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1. Introduction. The aim of this paper is to supply a still better result
for the problem considered in [2]. Let A(x) denote the number of distinct
abelian groups (up to isomorphism) of orders not exceeding x. We shall
prove

Theorem 1. For any ε > 0,

A(x) = C1x + C2x
1/2 + C3x

1/3 + O(x50/199+ε),

where C1, C2 and C3 are constants given on page 261 of [2].

Note that 50/199 = 0.25125 . . . , thus improving our previous exponent
40/159 = 0.25157 . . . obtained in [2].

To prove Theorem 1, we shall proceed along the line of approach pre-
sented in [2]. The new tool here is an improved version of a result about
enumerating certain lattice points due to E. Fouvry and H. Iwaniec (Propo-
sition 2 of [1], which was listed as Lemma 6 in [2]).

2. A result about enumerating certain lattice points. In this
section we prove the following improved version of Proposition 2 of [1].

Theorem 2. Let Q ≥ 1, m ∼ M , q ∼ Q, let α (6= 0, 1) be a real number ,
t(m, q) = (m + q)α − (m − q)α, T = Mα−1Q, and let B(M,Q,∆) be the
number of lattice points (m,m1, q, q1) such that

|t(m, q)− t(m1, q1)| < ∆T.

If Q < εM3/4, where ε is a sufficiently small positive number , we have

B(M,Q,∆) � (MQ + ∆M2Q2 + Q8/3)(log 2M)4,

where the � constant depends at most on α and ε.
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It is obvious that Theorem 2 follows from the next two lemmas.

Lemma 1. Let B1(M,Q,∆1) be the number of lattice points (m1, q, q1)
such that m1 ∼ M , q, q1 ∼ Q and∥∥∥∥(

q1

q

)β

m1 + d1m
−1
1 f(q, q1) + m−3

1 g(q, q1)
∥∥∥∥ ≤ ε−1∆1,

where

‖x‖ = min
n∈Z

|n− x|, ∆1 = ∆M + Q6M−5, β =
1

α− 1
,

f(q, q1) = q2

(
q

q1

)β

− q2
1

(
q1

q

)β

,

g(q, q1) = d2

(
q4

(
q

q1

)3β

− q4
1

(
q1

q

)β)
− d2

1q
2

(
q2
1

(
q

q1

)β

− q2

(
q

q1

)3β)
,

and d1, d2 are the constants given by the Taylor expansion(
(1 + u)α − (1− u)α

2αu

)β

= 1 + d1u
2 + d2u

4 + . . . , 0 < u < 1.

Then, for Q < M5/6−ε,

B(M,Q,∆) � B1(M,Q, ∆1).

P r o o f. We assume that ∆M is small, for otherwise Theorem 2 follows
immediately from the inequality

(1) |t(m, q)− t(m1, q1)| < ∆T.

From (1) it is easy to see that the Taylor expansion implies

(2) m

(
1 + d1

(
q

m

)2

+ d2

(
q

m

)4)
−

(
q1

q

)β

m1

(
1 + d1

(
q1

m1

)2

+ d2

(
q1

m1

)4)
� ∆1.

From (2) we get

(3) m =
(

q1

q

)β

m1(1 + O(∆ + Q2M−2)),

and

(4) m−
(

q1

q

)β

m1 + d1

(
q2m−1 − q2

1m−1
1

(
q1

q

)β)
= O(∆M + Q4M−3).
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By substituting (3) into (4), we get a more precise expansion

(5) m = m1

(
q1

q

)β

+d1m
−1
1

(
q2
1

(
q1

q

)β

−q2

(
q

q1

)β)
+O(∆M +Q4M−3).

We now use (3) to expand d2q
4m−3 and use (5) to expand d1q

2m−1, thereby
obtaining, in view of (2), the estimate

(6) m−
(

q1

q

)β

m1 + d1m
−1
1 f(q, q1) + m−3

1 g(q, q1) � ∆1.

Lemma 1 follows from (6) and the fact that ∆1 is small.

Lemma 2. Let B1(M,Q,∆1) be defined in Lemma 1 and Q < εM3/4.
Then

B1(M,Q,∆1) � (MQ + ∆M2Q2 + Q8/3)(log 2M)4.

P r o o f. Let ∆2 = ∆M + M−1Q2/3. Clearly,

B1(M,Q,∆1) ≤ B1(M,Q,∆2).

For fixed (q, q1), the number of lattice points counted in B1(M,Q,∆2) is
(with S = ε(4∆2)−1)

(7) � S−1
∑

1≤s≤S

∣∣∣ ∑
m∼M

e(Asm + Bsm−1 + Csm−3)
∣∣∣ + ∆2M,

by virtue of the identity∑
|s|<S

(
1− |s|

S

)
e(sx) =

1− {S}
S

(
sinπx[S]
sinπx

)2

+
{S}
S

(
sinπx[S + 1]

sinπx

)2

;

in (7), A, B and C are given by

A =
(

q1

q

)β

, B = d1f(q, q1), C = g(q, q1).

Under our assumption, the innermost sum in (7) is

(8)
2M∫

M

e(±‖As‖ξ + Bsξ−1 + Csξ−3) dξ + O(1) = I + O(1), say,

by using the truncated Poisson’s summation formula.
If ‖As‖ ≥ 3s|B|M−2, then by partial integration,

(9) I � ‖sA‖−1;

and if ‖As‖ < 3s|B|M−2, then we apply the well-known second derivative
estimate to get

(10) I � (s|B|)−1/2M3/2 for B 6= 0,
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where we have used the fact that |C| � |B|Q2. From (7)–(10) we conclude
that

(11) B1(M,Q,∆2) � ∆2MQ2 + E1(M,Q,∆2) + E2(M,Q,∆2),

where

E1(M,Q,∆2) = ∆2

∑
1≤s≤S

∑
q,q1∼Q

min(M, 1/‖As‖),

E2(M,Q,∆2) = ∆2

∑
1≤s≤S

∑
q,q1∼Q

‖As‖<3s|B|M−2

min(M, (s|B|)−1/2M3/2).

Ei(M,Q,∆2) (i = 1, 2) can be estimated just as Di(M,Q, ∆) on page 320
of [1], and we have

(12) E1(M,Q,∆2) � MQ(log 2M)3,

(13) E2(M,Q,∆2) � (MQ + (∆2M)−1/2Q3)(log 2M)4.

Lemma 2 follows from (11)–(13).

3. A bound for a kind of triple exponential sums. By means of
Theorem 2, we can sharpen Lemma A of [2] as follows. We have

Theorem 3. Let H ≥ 1, X ≥ 1, Y ≥ 1000; let α, β and γ be real
numbers such that αγ(γ−1)(β−1) 6= 0, and A > C(α, β, γ) > 0, f(h, x, y) =
Ahαxβyγ . Define

S(H,X, Y ) =
∑

(h,x,y)∈D

C1(h, x)C2(y)e(f(h, x, y)),

where D is a region contained in the rectangle

{(h, x, y) | h ∼ H, x ∼ X, y ∼ Y }
such that for any fixed pair (h0, x0), the intersection D∩{(h0, x0, y) | y ∼ Y }
has at most O(1) segments. Also, suppose |C1(h, x)| ≤ 1, |C2(y)| ≤ 1,
F = AHαXβY γ � Y . Then

L−3S(H,X, Y ) � 22
√

(HX)19Y 13F 3 + HXY 5/8(1 + Y 7F−4)1/16(14)

+
32
√

(HX)29Y 28F−2M5 +
4
√

(HX)3Y 4M

≡ E1,

where L = log(AHXY + 2), M = max(1, FY −2).

P r o o f. We have

S(H,X, Y ) �
∑
h∼H

∑
x∼X

∣∣∣ ∑
y∈I(h,x)

C2(y)e(f(h, x, y))
∣∣∣,
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where I(h, x) is some subinterval of (Y, 2Y ]. From Lemma 1 of [2], we get

L−1S(H,X, Y ) �
∑
h∼H

∑
x∼X

∣∣∣ ∑
y∼Y

C(y, θ)e(f(h, x, y))
∣∣∣,

where C(y, θ) = C2(y)e(θy) for some real number θ (θ is independent of h,
x, and y). We consider the expression

R(q) = (HXY )2q−1 + (HX)2(Y 5F−1Mq−1)1/2(15)

+
6
√

(HX)9Y 3F 3q5 + (HX)2Y q1/3 +
√

(HX)3Y 4M.

By Lemma 2 of [2], we can choose a Q ∈ (0, εY 3/4] such that

R(Q) � 11
√

(HX)19Y 13F 3 + (HX)2Y 5/4 + (HX)2(F−4M4Y 17)1/8(16)

+ (HX)2(Y 8F−1M)1/5 +
16
√

(HX)29Y 28F−2M5

+
√

(HX)3Y 4M � E2
1

(see (14)). If Q ≤ 100, then we trivially have

L−1S(H,X, Y ) � HXY Q−1/2 �
√

R(Q) � E1.

Now we assume that Q > 100. By Cauchy’s inequality and Lemma 3 of [2],
we get

(17) L−3|S(H,X, Y )|2 � (HXY )2Q−1 + (HXY )Q−1|S1|,

where

S1 =
∑

(q,y,h,x)∈D1

C(y + q, θ)C(y − q, θ)e(Ahαxβt(y, q)),

t(y, q) = (y + q)γ − (y − q)γ ,

D1 = D1(Q1) = {(q, y, h, x) | y + q, y − q ∼ Y, q ∼ Q1, h ∼ H, x ∼ X}
for some Q1 with 1 ≤ 2Q1 ≤ Q/2. By Lemma 4 of [2] we have (note that
F � Y by our assumption)

(18) |S1|2 � FY −1Q1A1A2,

where A1 is the number of lattice points (h, x, h1, x1) such that

|hαxβ − hα
1 xβ

1 | � A−1Q−1
1 Y 1−γ

with h, h1 ∼ H, x, x1 ∼ X, which is estimated by Lemma 5 of [2] as

(19) A1 � (HX + H2X2Y Q−1
1 F−1)L2;

and A2 stands for the number of lattice points (q, y, q1, y1) such that

|t(y, q)− t(y1, q1)| � (AHαXβ)−1
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with Y/2 < y, y1 < 3Y , q, q1 ∼ Q1. Recall that Q1 ≤ Q/4 < ε Y 3/4.
Theorem 2 gives (with ∆ = Q−1

1 Y F−1)

(20) A2 � (Q1Y + Q1Y
3F−1 + Q

8/3
1 )L4.

From (17)–(20), we deduce that (see (15))

(21) L−6|S(H,X, Y )|2 � (HXY )2Q−1

+HXY Q−1(FHXQ(Q + HXY F−1)(1 + Y 2F−1 + Q5/3Y −1))1/2 � R(Q).

Theorem 3 follows from (21) and (16).

4. The proof of Theorem 1. Put

θ = 50/199, S1,2,3 =
∑

mn≤x1/3

m>n

Ψ(xm−2n−3), Ψ(u) = u− [u]− 1/2.

By Lemmas 7, 8 and Theorems 1, 2 of [2], to prove Theorem 1 it is sufficient
to establish the following lemma.

Lemma B.
S1,2,3 � xθ+ε.

Obviously, we have

(22) S1,2,3 =
∑

(M,N)

S1,2,3(M,N) + O(xθ+ε),

where M and N run through the sequences {2−jx1/3 | j = 0, 1, . . .} and
{2−kx1/3 | k = 0, 1, . . .} respectively, such that

(23) MN ≥ xθ, 2M ≥ N, MN ≤ x1/3,

and
S1,2,3(M,N) =

∑
(m,n)∈D

Ψ(xm−2n−3),

(24) D = D(M,N) = {(m,n) | m ∼ M, n ∼ N, mn ≤ x1/3, m > n}.
By means of the standard expansion for the function Ψ( · ), we get, for any
parameter K, K ∈ [100,MN ], the inequality

(log K)−1S1,2,3(M,N)

� MNK−1 +
∑

1≤h≤K2

min
(

1
h

,
K

h2

)∣∣∣ ∑
(m,n)∈D

e(f(h, m, n))
∣∣∣,

where f(h, m, n) = hxm−2n−3. Thus, for some H ∈ [1,K2], we have

(25) x−εS1,2,3(M,N) � MNK−1 + min(1,K/H)Φ1,2,3(H,M,N),
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where

(26) Φ1,2,3(H,M,N) = H−1
∑
h∼H

∣∣∣ ∑
(m,n)∈D

e(f(h, m, n))
∣∣∣

(we have adopted the notations on pp. 266–267 of [2]). We now use our
Theorem 3 three times to estimate the sum S1,2,3(M,N). Lemma B will
then be proved by invoking (49) of [2].

Lemma 3.

x−εS1,2,3(M,N) � 30
√

x11M−11N−12 +
12
√

x4M−4N−3

+
45
√

x16M−16N−17 +
5
√

x2M−2N−3 + x1/4 ≡ E2.

P r o o f. We use Lemma 10 of [2] to the summation over m, and obtain,
in view of (23),

(27)
∑

(m,n)∈D

e(f(h, m, n))

= c1(hx)1/6
∑

(n,u)∈D1

(n3u4)−1/6e(g(h, n, u)) + O(x1/4),

where

g(h, n, u) = c2(xhn−3u2)1/3,

D1 = {(n, u) | un6 ≤ c3hx, h ≤ c4u, n ∼ N, c5 ≤ hx/(n3uM3) ≤ c6},
with ci (1 ≤ i ≤ 6) being some absolute constants. From (26) and (27), we
find that

(28) x−ε/2Φ1,2,3(H,M,N)

� M(H3G)−1/2
∑
h∼H

∣∣∣ ∑
(n,u)∈D1

C(n)C̃(u)e(g(h, n, u))
∣∣∣ + x1/4,

where |C(n)| ≤ 1, |C̃(u)| ≤ 1, and G = xM−2N−3. We apply Theorem 3
with (H,X, Y ) ' (H,GH/M, N) to get (note that (n, u) ∈ D1 implies
u ' GH/M)

(29) x−ε/2
∑
h∼H

∣∣∣ ∑
(n,u)∈D1

C(n)C̃(u)e(g(h, n, u))
∣∣∣

� 22
√

H41G22M−19N13 + H2GM−1N5/8 +
16
√

H28G12M−16N11

+
32
√

H56G27M−29N28 +
32
√

H61G32M−29N18

+
4
√

H6G3M−3N4 +
4
√

H7G4M−3N2.
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From (25), (26), (28) and (29), we obtain

x−εS1,2,3(M,N) � MNK−1 +
22
√

K8x11M−19N−20(30)

+
8
√

K4x4M−8N−7 +
16
√

K4x4M−8N−1

+
32
√

K8x11M−19N−5 +
32
√

K13x16M−29N−30

+
4
√

Kx2M−3N−4 + x1/4

= E2(K) + x1/4, say.

By Lemma 2 of [2], there exists a K0 ∈ [0,MN ] such that

(31) E2(K0) � E2.

If K0 ≥ 100, we put K = K0 in (30), and Lemma 3 follows from (30) and
(31); if K0 < 100, we trivially get

(32) S1,2,3(M,N) � MNK−1
0 � E2(K0),

and Lemma 3 follows from (32) and (31).

Lemma 4. For K = MNx−θ, 1 ≤ H ≤ K2, we have

x−εΦ1,2,3(H,M,N) � 22
√

x3M7N10 + NM5/8 +
16
√

H−4x−4M25N28

+
32
√

H−5x−2M32N35 +
32
√

x3M12N20

+
4
√

H−1M4N3 + x1/4.

P r o o f. Applying Theorem 3 to the sum HΦ1,2,3(H,M,N) directly, with
(H,X, Y ) ' (H,N, M), we get the required estimate.

Lemma 5. For K = MNx−θ, 1 ≤ H ≤ K2, we have

x−ε min(1,K/H)Φ1,2,3(H,M,N)

� 22
√

x5−2θMN6 +
8
√

x1−θM2N6 +
32
√

x5−2θM6N16 +
32
√

x4M9N16

+
52
√

x8M12N20 + min(
4
√

x2−θM−3N−2,
22
√

x3M7N10) + xθ.

P r o o f. Applying Theorem 3 to the triple exponential sum of (28), with
(H,X, Y ) ' (H,N, GH/M), we get

(33) x−ε/2
∑
h∼H

∣∣∣ ∑
(n,u)∈D1

C(n)C̃(u)e(g(h, n, u))
∣∣∣

� 22
√

H35G16M−13N19 +
8
√

H13G5M−5N8 +
16
√

H29G13M−17N16

+
32
√

H55G26M−28N29 +
32
√

H50G21M−18N29

+
4
√

H7G4M−4N3 +
4
√

H6G3M−2N−3 + x1/4.
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From (28) and (33), we obtain

x−εΦ1,2,3(H,M,N) � 22
√

H2x5M−1N4 +
8
√

HxMN5 +
16
√

H5x5M−11N

+
32
√

H7x10M−16N−1 +
32
√

H2x5M4N14

+
4
√

Hx2M−4N−3 + x1/4,

which, in conjunction with Lemma 4 and (23), gives

(34) x−ε min(1,K/H)Φ1,2,3(H,M,N)

� 22
√

x5−2θMN6 +
8
√

x1−θM2N6 +
32
√

x5−2θM6N16

+ min(
4
√

x2HM−4N−3,
16
√

H−4x−4M25N28)

+ min(
4
√

x2HM−4N−3,
32
√

H−5x−2M32N35)

+ min(
4
√

x2HM−4N−3,
4
√

H−1M4N3)

+ min(
4
√

x2−θM−3N−2,
22
√

x3M7N10)

+ min(
4
√

x2−θM−3N−2, NM5/8)

+ min(
4
√

x2−θM−3N−2,
32
√

x3M12N20) + xθ.

Obviously,

(35) min(
4
√

x2HM−4N−3,
16
√

H−4x−4M25N28) ≤ 32
√

x4M9N16,

(36) min(
4
√

x2HM−4N−3,
32
√

H−5x−2M32N35) ≤ 52
√

x8M12N20,

(37) min(
4
√

x2HM−4N−3,
4
√

H−1M4N3) ≤ x1/4;

and, in view of (23),

(38) min(
4
√

x2−θM−3N−2, NM5/8)

� min(
4
√

x2−θM−3N−2, (M3N2)13/40) ≤ x(26−13θ)/92 < xθ ,

(39) min(
4
√

x2−θM−3N−2,
32
√

x3M12N20)

� min(
4
√

x2−θM−3N−2,
32
√

x3(M3N2)32/5) ≤ x(79−32θ)/288 < xθ.

From (34) to (39), Lemma 5 follows.

P r o o f o f L e m m a B. By (49) of [2], we have

(40) x−εS1,2,3(M,N) � 8
√

x2MN−1.
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By (25), Lemma 5 and (40), we get

x−εS1,2,3(M,N) � 22
√

x5−2θMN6 +
8
√

x1−θM2N6 +
32
√

x5−2θM6N16

+
32
√

x4M9N16 +
52
√

x8M12N20 + R1(M,N) + xθ,

where

R1(M,N) = min(
22
√

x3M7N10,
4
√

x2−θM−3N−2,
8
√

x2MN−1)

≤ (
22
√

x3M7N10)α1(
4
√

x2−θM−3N−2)β1(
8
√

x2MN−1)γ1

= x(81−17θ)/306 < xθ,

with (α1, β1, γ1) = (110/306, 68/306, 128/306); thus

x−εS1,2,3(M,N) � 22
√

x5−2θMN6 +
8
√

x1−θM2N6(41)

+
32
√

x5−2θM6N16 +
32
√

x4M9N16

+
52
√

x8M12N20 + xθ.

If MN ≤ x0.3, then (41) gives

(42) x−εS1,2,3(M,N) � 22
√

x5−2θMN6 + xθ.

From Lemma 3, (40) and (42), we deduce that

(43) x−εS1,2,3(M,N) �
5∑

i=2

Ri(M,N) + xθ,

where

R2(M,N) = min(
30
√

x11M−11N−12,
22
√

x5−2θMN6,
8
√

x2MN−1)(44)

≤ (
30
√

x11M−11N−12)α2(
22
√

x5−2θMN6)β2(
8
√

x2MN−1)γ2

= x(150−23θ)/574 = xθ,

with (α2, β2, γ2) = (105/574, 253/574, 216/574);

R3(M,N) = min(
12
√

x4M−4N−3,
22
√

x5−2θMN6)(45)

� (
12
√

x4M−4N−3)12/34(
22
√

x5−2θM4N3)22/34

= x(9−2θ)/34 < xθ;

R4(M,N) = min(
45
√

x16M−16N−17,
22
√

x5−2θMN6)(46)

� (
45
√

x16M−16N−17)105/347(
22
√

x5−2θ(M16N17)7/33)242/347

= x(277−66θ)/1041 < xθ;

R5(M,N)(47)

= min(
5
√

x2M−2N−3,
22
√

x5−2θMN6,
8
√

x2MN−1)
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≤ (
5
√

x2M−2N−3)35/217(
22
√

x5−2θMN6)110/217(
8
√

x2MN−1)72/217

= x(57−10θ)/217 < xθ.

From (43) to (47), we have

(48) x−εS1,2,3(M,N) � xθ.

If MN > x0.3, from Lemma 3 we find

(49) x−εS1,2,3(M,N) � 30
√

x11M−11N−12 +
5
√

x2M−2N−3 + xθ.

From (40), (41) and (49), we deduce that

(50) x−εS1,2,3(M,N) �
15∑

i=6

Ri(M,N) + xθ,

where, by (44) and (47),

(51) R6(M,N) = R2(M,N) ≤ xθ, R7(M,N) = R5(M,N) < xθ ,

(52) R8(M,N) = min(
30
√

x11M−11N−12,
8
√

x1−θM2N6)

� (
30
√

x11M−11N−12)30/53(
8
√

x1−θ(M11N12)8/23)23/53

= x(111−23θ)/424 < xθ;

R9(M,N) = min(
5
√

x2M−2N−3,
8
√

x1−θM2N6)(53)

� (
5
√

x2M−2N−3)1/2(
8
√

x1−θ(M2N3)8/5)1/2

= x(21−5θ)/80 < xθ;

(54) R10(M,N)

= min(
30
√

x11M−11N−12,
32
√

x5−2θM6N16)

� (
30
√

x11M−11N−12)165/349(
32
√

x5−2θ(M11N12)22/23)184/349

= x(357−46θ)/1396 < xθ;

R11(M,N) = min(
5
√

x2M−2N−3,
32
√

x5−2θM6N16)(55)

� (
5
√

x2M−2N−3)22/54(
32
√

x5−2θ(M2N3)22/5)32/54

= x(69−10θ)/270 < xθ;

R12(M,N) = min(
30
√

x11M−11N−12,
32
√

x4M9N16)(56)

� ((
30
√

x11M−11N−12)750(
32
√

x4(M11N12)25/23)736)1/1486

= x367/1486;
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R13(M,N) = min(
5
√

x2M−2N−3,
32
√

x4M9N16)(57)

� ((
5
√

x2M−2N−3)25(
32
√

x4(M2N3)5)32)1/57 = x14/57;

R14(M,N) = min(
30
√

x11M−11N−12,
26
√

x4M6N10)(58)

� ((
30
√

x11M−11N−12)240(
13
√

x2(M11N12)8/23)299)1/539

= x134/539;

R15(M,N) = min(
5
√

x2M−2N−3,
13
√

x2M3N5)(59)

� ((
5
√

x2M−2N−3)40(
13
√

x2(M2N3)8/5)65)1/105 = x26/105.

From (50) to (59), we have

(60) x−εS1,2,3(M,N) � xθ.

Lemma B follows from (48) and (60).

5. Concluding remarks. It is clear that our result 50/199 is closely
connected with the term Q8/3 in Theorem 2. This term actually comes from
the method given in Lemmas 3 and 4 of [1]. The fraction 50/199 can be
reduced whenever Q8/3 can be reduced in our Theorem 2. If, for example,
Q8/3 could be “omitted”, then one may attain the expected exponent 1/4,
in place of 50/199.
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