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1. Introduction. Let Φn(z) =
∑ϕ(n)

m=0 a(m,n)zm be the nth cyclotomic
polynomial. Let

A(n) = max
0≤m≤ϕ(n)

|a(m,n)| and S(n) =
∑

0≤m≤ϕ(n)

|a(m,n)| .

The coefficients a(m,n) and especially A(n) and S(n) have been the subject
of numerous investigations (see [1] and the references given there). Until
recently all these investigations concerned very thin sets of integers n. In [3]
the author could establish a property valid for a set of integers of asymptotic
density 1. Let ε(n) be any function defined for all positive integers such that
limn→∞ ε(n) = 0. Then S(n) ≥ n1+ε(n) for a set of integers of asymptotic
density 1. Here we deal with properties valid for sequences of positive lower
density.

Theorem. For any N > 0, there are c(N) > 0 and x0(N) ≥ 1 such that

card{n ≤ x : A(n) ≥ nN} ≥ c(N)x ,

for all x ≥ x0(N).

2. A certain set of candidates. Let N > 0 be given. In this section
we identify a certain set of integers in which a large subset will later be
shown to have A(n) ≥ nN . To describe the set, we fix a positive odd integer

(2.1) K = K(N)

(to be determined later) and set

L = 20K , δ =
1

100L
, ε =

δ

L2
.

The author was supported in part by an NSF grant.



228 H. Maier

The letter p always denotes prime numbers and ω(m) denotes the number
of distinct prime factors of m. Basic for our construction is the set S.

Let

(2.2) S = S(N,x) = {n = mp1 . . . pL ≤ x : x
1−δ

L −ε < pi ≤ x
1−δ

L +ε ,

µ(m) = µ(n) = 1 , ω(m) ≤ (1 + ε)(log log x)} .

Lemma. For each N , there are effectively computable constants c0(N)
> 0 and x0(N) > 0 such that for all x ≥ x0(N),

cardS ≥ c0(N)x .

P r o o f. Let T = T (x) be the set of n ≤ x which have all of the properties
of elements of S, but the condition µ(n) = 1 fails. This implies that at least
two of the primes p1, . . . , pL are the same. We have

(2.3) cardS ≥ 1
L!

∑′

p1

. . .
∑′

pL

∑
m≤x/p1...pL

µ(m)=1,ω(m)≤(1+ε) log log x

1− card T

where
∑′denotes a sum over pi with x

1−δ
L −ε < pi ≤ x

1−δ
L +ε.

Clearly

card T ≤ x
∑′

p

1
p2

= o(x) for x →∞ .

From [2] and [4] we know that the inner sum in (2.3) is at least x/10p1 . . . pL

for all x ≥ x1(N), where x1(N) is a constant depending only on the choice
of N . Thus

(2.4) cardS ≥ x

10L!

( ∑′1
p

)L

− o(x) for x →∞ .

Now ∑′1
p

= log
(

1− δ

L
+ ε

)
− log

(
1− δ

L
− ε

)
+ O

(
1

log x

)
,

so there is some number c1(N) such that∑′1
p
≥ c1(N) > 0

for all x ≥ x2(N), where x2(N) is a constant depending only on N . The
lemma now follows from (2.4).

3. Investigation of log |Φn(z)| on the unit circle. We start with the
well-known identity

(3.1) Φn(z) =
∏
d |n

(1− zd)µ(n/d)
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for all complex z for which both sides are defined. We write e2πiα = e(α)
and obtain

(3.2) log |Φn(e(α))| =
∑
d |n

µ

(
n

d

)
log |1− e(αd)| .

To show that A(n) is large it would suffice to show there is some α with
log |Φn(e(α))| large. The terms on the right of (3.2) will be large for µ(n/d)
= −1 and ‖αd‖ small. (Here ‖·‖ denotes the distance to the nearest integer.)
Simple choices for the pair (α, d) however do not work because of a certain
cancellation effect which has already been described in [3]. We repeat its
description for the convenience of the reader.

Assume r |n/d, µ(n/d) = −1, µ(n) 6= 0, ω(r) ≥ 2 and αd = k + %
with k an integer, |%| ≤ 1/2. Thus |%| = ‖αd‖. Also assume that |r%| ≤
1/2. For t | r we have e(αdt) = e(t%) = 1 + 2πi%t + O((%t)2). This implies
log |1− e(αdt)| = log(%t) + O(1). Thus∑

t | r

µ

(
n

dt

)
log |1− e(αdt)|

=
∑
t | r

µ

(
n

dt

)
(log % + log t) + O

( ∑
t | r

1
)

= O
( ∑

t | r

1
)

,

where we use∑
t | r

µ(t) = 0 and (for ω(r) ≥ 2)
∑
t | r

µ(t) log t = 0 .

Thus the large contribution µ(n/d) log |1−e(αd)| is cancelled by other terms.
A method to avoid this cancellation effect is to choose α and d such that

for t < t0 we have |%t| ≤ 1/2 but for t ≥ t0, |%t| > 1/2. This leads to
estimates of incomplete convolutions∑

t | r
t<t0

µ

(
n

dt

)
(log % + log t)

which can be made large by an appropriate choice of d, r, t0 and α. For the
remaining sum ∑

t | r
t≥t0

µ

(
n

dt

)
log |1− e(αdt)| ,

we have to show that the terms are small for appropriate choice of α. This
will be done by showing that ‖αdt‖ is not too small.



230 H. Maier

Definitions. Let S(m0) = {n ∈ S : n = m0p1. . . pL}, y0 = x−
1
L (K+1−δ).

For each m0 we define an interval

I(m0) = [m−1
0 + m−1

0 y0,m
−1
0 + 2m−1

0 y0] .

For n ∈ S with n = mp1 . . . pL, set Π(n) = p1p2 . . . pL. If n ∈ S(m0), we
write

(3.3) log |Φn(e(α))| =
∑

0
+

∑
1

+
∑

2
,

where ∑
0

=
∑

d=m0t,t |Π(n)
ω(t)≤K

µ

(
n

d

)
log |1− e(αd)| ,

∑
1

=
∑

m∗ |m0
m∗ 6=m0

µ

(
n

m∗

)
log |1− e(αm∗)| ,

∑
2

=
∑

all other divisors
d |n

µ

(
n

d

)
log |1− e(αd)| .

We shall investigate these three sums for α ∈ I(m0).

4. The main part
∑

0. Let t |Π(n) with ω(t) = K−l, 0 ≤ l ≤ K. Then
t is the product of K − l distinct primes from [x

1−δ
L −ε, x

1−δ
L +ε]. Therefore

(4.1) t ∈ [x
K−l

L (1−δ)−(K−l)ε, x
K−l

L (1−δ)+(K−l)ε] .

Moreover, if α ∈ I(m0), then αm0t ∈ [t + ty0, t + 2ty0], so that {αm0t} ∈
[ty0, 2ty0], where {·} means fractional part. We write {αm0t} = ηty0 with
1 ≤ η ≤ 2. We have e(αm0t) = e({αm0t}) = 1 + 2πiηty0 + O((ty0)2) and
thus

(4.2) log |1− e(αm0t)| = log ty0 + O(1).

From (4.1) and the definition of y0 we get

(4.3) ty0 ∈ [x−
l+1
L −(K−l−1) δ

L−(K−l)ε, x−
l+1
L −(K−l−1) δ

L +(K−l)ε].

For l = 0, that is, for ω(t) = K, we use the upper bound in (4.3) and
together with (4.2) we get

log |1− e(αm0t)| ≤
(
− 1

L
− (K − 1)

δ

L
+ Kε

)
log x + O(1) ≤ − 1

L
log x ,

for x sufficiently large. There are
(

L
K

)
divisors t |Π(n) with ω(t) = K and
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for each we have µ(n/(m0t)) = −1. Thus we get

(4.4)
∑

t |Π(n)
ω(t)=K

µ

(
n

m0t

)
log |1− e(αm0t)| ≥

(
L

K

)
L−1 log x .

For 1 ≤ l ≤ K, that is, ω(t) = K − l, from (4.2) and (4.3) we get

| log |1−e(αm0t)| | ≤
(

l + 1
L

+(K−l−1)
δ

L
+(K−l)ε

)
log x+O(1) ≤ 3l

L
log x ,

for x sufficiently large. Since there are
(

L
K−l

)
divisors t |Π(n) with ω(t) =

K − l we get

(4.5)
∣∣∣∣ ∑

t |Π(n)
ω(t)=K−l

µ

(
n

m0t

)
log |1− e(αm0t)|

∣∣∣∣ ≤ 3l

L

(
L

K − l

)
log x .

We study the ratio of these upper bounds for consecutive l-values. For l ≥ 1,

3(l + 1)
L

(
L

K − l − 1

)/
3l

L

(
L

K − l

)
=

(
1 +

1
l

)
K − l

L− (K − l) + 1

<
2K

L−K
=

2
19

.

From this, (4.4) and (4.5) we obtain for x sufficiently large∑
0
≥ 1

L

(
L

K

)
log x− 3

L

(
L

K − 1

)
log x

∞∑
i=0

(
2
19

)i

(4.6)

=
1
L

(
L

K

)
log x− 57

17
· 1
L

(
L

K − 1

)
log x

=
(

1− 57
17

K

L−K + 1

)
1
L

(
L

K

)
log x >

14
17L

(
L

K

)
log x .

5. The divisors of m0. Our aim now is to show that
∑

1 is small for
n ∈ S, α ∈ I(m0). By definition we have∑

1
=

∑
m∗ |m0
m∗ 6=m0

µ

(
n

m∗

)
log |1− e(αm∗)| .

Note that for α ∈ I(m0) and m∗ |m0, m∗ < m0 we have 0 < αm∗ < 1.
Thus

e(αm∗) = 1 + 2πiαm∗ + O((αm∗)2) .

From this we get

|1− e(αm∗)| = 2παm∗(1 + O(αm∗))
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and so
log |1− e(αm∗)| = log m∗ + log α + O(1) .

Thus for all n ∈ S,∑
1

= µ

(
n

m0

) ∑
m∗ |m0
m∗ 6=m0

µ

(
m0

m∗

)
(log m∗ + log α) + O((log x)(1+ε) log 2) ,

since ω(m0) ≤ (1 + ε) log log x.
We have (since µ(m0) = 1 implies m0 is not a prime or prime power)∑

m∗ |m0
m∗ 6=m0

µ

(
m0

m∗

)
log m∗ = − log m0

and ∑
m∗ |m0
m∗ 6=m0

µ

(
m0

m∗

)
log α = − log α .

Since log(αm0) � 1, this yields

(5.1)
∑

1
� (log x)(1+ε) log 2 for n ∈ S , α ∈ I(m0) .

6. The divisors d = m∗t with ω(t) ≤ K. The remaining divisors
in

∑
2 are of two kinds. The first kind are of the form m∗t with m∗ |m0,

m∗ < m0, t |Π(n) and 1 ≤ ω(t) ≤ K. We treat the contribution of these
divisors in this section, leaving the treatment for the remaining divisors,
which are of the form m∗t with ω(t) > K, for the final section.

Let C > 0 be a constant that we will soon choose as a large absolute
constant. If we have ‖m−1

0 m∗t‖ > 2(log x)−C for ω(t) ≤ K, then we also
have

(6.1) ‖αm∗t‖ ≥ (log x)−C

for all α ∈ I(m0). Indeed,

|αm∗t−m−1
0 m∗t| ≤ 2m−1

0 y0m
∗t ≤ y0t = o((log x)−C)

for any C.
We study the exceptional set

(6.2) SE(m0) = {n ∈ S(m0) : ‖m−1
0 m∗t‖ ≤ 2(log x)−C

for some m∗ |m0 , m∗ < m0 , t |Π(n) , 1 ≤ ω(t) ≤ K} .

We shall replace the inequality with a congruence. Let n ∈ SE and suppose
‖m−1

0 m∗t‖ ≤ 2(log x)−C . Let m−1
0 m∗t = k + % where k is an integer and
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|%| ≤ 2(log x)−C . Then

t =
m0

m∗ k +
m0

m∗ % .

Note that r := (m0/m∗)% is an integer. Thus

(6.3) t ≡ r mod
m0

m∗ , |r| ≤ 2
m0

m∗ (log x)−C .

We estimate the cardinality of SE(m0) by writing SE(m0) as a union
of subsets. For a given m∗ |m0 with m∗ < m0 and a given integer g with
1 ≤ g ≤ K, let

SE(m0,m
∗, g) = {n ∈ S(m0) : ‖m−1

0 m∗t‖ ≤ 2(log x)−C

for some t |Π(n) with ω(t) = g} .

Note that if n = m0tu ∈ SE(m0,m
∗, g) then u ≤ x/(m0t) and

(6.4) xg( 1−δ
L −ε) < t ≤ xg( 1−δ

L +ε)

and (6.3) holds for some integer r. Thus

|SE(m0,m
∗, g)| ≤

∑∗

t

∑
u≤x/(m0t)

1 ≤ x

m0

∑∗

t

1
t

where
∑∗ denotes a sum over t satisfying (6.4) and satisfying (6.3) for some

integer r. Since t |Π(n) and ω(t) ≥ 1 one has t > m0/m∗, so that possible
solutions of (6.3) with t ≤ m0/m∗ do not occur in the sum

∑∗. Thus for a
fixed r, we have ∑∗(r)

t

1
t
� gε log x

m0/m∗

uniformly in r. Since each prime divisor of t exceeds m0/m∗, we see that
r = 0 is not a possibility in (6.3) and so the set of possible values of r is
empty when 2(m0/m∗)(log x)−C < 1. Therefore

|SE(m0,m
∗, g)| � gε

m∗

m2
0

x log x
∑

|r|≤2|m0/m∗|(log x)−C

1 .

Thus ∑
m0

|SE(m0)| ≤
∑
m0

∑
m∗ |m0

K∑
g=1

|SE(m0,m
∗, g)|

�
∑
m0

∑
m∗ |m0

K2ε

m0
x(log x)1−C

<
∑
m0

τ(m0)
m0

x(log x)1−C � x(log x)3−C .
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7. The larger divisors. Here we study the divisors d = m∗t with
m∗ |m0, t |Π(n), ω(t) > K. In contrast to the last section we here have to
remove exceptional α-values from I(m0).

Given a fixed triplet (m0,m
∗, t) with m∗ |m0, t |Π(n), ω(t) > K, we

want an estimate for λE(m0,m
∗, t), where E(m0,m

∗, t) = {α ∈ I(m0) :
‖m∗tα‖ ≤ (log x)−C}, and λ denotes the Lebesgue measure. We have

λE(m0,m
∗, t) = λ

{
α ∈ I(m0) :

α ∈
[

k

m∗t
− (log x)−C

m∗t
,

k

m∗t
+

(log x)−C

m∗t

]
for some k ∈ Z

}
.

We determine the number of integers k for which

(7.1)
[

k

m∗t
− (log x)−C

m∗t
,

k

m∗t
+

(log x)−C

m∗t

]
∩ I(m0) 6= ∅ .

From the definition of I(m0), such k-values satisfy

m∗t

m0
+

y0m
∗t

m0
− (log x)−C ≤ k ≤ m∗t

m0
+

2y0m
∗t

m0
+ (log x)−C .

Since ω(t) > K, we have y0m
∗t/m0 → ∞ as x → ∞. Thus for large x,

the number of integers k satisfying (7.1) is at most 2y0m
∗t/m0. Thus for

large x, we have

(7.2) λE(m0,m
∗, t) ≤ 2y0

m0(log x)C
.

For n ∈ S, let

J(n) = I(m0)−
⋃

m∗ |m0
t |Π(n),ω(t)>K

E(m0,m
∗, t) .

Thus from (7.2) we have

λJ(n) ≥ y0

m0
−

∑
m∗ |m0

t |Π(n),ω(t)>K

2y0

m0(log x)C

≥ y0

m0

(
1− 2τ(m0)2L

(log x)C

)
≥ y0

m0
(1− 2L+1(log x)1−C)

from the definition of S. Thus for x large, we have J(n) 6= ∅.
We now use the results of this section and the previous section to es-

timate
∑

2. Let n ∈ S − SE and let α ∈ J(n). Then from (6.1) and the
definition of J(n), we have for each divisor d of n in the sum

∑
2 that

‖αd‖ ≥ (log x)−C .



Cyclotomic polynomials with large coefficients 235

Thus for these values of d and α we have

|log |1− e(αd)| | � log log x .

Recalling the definition of
∑

2 in (3.3) we conclude that∑
2
� τ(m0)2L log log x � (log x)(1+2ε) log 2 .

Combining this estimate with our estimates (4.6) and (5.1) for
∑

0 and
∑

1,
we have for x sufficiently large, n ∈ S − SE , and α ∈ J(n),

log(nA(n)) ≥ log S(n) ≥ log |Φn(e(α))| > 1
2

(
L

K

)
L−1 log x .

From Sections 2 and 6 we have |S − SE | �K x for any fixed K. Thus by
choosing K sufficiently large, we have the Theorem.
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