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1. Introduction. Let K = k(t) be a rational function field of one
variable with constant field k algebraically closed of characteristic 0. It is a
classical result that the Fermat equation

zr
1 + zr

2 = zr
3 , r ≥ 3 ,

has no solution in non-constant polynomials in k(t) with no common factors.
Newman and Slater [N-S] showed that this result also holds for the Euler–
Fermat equation

zr
1 + . . . + zr

n = zr
n+1, r ≥ 8n2 .

Let K∗ = K − {0} and let c1, . . . , cn be elements in K∗. Bounds for the
heights and for the number of solutions of the generalized Fermat equation

(1.1) c1z
r
1 + . . . + cnzr

n = 0 , ci ∈ K∗ ,

which depend on r and on the degrees of the coefficients ci have been ob-
tained by Silverman [S] and Voloch [V]. They showed that (1.1) has no
non-trivial solutions when the degrees of the ci’s are small relative to r. Re-
cently, a result uniform with respect to the coefficients ci was obtained by
Bombieri and Mueller [B-M]. They showed that if r > n!(n!− 2) and n ≥ 3,
then solutions to (1.1) fall into at most n!n! families, each with explicitly
given simple structure. In the case n = 3 and r > 30 the author [M] has
shown that

c1z
r
1 + c2z

r
2 = c3, ci ∈ K∗, 1 ≤ i ≤ 3 ,

has at most two distinct solutions in K∗×K∗, provided either c1/c3 6∈ (K∗)r

or c2/c3 6∈ (K∗)r.
The main objective of this paper is to show that the bound n!n! in

[B-M] can be replaced by 2(n!)2n−1. This result is stated in Theorem 1.
The strategy of our proof, which relies on the abc-inequality, follows the
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8 J. Mueller

lines in [B-M], but we introduce a new idea which allows us a much more
efficient counting of the number of classes of solutions. In Theorems 2 and
3, we have singled out some special cases of our Theorem 1 which are of
independent interest.

I would like to thank Professor Enrico Bombieri for his valuable advice
concerning the final form of this paper, I also wish to thank the referee for
his helpful suggestions.

2. Statement of results. Denote by

(2.1) F (x) = c1x1 + . . . + cnxn = 0 , ci ∈ K∗ ,

the generalized Fermat equation. By a solution of (2.1) we mean a solution
x with every coordinate xi ∈ (K∗)r. Let X be the set of such solutions
of (2.1). Let I = {1, . . . , n} and let π : I =

⋃
R be a partition of I. We say

x ∈ X is associated with π if

F (x) =
∑
R

∑
j∈R

cjxj = 0

where for each R ∈ π,

(2.2) FR(xR) =
∑
j∈R

cjxj = 0 .

Define
X(π) = {x ∈ X | x is associated with π}

and
XR(π) = {xR | xR = (xj)j∈R is a solution of (2.2)} .

Then it is easily seen that

(2.3) X(π) =
⋂

R∈π

XR(π) and X =
⋃
π

X(π) .

Definition. Let eR be a vector with each ej ∈ (K∗)r, j ∈ R, and let
xR ∈ XR(π). We say xR is compatible with eR if there is w ∈ (K∗)r and
vj ∈ k such that

xj = ejvjw, ∀j ∈ R .

Let us write

XR(π, eR) = {xR ∈ XR(π) | xR is compatible with eR}
and

X(π, e) =
⋂

R∈π

XR(π, eR) .

We say XR(π, eR) is a compatible class of solutions of (2.2), and X(π, e) is
a compatible class of solutions of (2.1).
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Our main result is the following

Theorem 1. Suppose r > n!(n! − 2). Then there are partitions π of
I and vectors e ∈ (K∗r)n such that X is the union of at most 2(n!)2n−1

compatible classes X(π, e).

The next theorem is a version of Theorem 1 in a special case where the
coefficients ci in (2.1) are restricted to be sums of rth power elements in K∗.

Theorem 2. Let li, 1 ≤ i ≤ n, be positive integers and let the coefficients
ci in (2.1) be given by

(2.4) ci =
li∑

j=1

aij , i = 1, . . . , n ,

where aij ∈ (K∗)r, 1 ≤ i ≤ n, 1 ≤ j ≤ li. Suppose r > l(l − 2) where

(2.5) l =
n∑

i=1

li .

Then X is the union of at most 2(n!)l2n−2 compatible classes X(π, e).

Our final result is the following theorem which improves the condition
r > 30 in the Main Theorem in [M] to r > 24.

Theorem 3. Let ci ∈ K∗, 1 ≤ i ≤ 3, such that either c1/c3 6∈ (K∗)r or
c2/c3 6∈ (K∗)r, and let r > 24. Then the binomial equation

c1x1 + c2x2 = c3

has at most two distinct solutions in (K∗)r × (K∗)r.

3. Proof of Theorem 1. The main tool of our method is the abc-
inequality (Theorem B of [Br-Ma]). In Lemma 1 we state a version of that
inequality which works especially well for homogeneous equations and which
follows from the proof of Lemma 2 of [B-M].

Lemma 1. Let k and K be as before. Suppose

(3.1) pr
1 + . . . + pr

d = 0 , pi ∈ K∗ ,

and no proper subsum of (3.1) vanishes. If r > d(d− 2), then pi/pj ∈ k.

For a proof of Lemma 1, see the proof of Lemma 2 of [B-M].

Our first step towards proving Theorem 1 is to construct a system of
“rth power” equations. That is, equations whose monomials are rth power
elements in K∗. We start by ordering the elements in X so that the first m
elements x(1), . . . , x(m) in X are linearly independent over K where m < n
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is the rank of the matrix (x(i))i=1,2,.... Let J be any subset of I of CardJ =
m + 1, and let S be the set of all such subsets of I. If x ∈ X, then

rank
(

x

x(i)

)
i=1,...,m

= m .

Hence for every J ∈ S,

(3.2) det
(

xJ

x
(i)
J

)
i=1,...,m

=
∑

ε(σ)x(1)
σ1

. . . x(m)
σm

xσm+1 = 0

where the sum is over the set M(J) of permutations σ of J and ε(σ) = ±1
according to the parity of σ. Write

(3.3) mσ(xJ) = ε(σ)x(1)
σ1

. . . x(m)
σm

xσm+1 ,

and

LJ(xJ) = det
(

xJ

x
(i)
J

)
i=1,...,m .

Then (3.3) gives a system of linear forms in x1, . . . , xn,

(3.4) LJ(xJ) =
∑

σ∈M(J)

mσ(xJ) = 0, ∀J ∈ S .

Let x ∈ X. We say LJ(xJ) decomposes into components N if

(3.5) LJ(xJ) =
∑
N

∑
σ∈N

mσ(xJ) = 0

where M(J) =
⋃
N is a partition and where

(3.6)
∑
σ∈N

mσ(xJ) = 0

is a vanishing subsum for every component N of M(J), but no proper
subsum of it vanishes.

Definition. Let x, x′ ∈ X. We say x and x′ are proportional (i.e.
x ∼ x′) if xj/x′j ∈ k for each j.

Definition. Let x ∈ X. We say x is a singular solution if for every
J ∈ S and for every decomposition of LJ(xJ) = 0, each component N of
M(J) has the property that if σ, σ′ ∈ N , then mσ/mσ′ ∈ k, where mσ and
mσ′ are given by (3.3). We say mσ and mσ′ are proportional , and we write
mσ ∼ mσ′ .

Lemma 2. Suppose r > n!(n! − 2). Then every x ∈ X is a singular
solution.

P r o o f. Suppose x ∈ X is not a singular solution. Then there is a
J ∈ S, a decomposition of LJ(xJ) = 0 and a component N of M(J) such
that for some σ, σ′ ∈ N , mσ/mσ′ 6∈ k.
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From Lemma 1 and the fact that CardN ≤ (m + 1)! ≤ n!, we obtain
r ≤ n!(n!− 2). This proves Lemma 2.

Our immediate object is to show that each x ∈ X is associated with a
partition π0 which arises in a natural way. First, we define a projection map
p from Zm+1 to Z by

p(σ) = p(σ1, . . . , σm+1) = σm+1, ∀σ ∈M∗ ,

where

M∗ =
⋃
J

M(J) =
⋃
J

⋃
N .

Next, for each J ∈ S, let GJ be the incidence graph of the sets p(N ) ⊂ Z.
Thus the vertices of GJ are the sets p(N ) with N running over all the
components of the decomposition (3.5), and there is an edge connecting
p(N ) to p(N ′) precisely if p(N ) ∩ p(N ′) 6= ∅. The graph GJ splits into the
disjoint union of connected components GJ,ν and we define

(3.7) π0 : I =
s⋃

ν=1

Rν

where Rν =
⋃

p(N ) with p(N ) ∈ GJ,ν . Since x ∈ X, we have

F (x) =
∑
j∈I

cjxj =
∑

Rν∈I

∑
j∈Rν

cjxj = 0 .

We claim that for ν = 1, . . . , s,

(3.8) FRν
(xRν

) =
∑

j∈Rν

cjxj = 0 .

To see this, we remark that in Lemma 1 of [B-M] it has been shown that
F (x) is a linear combination of the LJ(x); that is, there exist λJ ∈ k such
that

F (x) =
∑

J

λJLJ(xJ) =
∑

J

λJ

∑
N

∑
σ∈N

mσ(xJ) .

Therefore

cj =
∑

J

λJ

∑
N⊂M(J)
j∈p(N )

∑
σ∈N

p(σ)=j

ε(σ)x(1)
σ1

. . . x(m)
σm

.

Since the p(N )’s involved in the middle sum all belong to the same compo-
nent, say GJ,ν , we then have

(3.9) FRν
(xRν

) =
∑

J

λJ

∑
N⊂M(J)

p(N )∈GJ,ν

∑
σ∈N

mJ(xJ) .
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Now (3.9) in conjunction with (3.6) yield (3.8) and our claim is proved. We
remark that x is a singular solution if and only if xRν

is a singular solution
for each ν.

A crucial idea in the proof of Theorem 1 is to show that any singular
solution is compatible with a finite number of vectors which are determined
by the monomials mσ, σ ∈M∗. Define, for each σ ∈M∗,

τ(σ) = (σ1, . . . , σm), aτ(σ) = x(1)
σ1

. . . x(m)
σm

,

and

(3.10) E = {aτ(σ)/aτ(σ′) | σ, σ′ ∈M∗} .

Then mσ = aτ(σ)xp(σ), and the set E is what we want. One sees easily that

CardE ≤
(

m!
(

n

m

))2

≤ n!2 .

Proof of Theorem 1. Let π0 and Rν be given by (3.7) and let bν =
CardRν . Our first object is to show that XRν

(π0) is the union of at most

(3.11) (bν − 1)!(bν !)2(bν−1)

compatible classes XRν
(π0, eRν

).
For simplicity we shall set Rν = I and adjust our notations accordingly

in what follows. For example, we write I =
⋃

p(Nα), where the p(Nα)’s are
given by (3.7), and we let X(π0) stand for XRν (π0) and X(π0, e) stand for
XRν (π0, eRν ).

We remark that one may pick x ∈ X(π0) such that x1 = 1. To see
this, we write x = x1x

−1
1 x = x1(1, . . . , x−1

1 xn), x1 ∈ (K∗)r. Then x is
compatible with (1, . . . , x−1

1 xn). We will now construct a sequence of subsets
Tα ⊂ p(Nα) with the properties

(i) every Tα is connected with some Tα′ , α′ < α,
(ii) suppose Tα and Tα′ , α′ < α, are connected; then they have exactly

one element in common,
(iii) I =

⋃
Tα.

We start by setting T1 = p(N1) where N1 may be chosen so that δ(1) =
1 ∈ p(N1). To define T2, we pick p(N2) 6⊂ T1 and p(N1) ∩ p(N2) 6= ∅. Let
δ(2) be the least integer in the set {β | β ∈ p(N2) ∩ p(N1) 6= ∅}, and let

T2 = {δ(2)} ∪ {β ∈ p(N2) | β 6∈ T1} .

Now suppose for some integer q ≥ 3, T1, . . . , Tq−1 have been defined by this
procedure, where Tα+1 6⊂ Tα and

⋃q−1
α=1 Tα  I. To construct Tq, we first
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pick p(Nq) 6⊂
⋃q−1

α=1 Tα such that

(3.12) p(Nq) ∩
q−1⋃
α=1

Tα 6= ∅

and let δ(q) be the least integer in the non-empty set (3.12). Set

Tq = {δ(q)} ∪
{

β ∈ p(Nq) | β 6∈
q−1⋃
α=1

Tα

}
.

Then there is a positive integer k such that

(3.13) I =
k⋃

α=1

Tα .

Clearly the sets Tα in (3.13) satisfy the above stated properties (i)–(iii).
Next, let 1 ≤ j ≤ n be such that j ∈ T1. Since 1 ∈ T1, there are

permutations σ(1,j) and σ(δ(1)) in N1 such that

p(σ(1,j)) = j and p(σ(δ(1))) = 1 .

Moreover, since x is singular, we have

mσ(1,j) ∼ mσ(δ(1)) .

Let τ(·) stand for τ(σ(·)), and let

mσ(1,j) = aτ(1,j)xj and mσ(δ(1)) = aτ(δ(1))x1 .

Then we get, since x1 = 1,

(3.14) xj ∼ e(1, j)x1 = e(1, j) ,

where
e(1, j) = aτ(δ(1))/aτ(1,j) ∈ E and j ∈ T1 .

From (3.14) and the fact that the cardinality of E is at most n!2, we see
that the number of proportional classes of xj , j ∈ T1, is at most n!2. Next,
suppose that the proportional classes of xj , j ∈ Tα, 1 ≤ α ≤ k − 1, have
been determined and suppose j ∈ Tk. Then since δ(k) ∈ Tk, there are
permutations σ(k,j) and σ(δ(k)) in Nk such that

p(σ(k,j)) = j, p(σ(δ(k))) = δ(k), j ∈ Tk .

Writing

mσ(k,j) = aτ(k,j)xj and mσ(δ(k)) = aτ(δ(k))xδ(k) ,

from mσ(k,j) ∼ mσ(δ(k)) we get

(3.15) xj ∼ e(δ(k), j)xδ(k) ,

where
e(δ(k), j) = aτ(δ(k))/aτ(k,j) ∈ E, j ∈ Tk,
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and where δ(k) ∈ Tk ∩ Tj for some 1 ≤ j ≤ k − 1. Since by the hy-
pothesis, the proportional classes of xδ(k) have already been determined,
each e(δ(k), j) in (3.15) then determines a proportional class of xj , j ∈ Tk.
The number of such proportional classes is at most n!2. It follows that
there is a permutation σ of {1, . . . , n} such that σ(1) = 1 and such that
x(σ) = (1, xσ(2), . . . , xσ(n)) may fall into not more than (n!)2(n−1) propor-
tional classes determined by vectors e with each coordinate ei ∈ E. Since the
number of permutations σ is at most (n−1)!, we get at most (n−1)!n!2(n−1)

proportional classes for any x ∈ X(π0) such that x1 = 1. Hence we have
shown that X(π0) is the union of at most (n−1)!n!2(n−1) compatible classes
X(π0, e). Since we have set Rν = I in the above arguments, it is now clear
that we have proved (3.11).

Finally, from (2.3) and (3.11) we deduce that X is a union of at most µ
compatible classes, where

µ ≤
n∑

s=1

∑
b1+...+bs=n

bν≥1

( s∏
ν=1

n!2bν−2(bν − 1)!
) n!∏s

ν=1 bν !
(3.16)

<

n∑
s=1

∑
b1+...+bs=n

bν≥1

(n!)2n−2s+1 < (n!)2n−1
n−1∑
s=0

(
n− 1
s− 1

)
(n!)−2s

< (n!)2n−1
[
1 +

n−1∑
s=1

ns−1(n!)−2s
]

< 2(n!)2n−1, n ≥ 3 .

This completes the proof of Theorem 1.

4. Proof of Theorem 2. Let aij and li be given by (2.4) and (2.5),
and let

M0 = {(i, j) | 1 ≤ j ≤ li} .

Define p : Z2 → Z by p(i, j) = i, and

m(i,j) = aijxi , ∀(i, j) ∈M0 .

Then (2.1) is a rth power equation

(4.1) F (x) =
n∑

i=1

( li∑
j=1

aij

)
xi =

∑
M0

m(i,j) =
∑

N⊂M0

∑
(i,j)∈N

m(i,j) = 0 ,

where M0 =
⋃
N . Since Theorem 2 is a version of Theorem 1 in a special

case we shall use the results in Section 3 to prove Theorem 2 with minor
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changes. First, we replace E in (3.10) by

(4.2) E0 = {aij/ai′j′ | aij , ai′j′ are given by (2.4)} .

Then it is easily seen that the cardinality of E0 is at most l2. Next, we
replace the bound in (3.16) by

(4.3)
n∑

s=1

∑
b1+...+bs=n

bν≥1

( s∏
ν=1

l2bν−2(bν − 1)!
) n!∏s

ν=1 bν !
.

But (4.3) is

< (n!)l2n−2
n−1∑
s=0

(
n− 1
s− 1

)
(l!)−2s

< (n!)l2n−2
[
1 +

n−1∑
s=1

ns−1(n!)−2s
]
≤ 2(n!)l2n−2 ,

where l ≥ n ≥ 3. This proves Theorem 2.

We remark that for the Euler–Fermat equation

(4.4) x1 + . . . + xn = 0

where r > n(n − 2), the number of compatible classes of solutions of (4.4)
is bounded by the number of partitions of I and the latter is at most nn.

5. Proof of Theorem 3. Theorem 3 is included here mainly as an
example of how the technique of proof of Theorem 1 can be used in prac-
tice. Although our proof of Theorem 3 follows the general lines in [M], the
arguments have been simplified a great deal. In fact, it is easily seen that
Theorem 3 is an immediate consequence of the following lemmas.

Lemma 3. Suppose ci ∈ K∗, 1 ≤ i ≤ 3, such that either c1/c3 6∈ (K∗)r

or c2/c3 6∈ (K∗)r. Let x(1) and x(2) be two distinct solutions of

(5.1) c1x + c2y + c3 = 0 .

Then x(1) and x(2) are non-proportional (i.e. either x1/x2 6∈k or y1/y2 6∈k).

Lemma 4. Suppose r > 24. Then any three distinct solutions of (5.1)
are mutually proportional.

It follows from Lemmas 3 and 4 that (5.1) cannot have three distinct
solutions. Therefore Theorem 3 is proved.

P r o o f o f L e m m a 3. Suppose x(1) and x(2) are distinct solutions of
(5.1) such that x(1) and x(2) are proportional (i.e. x(1) ∼ x(2)). Writing
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x(i) = (xi, yi, 1) with xi, yi ∈ (K∗)r, there are constants α and β in k such
that

(5.2) x2 = αx1 and y2 = βy1 .

From (5.1) and (5.2) we get c1(1− α)x1 + c2(1− β)y1 = 0, which gives
c1

c2
=

β − 1
1− α

y1

x1
∈ (K∗)r .

Also from (5.1) and (5.2) we get

c1

(
1− α

β

)
x1

y1
+ c3

(
1− 1

β

)
1
y1

= 0 ,

which gives
c1

c3
=

(
β−1 − 1
1− αβ−1

)
1
x1

∈ (K∗)r .

But this contradicts the hypothesis of Lemma 3. Thus Lemma 3 is proved.

P r o o f o f L e m m a 4. We remark first that the hypothesis r > 24
implies that every solution of (5.1) is singular (see Lemma 2). Let x(1), x(2)

and x(3) be three distinct solutions of (5.1). Since the rank of the matrix
(x(i))i=1,2,3 is at most 2, we have

det(x(i))i=1,2,3 =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 0 .

By expanding the determinant in full, we get

L = x1y2 + x2y3 + x3y1 − x1y3 − x2y1 − x3y2 = 0 .

In what follows, we will proceed to show that each of the following cases is
either impossible or it leads to three mutually proportional solutions.

C a s e (i): L has no proper subsum that vanishes. Then, since every
solution of (5.1) is singular, the monomials in L are mutually proportional.
From the following proportional monomials:

x1y2 ∼ x3y2, x2y3 ∼ x1y3, x2y3 ∼ x2y1 and x3y2 ∼ x3y1 ,

we get

(5.3) x(1) ∼ x(2) ∼ x(3) .

C a s e (ii): L decomposes into three components ci, 1 ≤ i ≤ 3, of two
monomials each. Writing ci = u + v = 0, we claim that u and v must
be monomials with the same sign. Suppose u = x1y2 and v = −x1y3 or
v = −x3y2. Then from u + v = 0 we get y2 = y3 or x1 = x3, which together
with (5.1) gives two equal solutions. If v = −x2y1, then x1/y1 = x2/y2,
which together with (5.1) again yields two equal solutions. Thus our claim is
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proved. But this implies that the number of positive and negative monomials
in (5.1) must be even, which is not the case. Therefore, case (ii) is impossible.

C a s e (iii): L decomposes into two components c1 and c2 of four and two
monomials respectively. Then one sees from case (ii) that the two monomials
in c2 must have the same sign. Up to sign we may represent c1 and c2 by

(5.4)
c1 = xiyj + xjyk + xkyi − xiyk = 0,

c2 = −xjyi − xkyj = 0 ,

where (i, j, k) is a permutation of (1, 2, 3). From both equations in (5.4) we
get

yj ∼ yk, xj ∼ xi,
xj

xk
∼ yi

yk
and

xj

xk
= −yj

yi
,

which yields xi ∼ xj , y2
i ∼ y2

j and hence

(5.5) xi ∼ xj and yi ∼ yj .

The proportionality relation yi ∼ yj is obtained from y2
i ∼ y2

j and the fact
that the constant field k is algebraically closed. Combining (5.4) and (5.5)
we get xi ∼ xj ∼ xk and yi ∼ yj ∼ yk, which again gives (5.3).

C a s e (iv): L decomposes into two components c1 and c2 of three mono-
mials each. This is the last and also the most complex of the four cases.
Since each monomial xi or yi may appear at most twice in a component,
it suffices for us to consider components such that in one of them, say c1,
one of the following four cases holds: (a) both xi and yj appear twice, (b1)
xi appears twice but no yi appears twice, (b2) yi appears twice but no xi

appears twice, (c) both xi and yi appear exactly once. To be more explicit,
we have:

(5.6)
c1 = xiyj − xiyk − xkyj = 0

c2 = xjyk − xjyi + xkyi = 0
(case (a))

(5.7)
c1 = xiyj − xiyk + xkyi = 0

c2 = xjyk − xjyi − xkyj = 0
(case (b1))

(5.8)
c1 = xiyj − xjyi − xkyi = 0

c2 = −xiyk + xjyk + xkyi = 0
(case (b2))

(5.9)
c1 = xiyj + xjyk + xkyi = 0

c2 = −xiyk − xjyi − xkyj = 0
(case (c))

From both the first and the second equations in (5.6) we get yj ∼ yk,
xi ∼ xk, yk ∼ yi, and xj ∼ xk, which clearly yields (5.3). From both the
first and the second equations in (5.7) we get yj ∼ yk ∼ yi, which then gives
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xi ∼ xk ∼ xj and hence (5.3). Similarly, we may obtain (5.3) from (5.8).
Finally, from the first equation in (5.9) we get

(5.10) yk ∼
xiyj

xj
and

yi

yj
∼ xi

xk
,

and from the second equation in (5.9) we get

(5.11) yk ∼
xjyi

xi
and

yi

yj
∼ xk

xj
.

It is easily seen that (5.10) and (5.11) together give

yi

yj
∼ x2

i

x2
j

and
y2

i

y2
j

∼ xi

xj
,

which yields x3
i ∼ x3

j and y3
i ∼ y3

j . Since k is algebraically closed, we get

(5.12) xi ∼ xj and yi ∼ yj .

Now, (5.3) follows from (5.9) and (5.12).
This completes the proof of Lemma 4. Thus Theorem 3 is proved.
The idea of the proof of Lemma 4 was inspired by the article [E-G-S-T].
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