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1. Introduction. A positive integer n is called squarefull if n having
a divisor p implies that n also has a divisor p2. Here p denotes a prime
number. Let Q(x) be the number of squarefull numbers not exceeding x.
Let h = x1/2+θ, 0 < θ < 1/2. Asymptotic formulas (as x → ∞) for the
quantity Q(x+h)−Q(x) were first investigated by means of the exponential
sum method in P. Shiu [10] where it was proved that

(1) Q(x+ h)−Q(x) =
1
2
ζ(3/2)
ζ(3)

xθ(1 + o(1))

for each number θ such that

1/6 > θ > 0.1526 .

(Note that for 1/2 > θ ≥ 1/6, (1) follows at once from the asymptotic
formula for Q(x), cf. [10].) P. Shiu’s result was improved by P. G. Schmidt
[8], [9] to

1/6 > θ > 0.1507 and 1/6 > θ > 1/7 = 0.14285 . . . , resp.

Independently, with the help of a corrected version of Theorem 1 of G. Ko-
lesnik [4] and the exponent pair method, in [5] it was shown that (1) holds
true whenever

1/6 > θ > 0.14254 .
As is well known, we have

(2) Q(x+ h)−Q(x) =
∑

x<a2b3≤x+h

|µ(b)| ,

where µ(·) is the Möbius function. All the above research based on repre-
senting |µ(b)| by a standard summation, namely,

(3) |µ(b)| =
∑

m2 | b

µ(m) .
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Then, by substituting (3) in (2), after some standard arguments, the problem
is reduced to estimating certain multiple (in fact, triple) exponential sums,
whose estimates are always unsatisfactory.

In this paper, we show that it is actually redundant to use (3), and one
can obtain a far better range if one keeps the original expression (2). Let

ψ(ξ) = ξ − [ξ]− 1
2

where [ξ] is the integral part of a real number ξ, and let

R(X,β) =
∑

n≤Xα

ψ(Xn−β) , β > 0 , α = 1/(β + 1) .

A simple argument enables one to deduce the following theorem.

Theorem 1. If σ is a number such that for any ε > 0 and any ξ > 1,

(4) R(ξ1/2, 3/2) � ξσ+ε , R(ξ1/3, 2/3) � ξσ+ε ,

then, for any number θ with 1/6 > θ > σ + 2ε, one has

Q(x+ x1/2+θ)−Q(x) =
1
2
ζ(3/2)
ζ(3)

xθ(1 +O(x−ε/2)) .

Hence, the key to our problem is to find an optimal upper bound for
R(ξ1/2, 3/2) and R(ξ1/3, 2/3). The sum R(X,β) was first introduced in
H. E. Richert [7], where it was estimated via the van der Corput–Phillips ex-
ponent pair method solely. In [10], P. Shiu showed that σ ≥ 0.1318162 is ad-
missible in (4). P. G. Schmidt [8] refined that to σ ≥ 27/205 = 0.13170 . . . ,
and pointed out that even σ ≥ 0.13169 . . . is accessible for (4) by using van
der Corput’s method alone.

Note that in treating the error term occurring in the Dirichlet divisor
problem, H. Iwaniec and C. J. Mozzochi [3] indeed found an estimate for
R(X, 1):

Proposition 1.

(5) R(X, 1) � X7/22+ε .

The estimate (5) is substantially new as compared with the former de-
velopments. In view of the importance ofR(X,β) in various problems, es-
pecially in our current problem, in this paper I shall generalize the estimate
(5) to every sum R(X,β), β > 0. The following proposition will be proved.

Proposition 2. For any ε > 0,

R(X,β) � xτ(β)+ε .

Here

τ(β) =


7

11(β + 1)
if 0 < β ≤ 1,

max(τ1(β), τ2(β)) if β > 1,
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with

τ1(β) = inf
(k,λ)∈E

(
7(λ− k)

22λ− (15β + 7)k + 7(β − 1)

)
,

τ2(β) = inf
(k,λ)∈E

(
3λ+ k

4λ+ (1− β)k + 3β + 1

)
,

where

E = E(β) = {(k, λ) | (k, λ) is an exponent pair such that λ ≥ βk} ,

and the infima are taken over all exponent pairs belonging to E.

Proposition 2 reveals that the estimate for R(ξ1/2, 3/2) is rather worse
than that for R(ξ1/3, 2/3). Nevertheless, in conjunction with a neat ex-
ponent pair (2/7, 4/7), it will be clear that Proposition 2 implies (4) with
σ = 14/107; thus I obtain the following theorem:

Theorem 2. For any ε > 0, and any θ in the range

θ ≥ 14/107 + ε = 0.13084 . . .+ ε

we have

Q(x+ x1/2+θ)−Q(x) =
1
2
ζ(3/2)
ζ(3)

xθ(1 +O(x−ε/4)) .

I remark here that the number 14/107 is of course not best possible, and
one can slightly reduce it by taking some more cumbersome exponent pairs.

2. The proof of Theorem 1. Put B = xθ−ε. We have

(6) Q(x+ x1/2+θ)−Q(x)

=
∑

x<a2b3≤x+xθ+1/2

b≤B

|µ(b)|+
∑

x<a2b3≤x+xθ+1/2

b>B

|µ(b)|

=
∑

1
+

∑
2
, say .

Clearly, one has∑
1

=
∑
b≤B

|µ(b)|
∑

(xb−3)1/2<a≤((x+h)b−3)1/2

1

=
∑
b≤B

|µ(b)|
(

(x+ h)1/2 − x1/2

b3/2
+O(1)

)
.

As

(x+ h)1/2 − x1/2 = 1
2x

θ(1 +O(xθ−1/2))
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and ∑
b≤B

|µ(b)|
b3/2

=
∞∑

b=1

|µ(b)|
b3/2

+O(B−1/2) ,
∞∑

b=1

|µ(b)|
b3/2

=
ζ(3/2)
ζ(3)

,

we have

(7)
∑

1
=

1
2
xθ ζ(3/2)

ζ(3)
(1 +O(x−ε/2)) .

The advantage comes from “abandoning” |µ(b)| in
∑

2. One has∑
2
≤

∑
x<a2b3≤x+h

b>B

1 =
∑

B<b≤(x+h)1/5

∑
(xb−3)1/2<a≤((x+h)b−3)1/2

1

+
∑

a≤(x+h)1/5

∑
(xa−2)1/3<b≤((x+h)a−2)1/3

1 +O(1) .

As ∑
(xb−3)1/2<a≤((x+h)b−3)1/2

1

=
(x+ h)1/2 − x1/2

b3/2
+ ψ

(
x1/2

b3/2

)
− ψ

(
(x+ h)1/2

b3/2

)
,∑

(xa−2)1/3<b≤((x+h)a−2)1/3

1

=
(x+ h)1/3 − x1/3

a2/3
+ ψ((xa−2)1/3)− ψ(((x+ h)a−2)1/3) ,

one gets

(8)
∑

2
≤ R(x1/2, 3/2)−R((x+ h)1/2, 3/2) +R(x1/3, 2/3)

−R((x+ h)1/3, 2/3) +O(xθ−ε) .

From (6)–(8) and the assumption (4), one concludes that

Q(x+ x1/2+θ)−Q(x) =
1
2
ζ(3/2)
ζ(3)

xθ(1 +O(x−ε/2)) .

Theorem 1 is proved.

3. The proof of Proposition 2

3.0. Introduction. In analytic number theory, a variety of problems are
reduced to exponential sums which can be effectively estimated by van der
Corput’s method. The exponent pair method was introduced by van der
Corput in order that a better result might be gained for a concrete problem
after a suitable iterative procedure, and it was simplified in E. Phillips [6].
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To enhance the power of the method, a number of refinements have been de-
veloped. For example, the original Weyl inequality has been generalized so
that one can shift several variables simultaneously. The work of E. Bombieri
and H. Iwaniec [1] is somewhat pioneer in the sense that it preludes the pos-
sibility of an alternative approach to problems which formerly could only be
treated via van der Corput’s method or some refinements of it. However,
the method of [1] is not altogether new in the field of trigonometric sums.
In fact, starting with a Weyl shift without using the Cauchy inequality, and
then approximating the Taylor coefficients by fractions, and finally appeal-
ing to some mean value theorems, all these features in [1] are not dissimilar
from those which appear in I. M. Vinogradov’s estimate for ζ(1 + it) in [11]
(which has never been improved since its establishment). While the method
in [1] seems to work only for exponential sums of one variable, H. Iwaniec
and C. J. Mozzochi [3] succeeded in a quite analogous manner with the very
special multiple sum R(X, 1), and they got the estimate (5). In February
1989, I generalized their result to all sums R(X,β), β > 0. As my gen-
eralization is useful for the problem of this paper, I present my proof of
Proposition 2 here.

My proof of Proposition 2 mimics closely that of Proposition 1 given
in [3]. A notable difference lies in treating the sum∑

m∼M

min(1, ‖xm−β‖−1Y −1) .

In the case β = 1, this sum was estimated by an elementary argument in [3].
However, for β 6= 1, one has to appeal to its Fourier expansion, and employ
the special expressions of its Fourier coefficients. (For more details, see next
subsection.) In fact, the estimate of this sum will constitute just the bulk
of Section 3.

Notations. For a real number ξ, put

‖ξ‖ = min
n∈Z

|n− ξ| ,

where Z is the set of all integers, and e(ξ) = exp(2πiξ). Ci (i ≥ 1) denote
absolute constants. The constants implied by the “O” or “�” symbols
are absolute. m ∼ M means M < m ≤ 2M and m � M means that
U ≤ m/M ≤ V for some absolute constants U and V . As above, ε is a
given small positive number.

3.1. The formulation of the method . We have

R(X,β) =
∑
M

∑
m∼M

ψ(Xm−β) +O(1) ,

where M takes the form Xα2−j , j = 1, 2, . . . By means of the familiar
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inequality

ψ(ξ) =
∑

1≤|h|≤Y

e(hξ)
2πih

+O

(
min

(
1,

1
Y ‖ξ‖

))
and the Fourier expansion

min
(

1,
1

Y ‖ξ‖

)
=

+∞∑
h=−∞

a(h)e(hξ) ,

where Y is an arbitrary positive number, and

a(h) =
1

πY h

1/2∫
Y −1

sin(2πhθ)
θ2

dθ � min
(

ln(2 + Y )
Y

,
1
|h|
,
Y

h2

)
,

we get

R(X,M, β) :=
∑

m∼M

ψ(Xm−β)(9)

= O

( ∑
1≤h≤Y

∑
m∼M

e(Xhm−β)
h

)

+O

( ∑
1≤h≤Y 2

f(h)
∑

m∼M

e(hXm−β)
)

+O(MY −1 ln(2 + Y ))

where, for ξ 6= 0,

f(ξ) =
1

πξY

1/2∫
Y −1

sin(2πξθ)
θ2

dθ +
2 cos(πξ)
(πξ)2Y

(10)

=
Y cos(2πξY −1)

2(πξ)2
− 1

(πξ)2Y

1/2∫
Y −1

cos(2πξθ)
θ3

dθ .(11)

It is easy to verify that, for ξ > 1, Y > 1,

(12) f(ξ) � min(1/ξ, Y/ξ2) , f ′(ξ) � 1/ξ2 ,
(13) f ′′(ξ) � 1/(Y ξ2) + Y/ξ4 , f ′′′(ξ) � 1/(Y ξ)2 + Y/ξ5 .

Now it is clear that Proposition 2 is a consequence of the following two
lemmas, which are valid whenever M � Xα.

Lemma 1. We have

x−εR(X,M, β) � (XM1−β)7/22 + (X3M−1−3β)1/4 .

Lemma 2. For an exponent pair (k, λ),

x−εR(X,M, β) � (XkMλ−βk)1/(1+k) .
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The proof of Lemma 2 is routine. In fact, from (9) we get

R(X,M, β) �MY −1 ln(2 + Y ) +
∑

1≤h≤Y 2

min
(

1
h
,
Y

h2

)∣∣∣ ∑
m∼M

e(hXm−β)
∣∣∣ .

If (k, λ) is an exponent pair in the sense of [6], then∑
m∼M

e(hXm−β) � (hXM−β−1)kMλ ,

and Lemma 2 follows by taking Y = (X−kM1+k−λ+βk)1/(1+k).

Thus we only need to prove Lemma 1. Let Y = M(XM1−β)−7/22.
Obviously we can assume that Y ≥ 100. Let

R1(X,M, β) =
∑

1≤h≤Y

∑
m∼M

e(Xhm−β)
h

,

R2(X,M, β) =
∑

1≤h≤Y 2

f(h)
∑

m∼M

e(hXm−β) .

We shall only estimate R2(X,M, β), because R1(X,M, β) can be dealt with
similarly and more easily. Let χ(·) be a C∞ function such that

χ(x) = 0 if x ≥ 4 , 0 < χ(x) ≤ 1 if 2 ≤ x < 4 ,
χ(x) = 1− χ(2x) if 1 < x ≤ 2 , χ(x) = 0 if x ≤ 1 ,

then ∑
H

χ

(
x

H

)
= 1 for all x > 0 ,

where H runs through the sequence {2j : j ∈ Z}. Hence one sees that

R2(X,M, β) � lnx|S(H,M,X)|+ (XM1−β)7/22

for some H = 2j ∈ [1, Y 2], where

S(H,M,X) =
∑

h

f(h)χ
(
h

H

) ∑
m∼M

e(hXm−β) .

Let

Q(m) =
∑

h

f(h)χ
(
h

H

)
e(hXm−β) .

Then
S(H,M,X) =

∑
m∼M

Q(m) , Q(m) � min(1, Y H−1) .

For this H, we set the choice

N = max(H, (MH−1)1/2,M1+2β/5(XH)−2/5) ,
D = min(H,Y,H−1X−1Mβ+2)
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(our choice implies that N = O(MX−ε)). Adopting the arguments in Sec-
tions 5 and 6 of [3], we obtain

X−ε|S(H,M,X)|

�
∑

1≤c≤C1G

∑
a�cXM−β−1

B(m0) + max
C

(
G

C

∑
c∼C

∑
a�A

(c,a)=1

F (m0)
)

+N .

Here the maximum is taken over numbers C of the form 2j , j ∈ Z, such
that C2G ≤ C ≤ D, and G, m0, A are defined as follows:

G =
Mβ+2

XND
, m0 = m0

(
a

c

)
=

[(
Xcβ

a

)α]
, A = CXM−β−1 ,

B(m0) is a number such that for any integers L1 and L2 with |L1|, |L2| �
Mβ+2/(XcD), we have∣∣∣ ∑

L1≤r≤L2

Q(m0 + r)
∣∣∣ � B

(
m0

(
a

c

))
;

and F (m0) is as follows:

F (m0) =
∑

n

Q(m0 + n)g(n) , g(n) = σ

(
n

N

)
,

where σ(·) is also some C∞ function, whose support is contained in an
interval [C3, C4].

3.2. The estimate for the sum involving B(·). In this subsection, we
prove

Lemma 3.∑
1≤c≤C1G

∑
a�cXM−1−β

B(m0)

�MY −1 + Y (X19H19M−30−19β)1/10 + (X−1H−11M10+β)1/10 .

P r o o f. From (12) we see that, for any L1, L2,∣∣∣ ∑
L1≤r≤L2

Q(m0 + r)
∣∣∣ � min

(
1
H
,
Y

H2

) ∑
h�H

∣∣∣∣ ∑
L1≤r≤L2

e

(
hX

(m0 + r)β

)∣∣∣∣ .
Writing

(14) m0 =
(
βcX

a

)α

− v , 0 ≤ v < 1 ,

it is easy to verify that
hX

(m0 + r)β
=
hX

mβ
0

− a

c
hr +R(r) ,
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where

R(r) = βhrX

(
1

(m0 + v)β+1
− 1

mβ+1
0

)
+
hX

mβ
0

((
1 +

r

m0

)−β

+
βr

m0
− 1

)
.

For |r| �Mβ+2/(XDc), we have

R′(r) � 1/c , R′′(r) � HXM−β−2 .

Let
ω(r) = max(0, 1 + min(r − L1, L2 − r, 0)) .

(We can assume that L1 and L2 are integers.) By using the Poisson summa-
tion formula and the familiar estimates for trigonometric integrals, we can
obtain, as in Section 7 of [3],∑
L1≤r≤L2

e

(
hX

(m0 + r)β

)
= e

(
hX

mβ
0

) ∑
k≡−ah (mod c)

∫
ω(r)e

(
R(r) +

kr

c

)
dr

�
∑

k≡−ah (mod c)

I(k) ,

where

I(k) =
{

min(c|k|−1, c2k−2) if |k| > C5HD
−1,

(HXM−β−2)−1/2 if |k| ≤ C5HD
−1.

Hence we can deduce that∣∣∣ ∑
L1≤r≤L2

Q(m0 + r)
∣∣∣ � min

(
1
H
,
Y

H2

) ∑
h�H

∑
k≡−ah (mod c)

I(k)

� c−1 min(1, Y H−1)
∑

k

I(k)

� c−1D−1H1/2X−1/2M1+β/2 min(1, Y H−1) .

Note that the bound given above is independent of L1, L2. Thus∑
1≤c≤C1G

∑
a�cXM−β−1

B(m0)

� min(1, Y H−1)N−1H1/2M2+β/2X−1/2D−2

� min(1, Y H−1)N−1H1/2M2+β/2X−1/2(H−2 + Y −2 +H2X2M−2β−4)

� min(1, Y H−1)((X−1H−11M10+β)1/10 + (X−1H9M10+βY −20)1/10

+ (X19M−30−19βH29)1/10) ,

and Lemma 3 follows.

Note that in the above argument we have assumed that Y 2 � X−1Mβ+2,
which ensures that D � 1. This assumption is permissible, for otherwise
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one has M4β+7 � X4, and, by choosing (k, λ) = (2/7, 4/7) in Lemma 2,
one finds that

X−εR(X,M, β) � (XM1−β)2/9M2/9 � (XM1−β)10/33 � (XM1−β)7/22 ,

hence Lemma 1 trivially holds.

3.3. The contribution from the sum involving F (·). In this section, we
shall prove the following estimate.

Lemma 4. Let C be any number such that C2G ≤ C ≤ D. Then

X−ε

(
G

C

∑
c∼C

∑
a�A

(c,a)=1

F (m0)
)
� (XM1−β)7/22

+ (X3M−1−3β)1/4 + (X2M5−2βH−3)1/10

+ Y ((H2X3M−3β−3)1/4 + (H−3X2M−2β)1/5

+ (H3XM−2−β)1/2) + (H9Y −5X4M−4β)1/10 .

It will be clear that Lemma 4 is a consequence of the next two lemmas.

Lemma 5. Suppose C2G ≤ C ≤ D, c ∼ C, a � A, (c, a) = 1. Then

F (m0) =
1

2(ηc)1/2

∑
r�L

∑
k�K

k−1/2e(x1kr + x2r + x3rk
1/2 + x4rk

−1/2)

× χ
(

rk−1/2

2H(ηc)1/2

)
σ

(
k1/2

N(ηc)1/2

)
f

(
rk−1/2

2(ηc)1/2

)
+O(CH1/2Y max(Y −5/2,H−5/2)) +O(min(1, Y H−1)R) ,

where

K = N2CXM−β−2 , L = HCNXM−β−2 ,

κ =
cx

mβ
0

−
[
cx

mβ
0

]
, η =

1
2
β(β + 1)X−α

(
a

cβ

)1+α

,

a is the unique solution of the congruence aa ≡ 1 (mod c) with 1 ≤ a < c,
b = [cX/mβ

0 ], v is as in (14), and

x1 =
a

c
, x2 =

ab+ v

c
, x3 = − 1

(ηc3)1/2
, x4 =

κ

2(ηc3)1/2
,

R = CH−3/2N−1X−1/2M1+β/2 +N−2(H−1X−1M2+β)3/2

+N(HXM−β−2)3/2 + (HXM−4−β)1/2N3 .

P r o o f. The arguments in what follows are clear in view of Sections 8
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to 12 of [3]. For n � N �MX−ε, we have the expansion
hX

(m0 + n)β
=
hX

mβ
0

+ γn+ δn2 + t(n) ,

where

γ = − h
(
a

c
+ vβ(β + 1)

(
a

cβ

)1+α

X−α

)
= −h

(
a

c
+ 2vη

)
,(15)

δ = h
β(β + 1)

2

(
a

cβ

)1+α

X−α = hη � HXM−β−2 ,(16)

t(n) = hnβ(β + 1)v
(
a

cβ

)1+α

X−α

(
1−

(
1− v

(
a

cβX

)α)−β−2)
+ hnβX

(
(β + 1)vm−β−2

0 +
1

(m0 + v)β+1
− 1

mβ+1
0

)
+ hXm−β

0

((
1 +

n

m0

)−β

− 1 +
βn

m0
− β(β + 1)

2

(
n

m0

)2)
+ hn2 1

2
β(β + 1)

×
(
a

cβ

)1+α

X−α

(
− 1 +

(
1− v

(
a

βcX

)α)−β−2)
.

From the expression of t(n), we can obtain the estimates

t(n) � HN3XM−β−3 , t′(n) � HN2XM−β−3 .

Hence, by partial summation, one gets

F (m0) =
∑

h

f(h)χ
(
h

H

)
e

(
hX

mβ
0

) ∑
n

σ

(
n

N

)
e(γn+ δn2 + t(n))(17)

=
∑

h

f(h)χ
(
h

H

)
e

(
hX

mβ
0

)( ∑
n

σ

(
n

N

)
e(γn+ δn2)

+O((HXN6M−β−4)1/2)
)

=
∑

h

f(h)χ
(
h

H

)
e

(
hX

mβ
0

) ∑
n

σ

(
n

N

)
e(γn+ δn2)

+O(min(1, Y H−1)(HXN6M−β−4)1/2) .

From (15), (16), we find that

γ = −(ha+ %)/c , % = −2cvδ � HDXM−β−2 � 1 ,

δcN � GHXNM−β−2 � Mβ+2

XND
HXNM−β−2 � H

D
� 1 ,
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thus, as in Section 9 of [3], we deduce that

(18)
∑

n

σ

(
n

N

)
e(γn+ δn2)

=
(
i

2δ

)1/2 ∑
r≡ah (mod c)
|r|�δCN

(
σ

(
r + %

2δcN

)
e

(
− (r + %)2

4δc2

)

+O(N−2H−1X−1Mβ+2)
)
.

On account of

σ

(
r + %

2δcN

)
= σ

(
r

2δcN

)
+O(N−1) ,

e

(
− (r + %)2

4δc2

)
= e

(
− r2 + 2r%

4δc2

)
+O(HXM−β−2) ,

we get

(19)
∑

n

σ

(
n

N

)
e(γn+ δn2)

=
(

i

2hη

)1/2 ∑
r≡ah (mod c)

σ

(
r

2δcN

)
e

(
− r2 + 2r%

4δc2

)
+O((Hη)−1/2(N−2H−1X−1Mβ+2 +NH2X2M−2β−4)) .

We get, by the Poisson summation formula,∑
h

h−1/2f(h)χ
(
h

H

)
e

(
hX

mβ
0

) ∑
r≡ah (mod c)

σ

(
r

2δcN

)
e

(
− r2 + 2r%

4δc2

)

=
∑
r�L

e

(
r(ab+ v)

c

) ∑
h≡ār (mod c)

σ

(
r

2hcNη

)
h−1/2f(h)

× χ
(
h

H

)
e

(
hκ

c
− r2

4hηc2

)
=

1
c

∑
r�L

e

(
r(ab+ v)

c

) ∑
k

e

(
rka

c

)
J(k − κ, r) ,

where the integral J(·, ·) is given by

J(k− κ, r) =
∞∫

0

ξ−1/2f(ξ)χ
(
ξ

H

)
σ

(
r

2cNηξ

)
e

(
− k − κ

c
ξ − r2

4ηc2
ξ−1

)
dξ .
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If k > C6K or k < C7K, then for r � L, ξ � H, one has∣∣∣∣ r2

4ηc2ξ2
− k − κ

c

∣∣∣∣ � 1
c
(|k|+K) .

Integration by parts, gives, in view of (12), the estimate

J(k − κ, r) � c2H−5/2

(|k|+K)2
,

thus ( ∑
k>C6K

+
∑

k<C7K

)
J(k − κ, r) � C2H−5/2K−1 ,

and, consequently, one obtains

(20)
∑

h

h−1/2f(h)χ
(
h

H

)
e

(
hX

mβ
0

)
×

∑
r≡ah (mod c)

σ

(
r

2ηcNh

)
e

(
− r2 + 2r%

4hc2η

)

=
1
c

∑
r�L,k�K

e

(
r(ab+ v + ak)

c

)
J(k − κ, r) +O(CN−1H−3/2) .

Put

P (ξ) = ξf(ξ)χ
(
ξ

H

)
σ

(
r

2cNηξ

)
.

By (12) and (13), we find that, for ξ � H,

P ′(ξ) � H−1 , P ′′(ξ) � 1
Y H

(max(1, Y H−1))2 ,

P ′′′(ξ) � 1
HY 2

(max(1, Y H−1))3 .

Thus, by taking

a = − r2

4ηc2
, b = −k − κ

c

in Lemma 11.1 of [3], we get

(21) J(k − κ, r)

= (2ηi)1/2 c

r
e

(
− r

c

(
k − κ
ηc

)1/2)
P

(
r

2c

(
c

η(k − κ)

)1/2)
+RP (a, b) ,

where

RP (a, b) � (b−3/2 + a−1/2b−2)(‖P ′′‖ ‖P ′′′‖)1/2(22)
� H−1/2(N2XM−β−2Y )−3/2(max(1, Y H−1))5/2 .
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Since

(23) P

(
r

2c

(
c

η(k − κ)

)1/2)
= P

(
r

2c

(
c

ηk

)1/2)
+O(K−1) ,

the lemma follows from (17) to (23).
Now let

M(a, c) =
∑
r�L

∑
k�K

k−1/2e(x1kr + x2r + x3rk
1/2 + x4rk

−1/2)

×χ
(

rk−1/2

2H(ηc)1/2

)
σ

(
k1/2

N(ηc)1/2

)
f

(
rk−1/2

2(ηc)1/2

)
.

Lemma 6. For any C in the range C2G ≤ C ≤ D, one has
G√

XM−β−2C3

∑
c∼C

∑
a�A

(c,a)=1

|M(a, c)|

� Xε((XM1−β)7/22 + (X3M−1−3β)1/4

+ Y (H2X3M−3−3β)1/4 + (X2M5−2βH−3)1/10) .

P r o o f. First we assume that Y ≤ H ≤ Y 2. We have

χ(ξ) =
+∞∫
−∞

χ̃(it)ξ−it dt , σ(ξ) =
+∞∫
−∞

σ̃(it)ξ−it dt ,

where χ̃, σ̃ are the Millins transforms of χ and σ, such that
+∞∫
−∞

|χ̃(it)| dt� 1 ,
+∞∫
−∞

|σ̃(it)| dt� 1 .

Hence, for some t1 and t2, we have

(24)
∑
c∼C

∑
a�A

(c,a)=1

|M(a, c)| �
∑
c∼C

∑
a�A

(c,a)=1

∣∣∣∣ ∑
k�K

∑
r�L

k−
1
2+ 1

2 i(t1−t2)

×r−it1e(x1kr + x2r + x3rk
1/2 + x4rk

−1/2)f
(

r

2(ηck)1/2

)∣∣∣∣ .
By means of the expression (11) for f(·), we get

(25)
∑
c∼C

∑
a�A

(c,a)=1

|M(a, c)|

� CXM−β−2

(
Y S1(C) +

1
Y

1/2∫
Y −1

S2(C, θ)θ−3 dθ

)
,
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where

S1(C) =
∑
c∼C

∑
a�A

(c,a)=1

∣∣∣ ∑
r�L

∑
k�K

k
1
2+ i

2 (t1−t2)r−2−it1

×e(x1kr + x2r + x3rk
1/2 + x′4rk

−1/2)
∣∣∣ ,

S2(C, θ) =
∑
c∼C

∑
a�A

(c,a)=1

∣∣∣ ∑
r�L

∑
k�K

k
1
2+ i

2 (t1−t2)r−2−it1

×e(x1kr + x2r + x3rk
1/2 + x′′4(θ)rk−1/2)

∣∣∣ ,
x′4 = x4 ±

1
2Y (ηc)1/2

, x′′4(θ) = x4 ±
θ

2(ηc)1/2
.

We proceed to estimate S2(C, θ) by means of Lemma 2.4 of [1]. We
observe that the quantity x1kr + x2r + x3rk

1/2 + x′′4(θ)rk−1/2 is just the
inner product of the two vectors (x1, x2, x3, x

′′
4(θ)) and (kr, r, rk1/2, rk−1/2);

thus Lemma 2.4 of [1] gives

(26) S4
2 (C, θ) � (CAKL−4)2

4∏
j=1

(1 +XjYj)B1B2 ,

with

(27)
X1 = X2 = 1 , X3 = (C3XM−β−2)−1/2 ,

X4 = X4(θ) = (C3XM−β−2)−1/2(1 + Cθ) ,

(28) Y1 = KL , Y2 = L , Y3 = LK1/2 , Y4 = LK−1/2 ,

B1 is the number of pairs (a, c), (a′, c′), with a, a′ � A, c, c′ ∼ C, such that
the following inequalities hold simultaneously:

‖x1(a, c)− x1(a′, c′)‖ � (KL)−1 ,

|x3(a, c)− x3(a′, c′)| � (K1/2L)−1 ,

or, equivalently, ∥∥∥∥ac − a′

c′

∥∥∥∥ � ∆1 ,

∣∣∣∣ cc′ − g(c/a)
g(c′/a′)

∣∣∣∣ � ∆2 ,

where

g(ξ) = ξ(1+α)/3 , ∆1 = (X2C2N3H)−1M2β+4 ,

∆2 = (XHN2)−1Mβ+2 ;
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thus, by Lemma 2.4 of [2], B1 can be estimated as follows:

B1 � CA+ C2A2∆1∆2 +∆2
1A

2C2 + C2 +∆2A
2(29)

� C2XM−β−1(1 +X−2M2β+5H−2N−5 +MH−1N−2)
+H−2N−6X−2M2β+6

� C2XM−β−1 +H−2X−2N−6M2β+6 ;

B2 is the number of 8-tuples (k1, k2, k3, k4, r1, r2, r3, r4) such that
k1, k2, k3, k4 � K, r1, r2, r3, r4 � L, and

r1 + r2 = r3 + r4 , k1r1 + k2r2 = k3r3 + k4r4 ,

k
1/2
1 r1 + k

1/2
2 r2 = k

1/2
3 r3 + k

1/2
4 r4 +O(X−1

3 ) ;

Theorem 14.1 of [3] gives

(30) B2 � (KL)2+ε(1 +HN−1 + CH−1) � (KL)2+ε .

From (26) to (30), we obtain (be sure that XjYj � 1)

X−εS4
2 (C, θ) � (CAL−1)2K5(XC3M−β−2)−1(1 + Cθ)

× (C2XM−β−1 + (HXN3M−β−3)−2)
� (CN2XM−β−3/2)4H−2(1 + Cθ)

× (C2XM−β−1 + (HXN3M−β−3)−2) ,
S2(C, θ) � CN2X1+εM−β−3/2H−1/2(1 + C1/4θ1/4)(31)

× (C2XM−β−1 +H−2X−2M2β+6N−6)1/4 .

As C ≤ D ≤ Y , by taking θ = 1/Y in (31), we get

(32) S1(C) � CN2X1+εM−β−3/2H−1/2

×(C2XM−β−1 +H−2X−2M2β+6N−6)1/4 .

From (25), (31) and (32), we conclude that

G√
XM−β−2C3

∑
c∼C

∑
a�A

(c,a)=1

|M(a, c)|

� Mβ+2

XND

1√
XM−β−2C3

C2X2M−2β−7/2H−1/2Y N2

× (C2XM−β−1 +H−2X−2M2β+6N−6)1/4Xε

� Xε(X3/4M−(3β+3)/4Y H−1/2N +M1−βH−1Y N−1/2D−1/2) ,

and the required estimate follows in view of the values for D, N , Y . For the
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case 1 ≤ H ≤ Y , we use the expression (10) for the function f(·) in (24),
and we get

(33)
∑
c∼C

∑
a�A

(c,a)=1

|M(a, c)|

� Y −1
(
(CXM−β−2)1/2

1/2∫
Y −1

S3(C, θ)θ−2 dθ + CXM−β−2S4(C)
)
,

where

S3(C, θ) =
∑
c∼C

∑
a�A

(c,a)=1

∣∣∣ ∑
r�L

∑
k�K

k
1
2 i(t1−t2)r−1−it1

× e(x1kr + x2r + x3rk
1/2 + x′4(θ)rk

−1/2)
∣∣∣ ,

S4(C) =
∑
c∼C

∑
a�A

(c,a)=1

∣∣∣ ∑
r�L

∑
k�K

k
1
2+ 1

2 i(t1−t2)r−2−it1

× e(x1kr + x2r + x3rk
1/2 + x′′4rk

−1/2)
∣∣∣ ,

x′4(θ) = x4 ±
θ

2(ηc)1/2
,

x′′4 = x4 ±
1

4(ηc)1/2
.

As before, we can deduce that

S3(C, θ) � (C3X3M−3β−5H)1/2N2(1 + Cθ)1/4(34)
× (C2XM−β−1 + (HXM−β−3N3)−2)1/4Xε

and

S4(C) � C5/4N2X1+εM−β−3/2H−1/2(35)
× (C2XM−β−1 +H−2X−2M2β+6N−6)1/4 ,

and the required estimate follows from (33)–(35). The proof of Lemma 6 is
finished.

R e m a r k. As is clear from the above proof, the idea here is to put (10)
or (11) into (24), so that one can separate the variables c and rk−1/2 inside
f(r/(2(ηck)1/2)) suitably.

P r o o f o f L e m m a 4. By Lemmas 5 and 6, we are left with estimating
the contribution from the sum of the error terms given by Lemma 5. We
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have, for C2G ≤ C ≤ D,

G

C

∑
c∼C

∑
a�A

(CY H−2 + CH1/2Y −3/2 + min(1, Y H−1)R)

� M

N
(DYH−2 +DH1/2Y −3/2

+ min(1, Y H−1)(DH−3/2N−1X−1/2Mβ/2+1

+N−2(HXM−β−2)−3/2

+N(HXM−β−2)3/2 +N3(HXM−4−β)1/2))

� Y (H−3X2M−2β)1/5 + (H9X4M−4βY −5)1/10 + (XM−βY )3/10

+M1+3β/10(HX)−3/10 + Y (HX3M−4−3β)1/2

+ Y (H3XM−2−β)1/2 + (XM−β)1/2 ,

and Lemma 4 follows by considering thatH � Y 2, M � Xα, andM4β+7 �
X4 (which is permissible, see the end of Section 3.2).

3.4. P r o o f o f L e m m a 1. By the arguments in Section 3.1, to prove
Lemma 1, it suffices to establish the following estimate for S(H,M,X).

Lemma 7. We have

S(H,M,X) � Xε((XM1−β)7/22 + (X3M−1−3β)1/4) .

P r o o f. From (12) and the exponent pair (1/2, 1/2), we infer that

(36) S(H,M,X) � min(1, Y H−1)(HXM−β)1/2 .

From the starting inequality for S(H,M,X) in Section 3.1, and Lemmas 3
and 4, we get

(37) X−εS(H,M,X)
� (XM1−β)7/22 + (X3M−1−3β)1/4 +R+(H) +R−(H) ,

where

R+(H) = Y (X19H19M−30−19β)1/10 + Y (H2X3M−3β−3)1/4(38)
+ Y (H3XM−2−β)1/2 + (H9Y −5X4M−4β)1/10

and

R−(H) = (X−1H−11M10+β)1/10 + (X2M5−2βH−3)1/10(39)
+ Y (H−3X2M−2β)1/5 .
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From (36) and (37), we have

(40) X−εS(H,M,X) � (XM1−β)7/22 + (X3M−1−3β)1/4 +R+ +R− ,

where, by (38) and (39),

(41) R+ = min(Y (H−1XM−β)1/2 , R+(H)) �
4∑

i=1

Ri ,

(42) R− = min((HXM−β)1/2 , R−(H)) �
7∑

i=5

Ri ,

and (provided that (XM1−β)41 ≤M110, see the end of Section 3.2)

R1 = min(Y (H−1XM−β)1/2, Y (X19H19M−30−19β)1/10)(43)
≤ Y (H−1XM−β)ϕ1/2(X19H19M−30−19β)ω1/10

= Y (XM−β)19/24M−5/8 ≤ (XM1−β)7/22

with (ϕ1, ω1) = (19/24, 5/24),

R2 = min(Y (H−1XM−β)1/2, Y (H2X3M−3β−3)1/4)(44)
≤ Y ((H−1XM−β)1/2)ϕ2((H2X3M−3β−3)1/4)ω2

= Y (X5M−3−5β)1/8 ≤ (XM1−β)7/22

with (ϕ2, ω2) = (1/2, 1/2),

R3 = min(Y (H−1XM−β)1/2, Y (H3XM−2−β)1/2)(45)
≤ Y ((H−1XM−β)1/2)ϕ3((H3XM−2−β)1/2)ω3

= Y (XM−β−1/2)1/2 ≤ (XM1−β)7/22

with (ϕ3, ω3) = (3/4, 1/4),

R4 = min(Y (H−1XM−β)1/2, (H9Y −5X4M−4β)1/10)(46)
≤ ((Y 2H−1XM−β)1/2)ϕ4((H9Y −5X4M−4β)1/10)ω4

= (XYM−β)13/28 ≤ (XM1−β)7/22

with (ϕ4, ω4) = (9/14, 5/14),

R5 = min((HXM−β)1/2, (X−1H−11M10+β)1/10)(47)
≤ ((HXM−β)1/2)ϕ5((X−1H−11M10+β)1/10)ω5

= (XM1−β)5/16

with (ϕ5, ω5) = (11/16, 5/16),

R6 = min((HXM−β)1/2, (X2M5−2βH−3)1/10)(48)
≤ ((HXM−β)1/2)ϕ6((X2M5−2βH−3)1/10)ω6

= (XM1−β)5/16
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with (ϕ6, ω6) = (3/8, 5/8), and

R7 = min((HXM−β)1/2, (Y 5H−3X2M−2β)1/5)(49)
≤ ((HXM−β)1/2)ϕ7((Y 5H−3X2M−2β)1/5)ω7

= (Y XM−β)5/11 ≤ (XM1−β)7/22 ,

with (ϕ7, ω7) = (6/11, 5/11).
Lemma 7 now follows from (40)–(49). The proof of Proposition 2 is

therefore complete.

4. Proof of Theorem 2. By Proposition 2, we find that

(50) R(ξ1/3, 2/3) � ξ7/55+ε ,

and, by choosing (2/7, 4/7) ∈ E(3/2), we can verify that

τ1(3/2) ≤ 28/107 , τ2(3/2) ≤ 28/107 ;

thus

(51) R(ξ1/2, 3/2) � ξ14/107+ε .

In view of (50), (51) and the fact

7/55 = 0.12727 . . . , 14/107 = 0.13084 . . . ,

(4) holds with σ = 14/107, hence Theorem 2 follows from Theorem 1.

Acknowledgements. It was during the International Symposium in
honour of Professor Hua (Beijing, Summer 1988) that Professor Richert
told me about the work [3]. Then Professors Iwaniec and Mozzochi sent me
a reprint of their paper. I would like to express my thanks to all of them.

References

[1] E. Bombier i and H. Iwaniec, On the order of ζ( 1
2 + it), Ann. Scuola Norm. Sup.

Pisa (4) 13 (1986), 449–472.

[2] M. N. Huxley and N. Watt, Exponential sums and the Riemann zeta function,
Proc. London Math. Soc. (3) 57 (1988), 1–24.

[3] H. Iwaniec and C. J. Mozzochi, On the divisor and circle problems, J. Number
Theory 29 (1988), 60–93.

[4] G. Kolesn ik, On the number of Abelian groups of a given order , J. Reine Angew.
Math. 329 (1981), 164–175.

[5] H. Liu, On square-full numbers in short intervals, Acta Math. Sinica (N.S.) (2) 6
(1990), 148–164.

[6] E. Phi l l ips, The zeta-function of Riemann, further developments of van der Cor-
put’s method , Quart. J. Math. Oxford 4 (1933), 209–225.

[7] H. E. Richert, On the difference between consecutive squarefree numbers, J. Lon-
don Math. Soc. 28 (1953), 16–20.



The number of squarefull numbers in an interval 149

[8] P. G. Schmidt, Zur Anzahl quadratvoller Zahlen in kurzen Intervallen, Acta Arith.
46 (1986), 159–164.
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