1.

Since |k| > 1, there exists a unique solution (u”,v”) of (7) such that X; +
YiVD = (X} + Ygv/D)(u" +v"V/D) satisfies X;,Y; € N and (10). We also
get (9) from (13). By the same argument, we can prove the lemma in the
case that D =1 (mod 4) and 2| X).

Since 21k, we see from (12) that if D = 1 (mod 4) and 21Xy, then
D #1 (mod 8).

If D=1 (mod 4), 21Xy and 3¢, then from (12) we get

Xo + YovD\?
(F55F) = xienvo
where X1,Y] € Z satisfy

X2 -DY{? =k3% | gcd(X},Y])=1, 3Z;|3n(D).

Using the same method, we can prove the lemma in this case.
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If D=1 (mod 4), 2t Xy and 3tt, then
<X0+Y0\/5>t _X'+Y'VD
2 - 2 ’

where X' Y’ € Z with 2¢X'Y’. We see from (11) and (15) that A =
(U +V+/D)/2 where (U, V) is a solution of the equation

(16) U?-DV?*=4, ged(U,V)=1.
For a suitable 6 € {1, -1}, we have
Xo+YovD D
where X, Y] € Z satisfy (14). Thus, the lemma also holds in this case. =
LEMMA 7. h(D) < v/D(log4D + 2)/log(u; + v1v/D).

Proof. This follows immediately from Theorem 12.10.1 and Theorem
12.13.3 of [5]. m

LEMMA 8 ([5, Theorem 12.13.4)). log(u; +v1v'D) < vV D(log4D +2). m

LEMMA 9 ([1, Theorem 2]|). Let aq,...,a, be algebraic numbers with
heights Hy, ..., H, respectively, and let A; = max(4,H;) (i = 1,...,r). If
Ay < ... <A1 <A and A =bilogag + ...+ b.loga, # 0 for some
bi,...,b. € Z, then

(15)

r r—1
|A| > exp ( — (16dr)?°°7 (log B)<£[110g Ai) (logjl;[l log Aj>) ,

where d is the degree of Q(av,...,a,) and B = max(4, |b1|,...,|b.|). m

LEMMA 10 ([10]). Let a € Z be non-zero, and let f(y) € Z(y) have degree
n and at least two simple zeros. If (x,y,m) is a solution of the equation

ar™ = f(y), x>1,y>0, m>0,

then

C'n’(log 3H)?

— 7 | log1 2
log(nlog 3H) >( og 3Jal)(log log 3|al)?,

where H is the height of f(y) and C' is an effectively computable constant. m

m<exp<

3. The proofs. By [6], the only solutions of equation (1) with 2 |n are
given by (z,y,m,n) = (7,20,4,2) and (3,11,5,2). By Theorem 5 of [§], we
see that the theorem holds for 2 | m. We now proceed to prove it for 2{mn.

When 24n, n has an odd prime factor ¢. If (x,y, m,n) is a solution of
(1), then (x,y™/9 m,q) is a solution with the same ™. We can therefore
assume that n is an odd prime.
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Here and below, let C; (i =1,2,...) denote some effectively computable
absolute constants. We now prove the following conclusions.

ASSERTION 1. Let (z,y,m,n) be a solution of equation (1) such that
z€Pandy=1 (mod x). If n > Cy, then

(17) z < ntt9,
Proof. By the assumption,
(18) r=p , pisaprime,reN,

where r satisfies

1 ifn#p,
>
(19) r_{Q itn=np,

since y?» =1 (mod p?) if y =1 (mod p). From (1) we get
(20) (1=p")y"=1-p™
Let Q,, Z,, be the p-adic number field and the p-adic integer ring respec-

tively. For any o € Q,, let v(«) denote the p-adic valuation of a, and let
lafl, = p~V®). Since y =1 (mod z), from (20) we get

(21) -y = {1000, R
where 0 € Z,,. Let t = m — 1, and let ¢1,t2 € N such that

(22) ti+to=m—-—1, (m—1)/2>t1>(m—3)/2.
Put z = p". By Lemma 1, from (21) we get

23) Hy<tt1> el p H <t1> ~1- p)l/ny<tt1)H(pr)

Hy(t1> (ti) Tm‘)(DH(pT) ) ifn#pi)
Hy(tt1> <ttl> rm_le(ti>H(Pr) ) if n=p.

By Lemma 4, we see from (3) and (4) that the power series expansions

of (tl)G(nzz), (ttl)H(nQZ) and (1 — n%2)/™ in z have integer coefficients.

Therefore, the power series of (/ ) (1)E(z) in z has rational coefficients
with denominators being powers of n. Moreover, the denominator of the
coefficient of 2% (i > 0) does not exceed n%"/2. This implies that if » satisfies
(19) then the power series of (ttl)G(l)E(z) converges in Q, and
t
G(1)E(2)|| <1.
t1 »
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On using (23), we get

y<tt1>G(pT) - (;)H(pr) )
N = pta+ta/(n=1)] <y (ti)G(pr) _ <;>H(pr)>.

Then N € Z by Lemma 4. Further, by Lemma 2, there exists at least one
pair (t1,t2) for which N # 0. It follows from (24) that

(25) nt2tlt/ () (;,‘ <t>G(:c) 4 ’(DH(@

t1
On applying Lemma 5 to (25), we get
(26) Qm_lnm;g'nnl<<m;—3>xrs+m2_l —|—$m;3> Z;L‘m_l,
If n > C4, we deduce (17) from (26). =

(24) S p—’l’m+l .

Let

) > ‘N‘ Zprmfl > l,mfl.

ASSERTION 2. Let (x,y,m,n) be a solution of equation (1) which satisfies
(17). If n > Cy, then logy > n'°.

Proof. From (1) we get
(27) 0<A=mlogzx —log(x — 1) —nlogy

2 X1 1 o2 2
= << —.
me—liz;2i+1<2$m—l> xm o oyn

On the other hand, according to Lemma 9 we obtain
A > exp(—48°°(log ) (log(z — 1)) (log y)(log log = + loglog(x — 1))
X (log max(m,n))) .
On combining this with (27) we get
(28) 1+ 2485 (log x)(log(z — 1))(log log z)(log max(m,n)) > n.
Substituting (17) into (28) gives
(29) 1424859 (log n'%9)2(loglog n*%/?) (log max(m,n)) > n.

If m < n, then (29) is impossible for n > Cy. Hence m > n, and logm > n'/?
by (29). From (1), y" = 2™ 1 + ...+ 2+ 1 > 2™ . Therefore we obtain
logy > (m —1)logz/n >nlY u

ASSERTION 3. If (z,y,m,n) is a solution of (1) with x being a square,
then (1) has a solution (x1,y1, m,n) such that

(30) r=x2, reN, z €N, z is non-square.
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Proof. Since x > 1, there exists x; which satisfies (30). Since 2{m, we
have

xm—l_:c?—1ﬁx%jm+1
- -
rz—1 ml—ljzo 22 41

where (#7" —1)/(z1 — 1), (2™ +1)/(2% +1) (j =0,...,r — 1) are coprime
positive integers. The result follows at once. m

ASSERTION 4. Let (z,y,m,n) be a solution of equation (1) which satisfies
(17). If = is non-square, then n < Cs.

Proof. Since z is non-square, we deduce from (18) and (1) that 2¢r

and
p(m+1)/2 1\ ? B p(m=1)/2 _ 1\ ?
( ) _p<p(7' 1)/2 > :yn

x—1 z—1
This implies that ((z(™+tV/2 —1)/(x —1), pr=D/2(x(m=1/2 _1)/(z — 1), n)
is a solution of the equation
X2 —pY?2=y?, gd(X,Y)=1,Z2>0.
On applying Lemma 6, we have
(31) n=Zt,
pm+1)/2 _ 1 p(m=1)/2 _ 1

(2) T T VE = (X YD) (u o),
where t, X1,Y1, Z; € N satisfy

(33) X?—pY? =y”,  ged(X1, Y1) =1,

(34) 1< m' < (u1 +v1/p)*

(35) 3h(p) =0 (mod Z1),

(u,v) is a solution of the equation

(36) u? —pr? =1,

and u; + v1,/p is the fundamental solution of (36). Recall that n is an odd
prime. By Lemma 7, if x satisfies (17), then n{h(p). Hence Z; = 1 and
t =n by (31) and (35).

Let
(37) €:X1+Y1\/]3, EZXl—Yl\/fL
(38) 0=u1+v1\/p, ©0=u—v1/p,
_ m,(7”n-i-1)/2 -1 | B_ .,L.(m—l)/Z -1
rz—1 z—1
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Since
LoAEBYE (Vi) (Va1 Vit
A-Byz \Voz—-1)\Vzm+1 VT —1
Uy + v ifx<3
<! e <o,
2.7 ifx >3
by (32) and (34), we get
(39) A+ BYz =&"g°
where s € Z satisfies 0 < s < n. Since A = 2B + 1, from (39) we get
5 Vr+1
40 0< A= |nlog = —2sl 1
(40) < nlog - — 2slogoF log 72—

2 X1 1\’ 4 4
= — ) < —5 < —%.
rm/2 ZE% 2+ 1 <xm> m/2 yn/2

Put a1 = (vz+1)/(v/x—1), aa = o, a3 = €/2. Then by (33), (37) and (38),
a1, a and ag satisfy (z—1)a? —2(z+1)a;+(z—1) =0, a3 —2ujas+1 =0
and yai — 2(X? + pY?)az + y = 0 respectively. This implies that H; =
2(z + 1), Hy = 2uy and Hs = 2(X{ 4 pY?) < 2(X; + Y1/D)? < 2y0® by
(34). Notice that the degree of Q(a1, a2, a3) = Q(y/p) is equal to 2. By
Lemma 9,
A > exp(—192°9(log 2n)(log 2(x + 1))(log 2u; ) (log 2y0?)
X (loglog 2(x + 1) + loglog 2uy)) .

On combining this with (40) we get

log 202
(41) 1—|—192600(log2n)(log2(x+1))(10g2u1)<1+ o8 =0 >

logy
X (loglog2(xz + 1) 4 loglog 2uy) > g :

By Lemma 8, if x satisfies (17), then log 2u; < log 20< log 2+ n®/9 (log 4n%/*
+2). Hence, by Assertion 2, we have log 20? < logy for n > C3. Thus, by
(41), we obtain

20090 (log n)* > n*/?.
This is impossible for n > Cj3, which proves the assertion. m

Proof of Theorem. Let (z,y,m,n) be a solution of equation (1)
such that z € P and y = 1 (mod z). By Assertions 3 and 4, we obtain
n < C3. Further, by Assertion 1, x < Cj. Furthermore, by Lemma 10,
m < Cs. To sum up, we get 2™ < C. m
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