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Introduction. Let k be an algebraically closed field of zero charac-
teristic, K a function field in one variable over k, of genus g. For n ≥ 2,
u1, . . . , un ∈ K not all zero, we define the projective height as usual:

(1) H(u1, . . . , un) = −
∑

v

min(v(u1), . . . , v(un))

where v (normalized so that v(K∗) = Z) runs over all places of K/k.
In [10] R. C. Mason proved essentially the following result (1), funda-

mental for his analysis of norm form equations over function fields.

Let u1, . . . , un ∈ K (n ≥ 3) be such that u1 + . . . + un = 0 but no proper
nonempty subset of the ui’s is made of elements linearly dependent over k.
Then

(2) H(u1, . . . , un) ≤ 4n−2(#S + 2g − 2)

where S is the set of places of K where some ui is not a unit.

(Actually Mason’s Lemma 2 in [10] is stated differently, since he deals
with the inhomogeneous equation u1 + . . . + un = 1.)

The work of Mason generalized his previous result with n = 3 (see [9])
which he had used to solve effectively certain classical diophantine equations
over function fields. In that case, however, he had obtained the constant
factor 1 in place of 4.

In the meantime J. F. Voloch, in [16], was led to consider similar ques-
tions and, by methods different from Mason’s, obtained results which easily
implied (2) that, under the above conditions,

(3) H(u1, . . . , un) ≤
(

n− 1
2

)
(#S + 2g − 2).

(1) In fact announced already in [8].
(2) This remark appears in [3].
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Shortly afterwards W. D. Brownawell and D. Masser [3], independently
of Voloch, obtained some improvements of (2) in different directions and
stated explicitly (3) as Corollary 1 to Theorem A.

In [10] Mason also remarked that his inequality was true under the
weaker hypothesis that no proper nonempty subsum of the ui vanished.
In fact, in [3] the authors prove a result (Theorem B) which immediately
implies that with this restriction, and if moreover the ui are not all constant,
then (3) holds (3).

The first purpose of this note is to show that, under such conditions, (3)
holds in the more precise form

(4) H(u1, . . . , un) ≤
(

µ

2

)
(#S + 2g − 2)

where µ is the dimension of the vector space spanned by the ui over k.
Our proof, following [3], will make essential use of Wro/nskians. We

shall, however, need to make a subsequent induction work, a result which,
even in case µ = n− 1, is not entirely contained in (3) (though only slightly
different). Namely, we shall prove the following

Theorem 1. Let a1, . . . , an ∈ K be S-units (4) such that
∑

i∈Γ ai 6= 0
for every nonempty Γ ⊂ {1, . . . , n}. Put b = a1 + . . . + an. Then∑

v∈S

(v(b)−min v(ai)) ≤
(

µ

2

)
(#S + 2g − 2)

where µ = dim
∑

kai.

(Now, unlike the previous statements, b is not necessarily an S-unit.)
Inequality (4) will be shown to follow at once.
In some cases one may further improve upon (4). We have in fact

Theorem 2. Let a1, . . . , an ∈ K be S-units spanning a k-vector space of
dimension µ < n. Assume also that any µ of the ai are linearly independent
over k. Then

H(a1, . . . , an) ≤ 1
n− µ

(
µ

2

)
(#S + 2g − 2) .

Later we shall briefly discuss, as in [3], some questions connected with
“extremal examples”, i.e. cases when (3), say, holds as an equality.

After quoting some new examples due to J. Browkin and J. Brzeziński
we shall concentrate on the simplest nontrivial case, i.e. n = 3: we shall
show that extremal examples correspond to coverings of the Riemann sphere

(3) Both Theorems A and B of [3] are actually more precise than (3) since they also
take into account, for each place in S, the number of the ui which are units at that place.

(4) That is, v(ai) = 0 for v 6∈ S.
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ramified only above {0, 1,∞}. We have in fact the following observation
(essentially a recollection and reformulation of known facts, however):

Theorem 3. Let the equation a + b = 1, where a, b ∈ K − k, represent
an “extremal example”. Then the only places of k(a) ramified in K are (at
most) 0, 1,∞, and conversely. In particular , given the genus g of K and
given #S, there are only finitely many essentially distinct such equations.

(By essentially distinct we mean “distinct up to isomorphisms of K over
k”. For instance two extremal examples a + b = 1, a∗ + b∗ = 1 where
a, b, a∗, b∗ ∈ k(t) are considered “essentially equal” if a(t) = a∗(λ(t)) and
b(t) = b∗(λ(t)) where λ is a suitable fractional linear transformation.)

Some particular cases of this phenomenon, when K = k(t) has genus
zero, had already been noticed in dealing with finite homography groups:
see [1] for a detailed account, also in connection with hypergeometric differ-
ential equations. In this context other cases arise in the analysis of Lamé’s
operators with finite monodromy group (see [4]).

After the proof of Theorem 3 we shall sketch in Remarks 1 and 2 a com-
binatorial interpretation (in terms of the cycle decomposition of certain per-
mutations) of the number of “essentially distinct extremal examples”. This
method will yield in particular an existence proof for extremal examples with
given genus g and given #S, a question left partially unanswered in [3].

P r o o f o f T h e o r e m 1. We first treat the case µ = n, and follow [3].
We let z be a nonconstant element of K and define, for a1, . . . , an ∈ K, the
Wrońskian

W = W (a1, . . . , an) = det(a(j)
i ) , i = 1, . . . , n , j = 0, . . . , n− 1 ,

the a
(j)
i denoting derivatives with respect to z. (Actually in [3] the equivalent

logarithmic Wrońskian is used.)
Since a1, . . . , an are linearly independent over the constant field k of the

derivation d/dz, W does not vanish.
Now let v be any place of K and choose a local parameter tv at v. Also

let h = hv be an index such that v(ah) = min v(ai).
We have

(5) W (a1, . . . , an) = W (a1, . . . , ah−1, b, ah+1, . . . , an).

We shall use several times Lemma 2 of [3]. For the reader’s convenience
we restate it here in our own notation as

Lemma 1. For n ≥ 3 let f1, . . . , fn be elements of K linearly independent
over k, and for a place v and an integer ν with 0 ≤ ν ≤ n suppose that at
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least ν of the fi’s are units at v. Then

v(W (f1, . . . , fn)) ≥ −
(

n

2

)
v(dz/dtv)−

((
n

2

)
−

(
ν

2

))
+

n∑
i=1

v(fi).

By this lemma applied with a1, . . . , ah−1, b, . . . , an in place of
f1, . . . , fn and with ν = 0 the following inequality holds:

v(W ) +
(

n

2

)
v(dz/dtv) +

(
n

2

)
≥

∑
i 6=h

v(ai) + v(b)

=
n∑

i=1

v(ai) + (v(b)−min v(ai)) .

Now sum over v ∈ S. Since the ai are S-units we have
∑

v∈S v(ai) = 0 for
i = 1, 2, . . . , n, whence

(6)
∑
v∈S

(v(b)−min v(ai)) ≤
(

n

2

)
#S +

∑
v∈S

{
v(W ) +

(
n

2

)
v(dz/dtv)

}
.

On the other hand, if v 6∈ S, by the same Lemma 1 applied with a1, . . . , an

in place of f1, . . . , fn and with ν = n (now a1, . . . , an are units at v) we get

v(W ) +
(

n

2

)
v(dz/dtv) ≥ 0 for v 6∈ S

whence

(7)
∑

v

{
v(W ) +

(
n

2

)
v(dz/dtv)

}
≥

∑
v∈S

{
v(W ) +

(
n

2

)
v(dz/dtv)

}
.

Now it suffices to use (6) and to recall that

(8)
∑

v

v(W ) = 0,
∑

v

v(dz/dtv) = 2g − 2 .

To deal with the general case we argue by induction on n, the case n = 1
being trivial.

Let a1, . . . , aµ be a basis for ka1 + . . .+kan and set, renumbering indices
if necessary,

(9) b = a1 + . . . + an =
ν∑

i=1

γiai, where γ1 . . . γν 6= 0 ;

here 1 ≤ ν ≤ µ.
If ν = µ or if µ = n the theorem follows at once from the particular case

treated above: in fact, each ai is a linear combination with coefficients in k
of a1, . . . , aµ, whence

(10) min
1≤i≤µ

v(ai) = min
1≤i≤n

v(ai)
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and we could apply the previous result with γ1a1, . . . , γµaµ in place of
a1, . . . , an.

So assume 1 ≤ ν < µ < n. By the inductive assumption applied to (9)
we get

(11)
∑
v∈S

{v(b)− min
1≤i≤ν

v(ai)} ≤
(

ν

2

)
(#S + 2g − 2) .

We now construct recursively a finite sequence {µh} of integers such that

(i) µ0 = ν, µh > µh−1 for h ≥ 1,
(ii) max{µh} = µ,
(iii) there is a renumbering of the indices ν + 1, . . . , µ such that∑

v∈S

{v(b)− min
1≤i≤µh

v(ai)} ≤
(

µh

2

)
(#S + 2g − 2) .

Clearly this construction, in view of (ii) and of (10), will complete the
proof.

The first step, namely the construction of µ0, is just (11). Assume µ0, . . .
. . . , µh constructed. For any index j we have

aj =
µ∑

i=1

λi,jai =
µh∑
i=1

λi,jai +
µ∑

i=µh+1

λi,jai = Tj + Uj

say, the λi,j being suitable elements of k.
If µh = µ, as already observed, we are done, so assume µh < µ. We

contend that, for some j, both Tj and Uj are nonzero. In fact, assume the
contrary. Then either Uj = 0 or aj = Uj . Equation (9) clearly implies∑n

j=1 Uj = 0 (since µh + 1 ≥ ν + 1), whence

(12)
∑

Uj 6=0

aj = 0 .

The set Γ = {j : Uj 6= 0} is, however, nonempty: in fact, µh < µ and thus
µ ∈ Γ . Equation (12) would now contradict our assumptions.

Pick then j0 such that both Tj0 and Uj0 are nonzero. Certainly j0 > µ.
Renumber the indices µh + 1, . . . , µ to write

(13) Uj0 =
µh+1∑

i=µh+1

λi,j0ai

where

(14) λi,j0 6= 0 for µh + 1 ≤ i ≤ µh+1 .

These requirements define µh+1 and clearly µ ≥ µh+1 > µh.
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Apply the induction assumption to Tj0 in place of b and aj0 ,−λi,j0ai

(µh + 1 ≤ i ≤ µh+1) in place of a1, . . . , an.
The assumptions are in fact satisfied, for

(15) Tj0 = aj0 +
µh+1∑

i=µh+1

−λi,j0ai

and moreover no nonempty subsum of the right hand side vanishes since
Tj0 6= 0, since the ai, 1 ≤ i ≤ µ, are linearly independent and since (14)
holds. Setting

B = {j0} ∪ {µh + 1, . . . , µh+1} ,

we obtain

(16)
∑
v∈S

{v(Tj0)−min
i∈B

v(ai)} ≤
(

µh+1 − µh + 1
2

)
(#S + 2g − 2) .

Adding this inequality to (iii) above (the one obtained for b, a1, . . . , aµh
) and

putting A = {1, . . . , µh} yields

(17)
∑
v∈S

{v(b) + v(Tj0)−min
i∈A

v(ai)−min
i∈B

v(ai)}

≤
{(

µh

2

)
+

(
µh+1 − µh + 1

2

)}
(#S + 2g − 2)

≤
(

µh+1

2

)
(#S + 2g − 2) .

We must now deal with the left hand side. Observe that, since

Tj0 = aj0 −
µh+1∑

i=µh+1

λi,j0ai =
µh∑
i=1

λi,j0ai

we have, for any v,

v(Tj0) ≥ max{min
i∈B

v(ai),min
i∈A

v(ai)} ,

whence each term in the sum on the left of (17) is bounded below by

v(b)− min
i∈A∪B

v(ai) ≥ v(b)− min
1≤i≤µh+1

v(ai) ,

completing the verification of (i), (iii) for h+1 in place of h (in case µh < µ),
and thus finishing the proof of Theorem 1.

Corollary. If u1+. . .+un = 0 but no proper subsum of the ui vanishes,
then, provided the ui are S-units, inequality (4) holds.
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P r o o f. Apply Theorem 1 with n − 1 in place of n, with b = −un and
with ai = ui, the assumptions being clearly satisfied. We get∑

v∈S

{v(un)− min
1≤i≤n−1

v(ui)} ≤
(

µ

2

)
(#S + 2g − 2) .

On the other hand, if v 6∈ S, then v(ui) = 0 for i = 1, . . . , n, whence the
range of summation in the left hand side may be extended to all v.

To get the Corollary it now suffices to use the equations∑
v

v(un) = 0 and min
1≤i≤n−1

v(ui) = min
1≤i≤n

v(ui) ,

the last one following from the basic assumption un = −
∑n−1

i=1 ui.

P r o o f o f T h e o r e m 2. Let W denote the Wrońskian of any µ of the
ai and observe that the value v(W ) does not depend on such a choice: in
fact, since any µ of the ai form a basis for the k-linear span of a1, . . . , an,
the quotient of any two such determinants is a nonzero constant.

Let v ∈ S. Assume, renumbering indices if necessary, that

v(a1) ≥ v(a2) ≥ . . . ≥ v(an) = min v(ai) = mv , say .

Since a1, . . . , aµ are linearly independent over k, an is their linear combina-
tion with constant coefficients, whence

mv = v(an) ≥ min
1≤i≤µ

v(ai) = v(aµ) ≥ mv

and so

(18) v(ai) = mv for µ ≤ i ≤ n .

Also, by the remark made at the beginning and by Lemma 1 applied
with a1, . . . , aµ in place of f1, . . . , fn and with ν = 0 we have

v(W ) = v(W (a1, . . . , aµ)) ≥ −
(

µ

2

)
(v(dz/dtv) + 1) +

µ∑
i=1

v(ai) ,

whence, by (18),

v(W ) +
(

µ

2

)
(v(dz/dtv) + 1) ≥

n∑
i=1

v(ai)− (n− µ)mv .

Summing this inequality over v ∈ S and using (7) and (8) we obtain the
desired result.

Extremal examples. Let us restrict ourselves to the case µ = n− 1 of
the Corollary (one of the results in [3]). In [14] J. H. Silverman, after giving
a new proof for the case n = 3, observes that it is best possible, if g = 0, for
every value of #S. In [3] the authors give examples with n = 3, any g ≥ 0
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and infinitely many values of #S. (For a combinatorial method of proving
the existence of examples with given g and #S see Remark 2 below.) They
also remark that, when n > 3,

(
n−1

2

)
cannot be replaced with n− 3.

Now J. Browkin and J. Brzeziński in [2] have examples which show that
(at least when g = 0),

(
n−1

2

)
cannot be replaced with 2n−5−ε for any value

of #S and any ε > 0. In particular, the coefficient
(
n−1

2

)
is best possible

even for n = 4.
Another question which one can ask is to characterize extremal examples,

if there are any. Theorem 3 is a first observation in that direction.

P r o o f o f T h e o r e m 3. (We shall practically repeat the proof for the
case n = 3.) For v a place of K we calculate v(da/dtv) according to four
possibilities:

(i) v(a) < 0. Now v(a) = v(b) and v(da/dtv) = v(a)− 1.
(ii) v(a) > 0. In this case v(b) = 0 and again v(da/dtv) = v(a)− 1.
(iii) v(b) > 0. Now v(a) = 0 and v(da/dtv) = v(−db/dtv) = v(b)− 1.

These cases correspond to all v ∈ S. Also observe that we may combine
(i)–(iii) in a single formula, viz.

(19) v(da/dtv) = max(v(a), v(b))− 1 = v(a) + v(b)−min(v(a), v(b))− 1

for all v ∈ S.
The remaining case is thus

(iv) v 6∈ S, i.e. v(a) = v(b) = 0. If p is the place of k(a) below v then
p 6= ∞ and a − p (we identify p with an element of k) is a local parameter
at p in k(a). We may write a− p = tev

v % where ev is the ramification index
over p and % ∈ K is a unit at v. Differentiating with respect to tv we obtain

(20) v(da/dtv) = ev − 1 .

Now using (19) and (20) in the formula
∑

v v(da/dtv) = 2g−2 and recalling
that ∑

v

v(a) =
∑

v

v(b) = 0, min(v(a), v(b)) ≤ 0 (since a + b = 1)

we get

H(a, b, 1) = #S + 2g − 2−
∑
v 6∈S

(ev − 1) .

This shows that we have an extremal example iff ev = 1 for all v 6∈ S,
namely iff K/k(a) is unramified outside S.

To obtain the first part of Theorem 3 it thus suffices to remark again
that a place v of K/k lies in S if and only if either v(a) < 0 or v(a) > 0, or
v(1− a) > 0, i.e. if and only if v lies above one of the places ∞, 0, 1 of k(a).
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For the second part we use the Lefschetz principle to assume k = C and
follow mainly M. Fried’s paper [5]. Let n = [K : k(a)].

We consider the inclusion k(a) ⊂ K as an n-sheeted covering

a : Σ1 → Σ

of Riemann surfaces of genera resp. g, 0, unramified except above {0, 1,∞}.
Let p ∈ Σ−{0, 1,∞} = C−{0, 1} and let {ζ1, . . . , ζn} be the fiber above p.
Then it is well known that we have a transitive representation

(21) σ : π1(C− {0, 1}) → Sn = {permutations on ζ1, . . . , ζn} .

(Given a closed path P through p in C−{0, 1} the permutation σ(P ) assigns
to ζi the end point of a lifting of P starting at ζi. See [5], p. 43, or [12], §58,
and the related references for more details.)

Also, let a∗ ∈ K∗ be such that n = [K∗ : k(a∗)] and consider the corre-
sponding covering a∗ : Σ1∗ → Σ∗ as above, also supposed to be unramified
except above the places 0, 1,∞ of Σ∗ (so the equation a∗ + (1 − a∗) = 1
gives another extremal example with the same degree n). Assume, moreover,
that the associated representation σ∗ is isomorphic to σ (i.e. σ∗ = τστ−1

for some bijection τ : {ζ1, . . . , ζn} → {ζ1∗, . . . , ζn∗}). There is a canonical
covering φ : Σ∗ → Σ of degree 1 associated with the canonical isomorphism
k(a) ∼= k(a∗). Then, clearly, letting σ∗∗ be the representation associated
with the composite covering φ ◦ a∗ : Σ1∗ → Σ, we also have σ∗∗ ∼= σ∗ ∼= σ.
In this situation the proof of Lemma 6, p. 44 of [5] (which extends at once
to our case) shows that there exists an analytic isomorphism l : Σ1 → Σ1∗
such that

φ ◦ a∗ ◦ l = a .

(Alternatively to [5] one can use standard topological theory of covering
spaces to construct first a homeomorphism l̃ defined only outside the ram-
ification points. In our setting, l̃ becomes automatically analytic and may
be extended to an analytic isomorphism l as above, by the classical theory
of Riemann surfaces.)

If L : K∗ → K denotes the isomorphism corresponding to l this equation
is equivalent to a = L(a∗), so, according to our definition, the two “extremal
examples” are in fact the same.

Hence “essentially distinct” examples of the same degree n correspond to
distinct isomorphism classes of representations (21), which are clearly finite
in number, π1(C− {0, 1}) being a free group generated by two elements.

Since #S and g determine the degree n (just use n = H(a, b, 1) = #S +
2g − 2!), Theorem 3 follows.

R e m a r k 1. It is well known (see for instance [15]) that the Galois group
of the normal closure ofK over k(a) is isomorphic to the image of σ (which is
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classically referred to as the “monodromy group”). Also, let P0, P1 be clock-
wise oriented nonintersecting circles around 0, 1 resp. Then their homotopy
classes generate π1(C − {0, 1}). Moreover, the cycle lengths in the canon-
ical decomposition of σ(P0), σ(P1) and their product are the ramification
indices over 0, 1,∞ resp. (observe that the product of the homotopy classes
of P0, P1 is the class of a small circle around ∞ in the Riemann sphere Σ).

That the ramification indices correspond to the cycle lengths is stated
for instance in Lemma 5, p. 44 of [5] or in [4]. It may be proved for example
by recalling that near a ramified point ζ above 0, say, local coordinates may
be chosen in such a way that the covering map is equivalent to z → ze in
a neighborhood of ζ, where e is the ramification index. If we assume, as
we may without loss of generality, that P0 is sufficiently small, the action
of σ(P0) on points near ζ becomes explicit, namely it is the action of an
e-cycle.

R e m a r k 2. Using [12], §58, pp. 198–200 (see also the construction in
[4] and the related references, or [15]) one proves the existence, for any given
transitive representation σ as in (21), of an associated n-sheeted covering Σ1

of the Riemann sphere as above (5). The book [12] furnishes the topological
construction. That the resulting space is actually a Riemann surface is a
classical theorem in the theory: Every compact ramified covering of the
Riemann sphere is the Riemann surface of an algebraic function w of the
independent complex variable z (6).

This covering corresponds to an “extremal example” with K of genus g
precisely if Σ1 is of genus g. By the Hurwitz genus formula this is equiva-
lent to a certain relation among the ramification indices above 0, 1,∞ (see
formula (22) below), which in turn correspond, by Remark 1, to the cycle
lengths of certain permutations ω0, ω1, ω0ω1 related to the given representa-
tion of π1(C−{0, 1}). Counting the number of essentially distinct extremal
examples with given #S and given g is thus reduced to a purely combina-
torial problem about cycle decompositions in Sn (where n = #S + 2g − 2).
Namely, we must count the number of pairs of elements in Sn, up to conju-
gation, which generate a transitive subgroup and are such that their cycle
lengths satisfy a certain relation together with the cycle lengths of their
product, namely formula (23) below.

To outline the method, let ei, e
∗
j , e

∗∗
k be the cycle lengths in the canonical

decomposition of the permutations ω0, ω1, ω0ω1 resp., assuming that these
generate a transitive group in Sn. By Remark 1 and the Hurwitz genus

(5) This statement seems to be well known, as M. Fried states on p. 43 of [6], even if
it is not easy to locate a complete proof in the literature.

(6) This statement appears in [15], p. 496. For a proof see for instance Siegel’s book
[13].
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formula the genus g of our covering is given by (7)

(22) 2g − 2 = −2n +
∑

(ei − 1) +
∑

(e∗j − 1) +
∑

(e∗∗k − 1) .

If we let h0, h1, h∞ resp. be the number of cycles belonging to the above
permutations, the last formula gives

(23) h0 + h1 + h∞ = n + 2− 2g .

To find permutations as above which satisfy this equation is equivalent to
proving the existence of an extremal example with K of genus g and with
#S given by the common value of the sides of the equation. It is trivially
checked that, setting ω0 = (1, . . . , n), ω1 = (1, . . . , 2g + 1) where n > 2g, we
obtain such an instance, since

(1, . . . , n) ◦ (1, . . . , 2g + 1) = (1, 3, . . . , 2g + 1, 2, 4, . . . , 2g + 2, 2g + 3, . . . , n).

(For a purely algebraic approach to some of the above topological ques-
tions, as remarked in [5], one can see [7], especially [8, Cor. 6.9, p. 6.7].)

As recalled in the introduction interesting examples arise from the study
of finite groups of linear fractional transformations: in this way one obtains
indeed all cases when K = k(t) is Galois over k(a). A complete list is given
in [2].

Also, it is perhaps worth mentioning that another instance, relevant both
in the context of Ritt’s second Theorem (see [11], p. 26, Lemma 6) and in
the theme of [5] (see Lemma 12), appears in connection with Chebyshev
polynomials.

I would like to thank Professor A. Schinzel for his kind attention, gener-
ous encouragement and indication of several references. I also wish to thank
Dr. B. Chiarellotto for useful conversations in which he pointed out to my
attention papers [4], [15] and the book [12].
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