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A note on the diophantine equation
xm − 1
x− 1

= yn

by

Maohua Le (Changsha)

1. Introduction. Let Z, N, Q be the sets of integers, positive integers
and rational numbers respectively, and let P be the set of primes and prime
powers. The solutions (1) (x, y,m, n) of the equation

(1)
xm − 1
x− 1

= yn , x > 1 , y > 1 , m > 2 , n > 1 ,

which satisfy x ∈ P and y ∈ P are connected with many questions in number
theory and group theory (see [2], [3], [4] and [7]). In [8], the authors proved
that equation (1) has only finitely many solutions (x, y, m, n) for fixed x ∈ P
or y ∈ P. In this note we prove the following thorem.

Theorem. If (x, y, m, n) is a solution of equation (1) satisfying x ∈ P
and y ≡ 1 (mod x), then xm < C, where C is an effectively computable
absolute constant.

2. Preliminaries. For any real numbers α, β and γ, the hypergeometric
function F (α, β, γ, z) is defined by the series

(2) F (α, β, γ, z) = 1 +
∞∑

i=1

( i−1∏
j=0

(α + j)(β + j)
γ + j

)
zi

i!

and satisfies the differential equation

z(z − 1)F ′′ + ((α + β + 1)z − γ)F ′ + αβF = 0 .

Let n, t, t1, t2 ∈ N be such that n > 1, t > 1 and t1 + t2 = t. Further, let
G(z) = F (−t2 − 1/n,−t1,−t, z), H(z) = F (−t1 + 1/n,−t2,−t, z) and

E(z) =
F (t2 + 1, t1 + (n− 1)/n, t + 2, z)
F (t2 + 1, t1 + (n− 1)/n, t + 2, 1)

.
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(1) Throughout this paper, “solution” and “positive solution” are abbreviations for

“integer solution” and “positive integer solution” respectively.
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From (2), we have(
t

t1

)
G(z) =

t1∑
i=0

(
t2 + 1/n

i

)(
t− i

t2

)
(−z)i ,(3)

(
t

t1

)
H(z) =

t2∑
i=0

(
t1 − 1/n

i

)(
t− i

t1

)
(−z)i .(4)

This implies that G(z) and H(z) are polynomials of degree t1 and t2 respec-
tively. The proofs of the following two lemmas may be found in [9].

Lemma 1. G(z)− (1− z)1/nH(z) = zt+1G(1)E(z).

Lemma 2. Let G(z) = F (−t2 +1− 1/n,−t1− 1,−t, z), H(z) = F (−t1−
1 + 1/n,−t2 + 1,−t, z) and

E(z) =
F (t2, t1 + 1 + (n− 1)/n, t + 2, z)
F (t2, t1 + 1 + (n− 1)/n, t + 2, 1)

.

Then G(z)H(z)−G(z)H(z) = λzt+1 for some non-zero constant λ.

Lemma 3. Let a, b, k, l0 ∈ Z with k > 0, and let

L =
l0+k−1∏

l=l0

(al + b) .

If p is a prime with p - a and pα ‖ k!, then pα |L.

P r o o f. Since p - a, the congruence

(5) ax + b ≡ 0 (mod pr)

is solvable for any r ∈ N. Let N(r) denote the number of solutions of (5)
which satisfy l0 ≤ x ≤ l0 + k − 1. Then

(6) N(r) ≥
[

k

pr

]
.

If pβ ‖L, from (6) we get

β =
∞∑

r=1

N(r) ≥
∞∑

r=1

[
k

pr

]
= α .

Lemma 4. If n is a prime, then

ni+[i/(n−1)]

(
t2 + 1/n

i

)
∈ Z , ni+[i/(n−1)]

(
t1 − 1/n

i

)
∈ Z

for any i ∈ N.
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P r o o f. Let p be a prime, and let pαi ‖ i! for any i ∈ N. By Lemma 3, if
p 6= n, then

pαi

∣∣∣ i−1∏
j=0

(n(t2 − j) + 1) , i ∈ N .

If p = n, then

αi =
∞∑

r=1

[
i

nr

]
<

∞∑
r=1

i

nr
=

i

n− 1
, i ∈ N .

Therefore,

ni+[i/(n−1)]

(
t2 + 1/n

i

)
∈ Z , i ∈ N .

Similarly, we can prove

ni+[i/(n−1)]

(
t1 − 1/n

i

)
∈ Z

for any i ∈ N.

Lemma 5. If |z| ≥ 2 and [t/2] ≥ t1 ≥ [t/2]− 1, then∣∣∣∣( t

t1

)
G(z)

∣∣∣∣ < 2t−1

(
t

2
+ 2

)
|z|t1 ,

∣∣∣∣( t

t1

)
H(z)

∣∣∣∣ < 2t−1|z|t2 .

P r o o f. By (3), we get∣∣∣∣( t

t1

)
G(z)

∣∣∣∣ <

t1∑
i=0

(
t2 + 1

i

)(
t− i

t2

)
|z|i =

t1∑
i=0

t2 + 1
t2 − i + 1

(
t− i

t1

)(
t1
i

)
|z|i .

Notice that (t2+1)/(t2−t1+1) ≤ t/2+2 and
(
t−i
t1

)
≤ 2t−i−1 (i = 0, 1, . . . , t1).

If |z| ≥ 2, then we have∣∣∣∣( t

t1

)
G(z)

∣∣∣∣ < 2t−1

(
t

2
+ 2

)(
1 +

|z|
2

)t1

≤ 2t−1

(
t

2
+ 2

)
|z|t1 .

Similarly, from (4) we get∣∣∣∣( t

t1

)
H(z)

∣∣∣∣ <

t2∑
i=0

(
t2
i

)(
t− i

t1

)
|z|i < 2t−1

(
1 +

|z|
2

)t2

≤ 2t−1|z|t2 .

Lemma 6. Let D ∈ N be square free, and let k ∈ Z with gcd(k, 2D) = 1.
Let K = Q(

√
D), and let h(D) denote the class number of K. Further , let

u1 + v1

√
D be the fundamental solution of the equation

(7) u2 −Dv2 = 1 .

If |k| > 1 and (X, Y, Z) is a solution of the equation

(8) X2 −DY 2 = kZ , gcd(X, Y ) = 1 , Z > 0 ,
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then

(9) Z = Z1t , X + Y
√

D = (X1 ± Y1

√
D)t(u + v

√
D) ,

where t ∈ N, (u, v) is a solution of (7), (X1, Y1, Z1) is a positive solution of
(8) which satisfies Z1 | 3h(D) and

(10) 1 <

∣∣∣∣X1 + Y1

√
D

X1 − Y1

√
D

∣∣∣∣ < (u1 + v1

√
D)2 .

P r o o f. Since gcd(X, Y ) = gcd(k, 2D) = 1, X + Y
√

D and X − Y
√

D
are relatively prime in Z[ω], where

ω =
{

(1 +
√

D)/2 if D ≡ 1 (mod 4),√
D otherwise.

From [X + Y
√

D][X − Y
√

D] = [k]Z we get Z = Z1t, Z1, t ∈ N, Z1 |h(D)
and [X + Y

√
D] = [α]t, where α ∈ Z[ω]. This implies that

(11) X + Y
√

D = λ

(
X0 + Y0

√
D

2

)t

,

where λ is a unit in Z[ω] with norm one and X0, Y0 ∈ Z satisfy

(12)
X2

0 −DY 2
0 = 4kZ1 , X0 ≡ Y0 (mod 2) ,

gcd(X0, Y0) =
{

1 if D ≡ 1 (mod 4), 2 - X0,
2 otherwise.

If D 6≡ 1 (mod 4), then from (11) and (12) we get

(13) X + Y
√

D = (X ′
0 + Y ′

0

√
D)t(u′ + v′

√
D) ,

where (u′, v′) is a solution of (7) and X ′
0, Y

′
0 ∈ Z satisfy

(14) X ′2
0 −DY ′2

0 = kZ1 , gcd(X ′
0, Y

′
0) = 1 .

Since |k| > 1, there exists a unique solution (u′′, v′′) of (7) such that X1 ±
Y1

√
D = (X ′

0 + Y ′
0

√
D)(u′′ + v′′

√
D) satisfies X1, Y1 ∈ N and (10). We also

get (9) from (13). By the same argument, we can prove the lemma in the
case that D ≡ 1 (mod 4) and 2 |X0.

Since 2 - k, we see from (12) that if D ≡ 1 (mod 4) and 2 - X0, then
D 6≡ 1 (mod 8).

If D ≡ 1 (mod 4), 2 - X0 and 3 | t, then from (12) we get(
X0 + Y0

√
D

2

)3

= X ′
1 + Y ′

1

√
D ,

where X ′
1, Y

′
1 ∈ Z satisfy

X ′2
1 −DY ′2

1 = k3Z1 , gcd(X ′
1, Y

′
1) = 1 , 3Z1 | 3h(D) .

Using the same method, we can prove the lemma in this case.
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If D ≡ 1 (mod 4), 2 - X0 and 3 - t, then

(15)
(

X0 + Y0

√
D

2

)t

=
X ′ + Y ′

√
D

2
,

where X ′, Y ′ ∈ Z with 2 - X ′Y ′. We see from (11) and (15) that λ =
(U + V

√
D)/2 where (U, V ) is a solution of the equation

(16) U2 −DV 2 = 4 , gcd(U, V ) = 1 .

For a suitable δ ∈ {1,−1}, we have(
X0 + Y0

√
D

2

)(
U + δV

√
D

2

)
= X ′

0 + Y ′
0

√
D ,

where X ′
0, Y

′
0 ∈ Z satisfy (14). Thus, the lemma also holds in this case.

Lemma 7. h(D) <
√

D(log 4D + 2)/ log(u1 + v1

√
D).

P r o o f. This follows immediately from Theorem 12.10.1 and Theorem
12.13.3 of [5].

Lemma 8 ([5, Theorem 12.13.4]). log(u1 + v1

√
D) <

√
D(log 4D + 2).

Lemma 9 ([1, Theorem 2]). Let α1, . . . , αr be algebraic numbers with
heights H1, . . . ,Hr respectively , and let Ai = max(4,Hi) (i = 1, . . . , r). If
A1 ≤ . . . ≤ Ar−1 ≤ Ar and Λ = b1 log α1 + . . . + br log αr 6= 0 for some
b1, . . . , br ∈ Z, then

|Λ| > exp
(
− (16dr)200r(log B)

( r∏
i=1

log Ai

)(
log

r−1∏
j=1

log Aj

))
,

where d is the degree of Q(α1, . . . , αr) and B = max(4, |b1|, . . . , |br|).
Lemma 10 ([10]). Let a ∈ Z be non-zero, and let f(y) ∈ Z(y) have degree

n and at least two simple zeros. If (x, y, m) is a solution of the equation

axm = f(y) , x > 1 , y > 0 , m > 0 ,

then

m < exp
(

C ′n5(log 3H)2

log(n log 3H)

)
(log 3|a|)(log log 3|a|)2 ,

where H is the height of f(y) and C ′ is an effectively computable constant.

3. The proofs. By [6], the only solutions of equation (1) with 2 |n are
given by (x, y,m, n) = (7, 20, 4, 2) and (3, 11, 5, 2). By Theorem 5 of [8], we
see that the theorem holds for 2 |m. We now proceed to prove it for 2 - mn.

When 2 - n, n has an odd prime factor q. If (x, y,m, n) is a solution of
(1), then (x, yn/q,m, q) is a solution with the same xm. We can therefore
assume that n is an odd prime.
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Here and below, let Ci (i = 1, 2, . . .) denote some effectively computable
absolute constants. We now prove the following conclusions.

Assertion 1. Let (x, y, m, n) be a solution of equation (1) such that
x ∈ P and y ≡ 1 (mod x). If n > C1, then

(17) x < n10/9 .

P r o o f. By the assumption,

(18) x = pr , p is a prime, r ∈ N ,

where r satisfies

(19) r ≥
{

1 if n 6= p,
2 it n = p,

since yp ≡ 1 (mod p2) if y ≡ 1 (mod p). From (1) we get

(20) (1− pr)yn = 1− prm .

Let Qp, Zp be the p-adic number field and the p-adic integer ring respec-
tively. For any α ∈ Qp, let υ(α) denote the p-adic valuation of α, and let
‖α‖p = p−υ(α). Since y ≡ 1 (mod x), from (20) we get

(21) (1− pr)1/ny =
{

1 + prmθ if n 6= p,
1 + prm−1θ if n = p,

where θ ∈ Zp. Let t = m− 1, and let t1, t2 ∈ N such that

(22) t1 + t2 = m− 1 , (m− 1)/2 ≥ t1 ≥ (m− 3)/2 .

Put z = pr. By Lemma 1, from (21) we get

(23)
∥∥∥∥y

(
t

t1

)
prmG(1)E(pr)

∥∥∥∥
p

=
∥∥∥∥y

(
t

t1

)
G(pr)−(1−pr)1/ny

(
t

t1

)
H(pr)

∥∥∥∥
p

=


∥∥∥∥y

(
t

t1

)
G(pr)−

(
t

t1

)
H(pr)− prmθ

(
t

t1

)
H(pr)

∥∥∥∥
p

if n 6= p,∥∥∥∥y

(
t

t1

)
G(pr)−

(
t

t1

)
H(pr)− prm−1θ

(
t

t1

)
H(pr)

∥∥∥∥
p

if n = p.

By Lemma 4, we see from (3) and (4) that the power series expansions
of

(
t
t1

)
G(n2z),

(
t
t1

)
H(n2z) and (1 − n2z)1/n in z have integer coefficients.

Therefore, the power series of
(

t
t1

)
G(1)E(z) in z has rational coefficients

with denominators being powers of n. Moreover, the denominator of the
coefficient of zi (i ≥ 0) does not exceed n3i/2. This implies that if z satisfies
(19) then the power series of

(
t
t1

)
G(1)E(z) converges in Qp and∥∥∥∥(

t

t1

)
G(1)E(z)

∥∥∥∥
p

≤ 1 .
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On using (23), we get

(24)
∥∥∥∥y

(
t

t1

)
G(pr)−

(
t

t1

)
H(pr)

∥∥∥∥
p

≤ p−rm+1 .

Let

N = nt2+[t2/(n−1)]

(
y

(
t

t1

)
G(pr)−

(
t

t1

)
H(pr)

)
.

Then N ∈ Z by Lemma 4. Further, by Lemma 2, there exists at least one
pair (t1, t2) for which N 6= 0. It follows from (24) that

(25) nt2+[t2/(n−1)]

(
y

∣∣∣∣( t

t1

)
G(x)

∣∣∣∣ +
∣∣∣∣( t

t1

)
H(x)

∣∣∣∣) ≥ |N | ≥ prm−1 ≥ xm−1.

On applying Lemma 5 to (25), we get

(26) 2m−1n
m+3

2 · n
n−1

((
m + 3

2

)
x

m
n + m−1

2 + x
m+3

2

)
≥ xm−1 .

If n > C1, we deduce (17) from (26).

Assertion 2. Let (x, y,m, n) be a solution of equation (1) which satisfies
(17). If n > C2, then log y > n10.

P r o o f. From (1) we get

0 < Λ = m log x− log(x− 1)− n log y(27)

=
2

2xm − 1

∞∑
i=0

1
2i + 1

(
1

2xm − 1

)2i

<
2

xm
<

2
yn

.

On the other hand, according to Lemma 9 we obtain

Λ > exp(−48600(log x)(log(x− 1))(log y)(log log x + log log(x− 1))
×(log max(m,n))) .

On combining this with (27) we get

(28) 1 + 2 · 48600(log x)(log(x− 1))(log log x)(log max(m,n)) > n .

Substituting (17) into (28) gives

(29) 1 + 2 · 48600(log n10/9)2(log log n10/9)(log max(m,n)) > n .

If m ≤ n, then (29) is impossible for n > C2. Hence m > n, and log m > n1/2

by (29). From (1), yn = xm−1 + . . . + x + 1 > xm−1. Therefore we obtain
log y > (m− 1) log x/n > n10.

Assertion 3. If (x, y, m, n) is a solution of (1) with x being a square,
then (1) has a solution (x1, y1,m, n) such that

(30) x = x2r

1 , r ∈ N , x1 ∈ N , x1 is non-square.
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P r o o f. Since x > 1, there exists x1 which satisfies (30). Since 2 - m, we
have

xm − 1
x− 1

=
xm

1 − 1
x1 − 1

r−1∏
j=0

x2jm
1 + 1

x2j

1 + 1
,

where (xm
1 − 1)/(x1− 1), (x2jm

1 +1)/(x2j

1 +1) (j = 0, . . . , r− 1) are coprime
positive integers. The result follows at once.

Assertion 4. Let (x, y, m, n) be a solution of equation (1) which satisfies
(17). If x is non-square, then n < C3.

P r o o f. Since x is non-square, we deduce from (18) and (1) that 2 - r
and (

x(m+1)/2 − 1
x− 1

)2

− p

(
p(r−1)/2 x(m−1)/2 − 1

x− 1

)2

= yn .

This implies that ((x(m+1)/2− 1)/(x− 1), p(r−1)/2(x(m−1)/2− 1)/(x− 1), n)
is a solution of the equation

X2 − pY 2 = yZ , gcd(X, Y ) = 1 , Z > 0 .

On applying Lemma 6, we have

n = Z1t ,(31)

x(m+1)/2 − 1
x− 1

+
x(m−1)/2 − 1

x− 1
√

x = (X1 ± Y1
√

p)t(u + v
√

p) ,(32)

where t, X1, Y1, Z1 ∈ N satisfy

X2
1 − pY 2

1 = yZ1 , gcd(X1, Y1) = 1 ,(33)

1 <

∣∣∣∣X1 + Y1
√

p

X1 − Y1
√

p

∣∣∣∣ < (u1 + v1
√

p)2 ,(34)

3h(p) ≡ 0 (mod Z1) ,(35)

(u, v) is a solution of the equation

(36) u2 − pv2 = 1 ,

and u1 + v1
√

p is the fundamental solution of (36). Recall that n is an odd
prime. By Lemma 7, if x satisfies (17), then n - h(p). Hence Z1 = 1 and
t = n by (31) and (35).

Let

ε = X1 + Y1
√

p , ε = X1 − Y1
√

p ,(37)
% = u1 + v1

√
p , % = u1 − v1

√
p ,(38)

A =
x(m+1)/2 − 1

x− 1
, B =

x(m−1)/2 − 1
x− 1

.
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Since

1 <
A + B

√
x

A−B
√

x
=

(√
x + 1√
x− 1

)(√
xm − 1√
xm + 1

)
<

√
x + 1√
x− 1

≤

{
u1 + v1

√
p if x ≤ 3

2.7 if x > 3

}
≤ % ,

by (32) and (34), we get

(39) A±B
√

x = εn%s ,

where s ∈ Z satisfies 0 ≤ s ≤ n. Since A = xB + 1, from (39) we get

0 < Λ =
∣∣∣∣n log

ε

ε
− 2s log %∓ log

√
x + 1√
x− 1

∣∣∣∣(40)

=
2

xm/2

∞∑
i=0

1
2i + 1

(
1

xm

)i

<
4

xm/2
<

4
yn/2

.

Put α1 = (
√

x+1)/(
√

x−1), α2 = %, α3 = ε/ε. Then by (33), (37) and (38),
α1, α2 and α3 satisfy (x−1)α2

1−2(x+1)α1 +(x−1) = 0, α2
2−2u1α2 +1 = 0

and yα2
3 − 2(X2

1 + pY 2
1 )α3 + y = 0 respectively. This implies that H1 =

2(x + 1), H2 = 2u1 and H3 = 2(X2
1 + pY 2

1 ) < 2(X1 + Y1
√

p)2 < 2y%2 by
(34). Notice that the degree of Q(α1, α2, α3) = Q(

√
p) is equal to 2. By

Lemma 9,

Λ > exp(−192600(log 2n)(log 2(x + 1))(log 2u1)(log 2y%2)
×(log log 2(x + 1) + log log 2u1)) .

On combining this with (40) we get

(41) 1 + 192600(log 2n)(log 2(x + 1))(log 2u1)
(

1 +
log 2%2

log y

)
×(log log 2(x + 1) + log log 2u1) >

n

2
.

By Lemma 8, if x satisfies (17), then log 2u1< log 2%< log 2+n5/9(log 4n10/9

+ 2). Hence, by Assertion 2, we have log 2%2 < log y for n > C3. Thus, by
(41), we obtain

200600(log n)4 > n4/9 .

This is impossible for n > C3, which proves the assertion.

P r o o f o f T h e o r e m. Let (x, y, m, n) be a solution of equation (1)
such that x ∈ P and y ≡ 1 (mod x). By Assertions 3 and 4, we obtain
n < C3. Further, by Assertion 1, x < C4. Furthermore, by Lemma 10,
m < C5. To sum up, we get xm < C.
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