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1. Introduction. It is well-known [1, 7] that with every quadratic
field extension F [z] : F , z2 = g, there is associated an exact triangle of
W (F )-modules

W (F )
↗s∗

W (F [z])
y〈1,−g〉

↖i∗

W (F )

The residue homomorphisms associated with any discrete valuation v on F
induce the morphisms of this diagram to an exact triangle of group rings

W (k)[Γ/2Γ ]
↗⊕

W (kj)[Γj/2Γj ]
y

↖
W (k)[Γ/2Γ ]

where k and kj are the residue fields and Γ and Γj the value groups of v
and its extension (or extensions) vj .

Using this technique we obtain several exact triangles for the Witt groups
of the function fields of algebraic curves and of quadratic number fields. The
first ones generalize the well-known exact sequences of Milnor and Scharlau
while the second the exact sequence of the Witt groups of the field of rational
numbers. Such exact triangles make it possible to reduce the problems
concerning the Witt rings of function fields or quadratic number fields to
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the Witt rings of the residue fields. Moreover, they provide us with some
new reciprocity properties.

Acknowledgements. The author would like to express his gratitude
to Prof. W. Scharlau and Prof. E. Becker for helpful discussions during the
preparation of the manuscript.

2. Notation

2.1. Homomorphisms of Witt rings. We consider the Witt rings over
fields as defined in [2, 4, 7], i.e. W (F ) is the Grothendieck ring of nondegen-
erate bilinear forms on vector spaces over the field F modulo the hyperbolic
forms. We recall the basic facts.

Every field homomorphism i : K → L induces a ring homomorphism
of Witt rings i∗ : W (K) → W (L). If L/K is a finite field extension then
every nonzero K-linear map s : L → K induces a transfer homomorphism
s∗ : W (L) → W (K), defined by the rule: if β is the class containing a
symmetric L-bilinear form b : W ×W → L then s∗β is the class containing
the symmetric K-bilinear form s ◦ b : W ×W → K. In this paper we shall
consider the transfer map of the quadratic extension K[

√
g ]/K induced by

the map s, s(1)=0, s(
√

g)=2 (we assume charK 6=2):

s∗ : W (K[
√

g ]) → W (K), s∗(〈a〉) = 0 for a ∈ K ,

s∗(〈a
√

g + b〉) = 〈2a〉〈1, a2g − b2〉 for a, b ∈ K, a 6= 0 .

We recall that 〈a1, . . . , an〉 denotes the class corresponding to the quadratic
form a1T

2
1 + . . . + anT 2

n .
The so called residue homomorphisms are other examples of mappings

of Witt rings. Let v : K →Γ ∪{∞} be a discrete valuation on the field K.
Then V = {a ∈ K : v(a) ≥ 0} is a discrete valuation ring with maximal
ideal m = {a ∈ K : v(a) > 0}. Any generator π of the ideal m is called a
uniformizer of the valuation. Obviously the value group Γ is generated by
the weight of π:

Γ = Z · γ, γ = v(π) .

Every element of K may be uniquely written as a product πka, where k ∈ Z
and a ∈ V \ m (obviously v(πka) = kγ). The first and second residue
homomorphisms are defined as follows:

∂i : W (K) → W (V/m), i = 1, 2 ,

∂i〈πk · a〉 =
{
〈a〉 if k + i is odd,
0 otherwise,

where a is the image of a in the residue field V/m.
We remark that the residue homomorphisms are just group homomor-

phisms. But together they define the ring homomorphism (see [3], §7, [7],
Ch. 6, §2)
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∂ = ∂1 + γ · ∂2 : W (K) → W (V/m)[Γ/2Γ ]

where W (V/m)[Γ/2Γ ] is the group ring and γ is the image of the gene-
rator γ;

∂(〈πk · a〉) = 〈a〉 · γk, k ≡ k mod 2 .

We consider Γ/2Γ as a multiplicative group; γ2 = 1.
Moreover, we remark that the above ring homomorphism and the second

group residue homomorphism depend on the choice of the uniformizer π.
Therefore we fix uniformizers for all valuations we consider.

2.2. Morphisms of triangles of abelian groups. We recall the following
concept:

Definition. The space-diagram

A2
ω2−→ B2

↗α1 ↗β1

A1

yα2
ω1−→ B1

yβ2

↖α3 ↖β3

A3
ω3−→ B3

is a morphism of triangles if ωi’s commute with αi’s and βi’s:

βi ◦ ωi = ωj ◦ αi, j =
{

i + 1 for i = 1, 2 ,
1 for i = 3 .

We shall use two operations on morphisms of triangles of abelian groups:
the direct sum of morphisms of one triangle to other triangles:

A2
⊕ωi,2−−−→

⊕
Bi,2

↗α1 ↗⊕ βi,1

A1

yα2
⊕ωi,1−−−→

⊕
Bi,1

y⊕ βi,2

↖α3 ↖⊕ βi,3

A3
⊕ωi,3−−−→

⊕
Bi,3

and the sum of two morphisms of two triangles to one triangle:

A2 ⊕A′
2

ω2+ω′2−−−→ B2

↗α1 ⊕α′1 ↗β1

A1 ⊕A′
1

yα2 ⊕α′2
ω1+ω′1−−−→ B1

yβ2

↖α3 ⊕α′3 ↖β3

A3 ⊕A′
3

ω3+ω′3−−−→ B3
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N o t e. We denote by the same symbol a group homomorphism defined
on a summand of a direct sum and its canonical extension to a group ho-
momorphism of the direct sum.

3. Main results. Our first theorem is a generalization of the results of
[5, 6, 8]. Let v : F → Γ ∪ {∞} be a discrete valuation on the field F and
let k be its residue field, char k 6= 2. We choose a uniformizer π. We shall
consider the quadratic extensions F [z] of F , where

z2 = g, g ∈ F \ F 2, g = πnu, u ∈ V \m .

There are three cases to be considered:

C a s e A: n = 2m and u is a square. The extension of v is unramified
and there are two valuations vi : F [z] → Γi ∪ {∞}, i = 1, 2, extending v to
F [z]. The value groups and the residue fields are the same as for v:

Γi = Γ, ki = k, i = 1, 2 .

Let δi be the image of z/πm in ki. Obviously

δ1 = −δ2 and δ2
i = u .

C a s e B: n = 2m and u is not a square. The extension of v is unramified;
there is only one valuation v1 : F [z] → Γ1 ∪ {∞} extending v to F [z]. The
value group is the same as for v but there is an extension of the residue field:

Γ1 = Γ, k1 = k[z], z2 = u .

We denote by i∗ and s∗ the morphisms of Witt groups corresponding to the
field extension k[z] : k.

C a s e C: n = 2m + 1. The extension of v is ramified; there is only one
valuation v1 : F [z] → Γ1 ∪{∞} extending v to F [z]. The residue field is the
same as for v but there is an extension of the value group:

Γ1 = Γ · 1
2 , k1 = k .

We let the uniformizer of the extended valuations be π in the unramified
cases (A, B) and z̃ = z/(2πm) in the ramified case (C).

Theorem 1. The following diagrams are morphisms of exact triangles
of W (F )-modules:
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W (F ) ∂−−−→ W (k)[Γ/2Γ ]
↗s∗ ↗t

W (F [z])
y〈1,−g〉

2

⊕
j=1

∂j

−−−→
2⊕

j=1

W (kj)[Γ/2Γ ]
y〈1,−u〉=0

↖i∗ ↖⊕ id

W (F ) ∂−−−→ W (k)[Γ/2Γ ]

where t(α1, α2) = γm · (
∑
〈δi〉 · αi), in Case A;

W (F ) ∂−→ W (k)[Γ/2Γ ]
↗s∗ ↗γm·s∗

W (F [z])
y〈1,−g〉

∂1−→ W (k[z])[Γ/2Γ ]
y〈1,−u〉

↖i∗ ↖i∗

W (F ) ∂−→ W (k)[Γ/2Γ ]

in Case B;

W (F ) ∂−→ W (k)[Γ/2Γ ]
↗s∗ ↗Tr

W (F [z])
y〈1,−g〉

∂1−→ W (k)[Γ1/2Γ1]
y〈1〉−〈u〉·γ

↖i∗ ↖I

W (F ) ∂−→ W (k)[Γ/2Γ ]

where I(α + β · γ) = α + 〈u〉 · β and Tr(α + β · γ1) = (〈1〉+ 〈u〉 · γ) · β · γm

for α, β ∈ W (k), in Case C.

R e m a r k 1. In the unramified cases (A, B), if m is even (i.e. n ≡
0 mod 4) then the above morphisms of exact triangles split into the direct
sum of two morphisms induced independently by the first and the second
residue homomorphisms.

Some simplifications are also possible in the ramified case (C), for exam-
ple the following diagram is a morphism of exact triangles:

W (F ) ∂i

−→ W (k)
↗s∗ ↗〈um+i+1〉

W (F [z])
y〈1,−g〉

∂2
1−→ W (k)

y
↖i∗ ↖

W (F ) −→ 0

where i = 1 or 2.
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R e m a r k 2. In the unramified cases (A, B), if m is even (i.e. n ≡
0 mod 4) then the sum ∂2 + id induces a morphism of exact triangles:

W (F )⊕W (k) ∂2+id−−−→ W (k)
↗s∗⊕t ↗t

W (F [z])⊕
2⊕

j=1

W (kj)
y〈1,−g〉⊕ 0

2

⊕
j=1

(∂j+idj)

−−−−−−→
2⊕

j=1

W (kj)
y0

↖i∗⊕⊕ id ↖⊕ id

W (F )⊕W (k) ∂2+id−−−→ W (k)

in Case A;

W (F )⊕W (k) ∂2+id−−−→ W (k)
↗s∗⊕s∗ ↗s∗

W (F [z])⊕W (k[z])
y〈1,−g〉⊕〈1,−u〉

∂2
1+id−−−→ W (k[z])

y〈1,−u〉

↖i∗⊕i∗ ↖i∗

W (F )⊕W (k) ∂2+id−−−→ W (k)

in Case B.

R e m a r k 3. The residue ring homomorphism ∂ is the composition of the
homomorphism associated with the field completion induced by the discrete
valuation and the isomorphism of the Witt ring of the complete field and the
group ring over the residue field. Hence the above theorem may be restated
in terms of the Witt rings of the completions of the fields F and F [z], and
the corresponding homomorphisms.

Next we consider the quadratic extension F [z] of the field of rational
functions in one variable: F = K(x), char K 6= 2. We assume that

z2 = g(x)

where g is a square-free nonconstant polynomial; i.e.

g(x) = c · g1(x) · . . . · gk(x)

where gi are pairwise different irreducible monic polynomials and c is a
nonzero constant. Let P (respectively Pg) be the set of all valuations v
on the field F (respectively F [z]) which are trivial on the ground field K
(v|K = 0). The field extension F [z] : F induces the mapping

χ : Pg → P, χ(v) = v|F .

We split the set P into the disjoint union of three subsets A, B and C
according to the type of extension. Namely, v ∈ A (respectively ∈ B or ∈ C)
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if the extension of the valuation v to F [z] is unramified and split—case A
above (respectively unramified and nonsplit—case B, or ramified—case C).

We fix uniformizers of the valuations in the following way:
For all v ∈ P except the one placed at infinity, we let πv be the unique

monic irreducible polynomial such that v(πv) > 0 (i.e. πv is the generator
of the ideal v−1((0,∞)) ∩K[x]). For a uniformizer of v∞ we take 1/x.

For unramified v ∈ Pg (χ(v) ∈ A∪B) we put πv = πχ(v). In the ramified
case (χ(v) ∈ C) we put πv = z if χ(v) 6= v∞ and, when deg g = 2m + 1,
πv = z/xm if χ(v) = v∞.

We remark that the set C is finite:

#C =
{

k if deg g is even,
k + 1 if deg g is odd,

and its elements correspond to the polynomials gi and, when deg g is odd,
to “the point at the infinity”.

In the following we denote by Kv the residue field of the valuation v.
The valuation v is called simple if Kv = K.

Our next two theorems describe the exact triangles which are general-
izations of the Milnor exact sequence (see [2, IX.3]).

Let v1, v2 be any simple valuations of the field K(x) (i.e. vi = v∞ or
deg πv = 1). We recall that the mapping

∆v1,v2 = ∂1
v1
⊕

⊕
v∈P\{v2}

∂2
v : W (K(x)) → W (Kv1)⊕

⊕
v∈P\{v2}

W (Kv)

is a group isomorphism. We remark that the inverse of ∆v1,v2 , for v2 = v∞,
can be effectively computed using the filtration of the Witt group W (K(x))
induced by degrees of factors of coefficients (see [2, p. 266]). For other v2

we first have to apply a projective transformation of the field K(x).

We denote by ∆̃v1,v2 the “extension” of ∆v1,v2 :

∆̃v1,v2 =
⊕

χ(v)=v1

∂1
v⊕

⊕
χ(v) 6=v2

∂2
v : W (K(x))→

⊕
χ(v)=v1

W (Kv)⊕
⊕

χ(v) 6=v2

W (Kv) .

Moreover,

Trv :
⊕

χ(v′)=v

W (Kv′)⊕W (Kv′) → W (Kv)⊕W (Kv)

is the transfer mapping (considered as a group homomorphism) associated
with the valuation v ∈ P in Theorem 1. Let

trv :
⊕

χ(v′)=v

W (Kv′) → W (Kv)
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be its (second) component:

trv =


∑

(∂1
v′(〈z〉) · ) if v ∈ A, v(g) ≡ 0 mod 4 ,

s∗ if v ∈ B, v(g) ≡ 0 mod 4 ,
∂2

v(〈g〉) · if v ∈ C, v(g) ≡ 1 mod 4 ,
id if v ∈ C, v(g) ≡ 3 mod 4 .

Theorem 2. The following triangle of W (K)-modules is exact :⊕
χ(v)=v1

(W (Kv)⊕W (Kv))⊕
⊕

χ(v) 6=v1,v2

W (Kv)

↗∆̃

W (F [z])
y ⊕

v∈C\{v1,v2}
∂2

v〈1,−g〉∆−1 tr

↖i∗∆−1 ⊕
v∈C\{v1,v2}

W (Kv)

where v1, v2 are two different simple valuations of the field F = K(x) and
one of them is v∞; i∗ is induced by F ⊂ F [z]; and

∆ = ∆v1,v2 , ∆̃ = ∆̃v1,v2 , tr =
⊕

v 6=v1,v2

trv ⊕Trv1 .

Theorem 3. If the degree of the polynomial g is odd (deg g = 2m + 1)
then the following triangle of W (K)-modules is exact :⊕

v∈Pg

W (Kv)

↗∆̃

W (F [z])
y(∂1

v∞⊕ ⊕
v∈C\{v∞}

∂2
v)〈1,−g〉∆−1 tr

↖i∗∆−1⊕
v∈C

W (Kv)

where i∗ is induced by F ⊂ F [z] and

∆ = ∆v∞,v∞ , ∆̃ =
⊕

v∈Pg

∂2
v , tr =

⊕
v∈P

trv .

We remark that the exact triangle from Theorem 3 is closely related to
the exact sequence obtained in [6].

Next we show how to generalize the Scharlau exact sequence (see [2,
IX.4]). We recall that the mapping

∆v1,v2 ⊕ (∂2
v2

+ idW (Kv2 )) : W (K(x))⊕W (Kv2) → W (Kv1)⊕
⊕

v∈P

W (Kv) ,

where v1, v2 are simple valuations, is a group isomorphism. We remark that
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the inverse mapping is

∆− : W (Kv1)⊕W (Kv2)⊕
⊕

v 6=v2

W (Kv) → W (K(x))⊕W (Kv2) ,

∆−(α, β, γ) = ∆−1
v1,v2

(α, γ)⊕ (β + e · s(γ)) ,

where s is a sum of transfer mappings as defined in [2, IX.4], and e = −1 if
v2 = v∞ and 1 otherwise.

Theorem 4. The following triangle of W (K)-modules is exact :⊕
χ(v)=v∞

(W (Kv)⊕W (Kv))⊕
⊕

χ(v) 6=v∞

W (Kv)

↗∆̃

W (F [z])⊕
⊕

χ(v)=v0

W (Kv)
y ⊕

v∈C\{v∞}
∂2

v〈1,−g〉∆−1 tr

↖i∗∆−1 ⊕
v∈C\{v∞}

W (Kv)

where v0 is a simple valuation of the field F = K(x) of type A or B, and
v0 6= v∞ when deg g 6≡ 0 mod 4; i∗ is induced by F ⊂ F [z]; and

∆ = ∆v∞,v0 ⊕ (∂2
v0

+ idW (Kv0 )), ∆̃ = ∆̃v∞,v0 ⊕
⊕

χ(v)=v0

(∂2
v + idW (Kv)) ,

tr =
⊕

v 6=v∞

trv ⊕Trv∞ .

Theorem 2 has a number theoretic analogue. It is well-known that the
mapping

∆ = j∗ ⊕
⊕
p∈P

∂2
p : W (Q) → W (R)⊕

⊕
p∈P

W (Fp) ,

where P is the set of all prime numbers and j : Q → R is the canonical
imbedding, is a homomorphism of Witt groups (see [2, 4, 7]).

Let g be a square-free integer, g 6≡ 5 mod 8. We consider the quadratic
extension Q[

√
g ] of the field of rational numbers. Let ji be the extensions

of j.
For g > 0 we have to consider two imbeddings

ji : Q[
√

g ] → R, f1(
√

g ) > 0, f2(
√

g ) < 0 .

For g < 0 we choose one,

j3 : Q[
√

g ] → C .

We split the set P into the disjoint union of three subsets A, B and C.
We say that the prime number p belongs to A (respectively B, C) if the
extension of the p-adic valuation is split unramified (respectively nonsplit
unramified or ramified). We remark that p belongs to C if and only if p
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divides g or p = 2 and g ≡ 3 mod 4. Let Pg be the set of all extensions of
p-adic valuations to Q[

√
g ].

We let the prime number p be a uniformizer of the p-adic valuation on
Q and apply, for p 6= 2, the same notation as before.

For p = 2 we define the transfer map tr2 in the following way: If g ≡
1 mod 8 then the 2-adic valuation splits and we put

tr2 : W (Z2)⊕W (Z2) → W (Z2) , (α, β) → α + β .

If g ≡ 0 mod 2 or g ≡ 3 mod 4 then the extension is ramified and we put

tr2 = id : W (Z2) → W (Z2) .

We remark that W (Z2) = Z2. Moreover, for g > 0 we put

tr∞ : W (R)⊕W (R) → W (R) , (α, β) → 〈√g 〉(α− β) ;

and for g < 0,
tr∞ = 0 : W (C) → W (R) .

Theorem 5. The following triangles of Witt groups are exact :

W (R)⊕W (R)⊕
⊕

v∈Pg

W (Kv)

↗∆̃

W (Q[
√

g ])
y ⊕

p∈C

∂2
p〈1,−g〉∆−1 tr

↖i∗∆−1 ⊕
p∈C

W (Fp)

for g positive, and
W (C)⊕

⊕
v∈Pg

W (Kv)

↗∆̃

W (Q[
√

g ])
y ⊕

p∈C

∂2
p〈1,−g〉∆−1 tr

↖i∗∆−1 ⊕
p∈C

W (Fp)

for g negative. Here i∗ is induced by Q ⊂ Q[
√

g ], and

∆̃ =


j∗1 ⊕ j∗2 ⊕

⊕
v∈Pg

∂2
v for g > 0 ,

j∗3 ⊕
⊕

v∈Pg

∂2
v for g < 0 ,

tr = tr∞⊕
⊕
p∈P

trp .

4. Proof of Theorem 1. The crucial point of the proof is to consider
the completion F̂ of the field F with respect to the discrete valuation v.
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We remark that the polynomial z2−g describing the field extension F [z]/F
may no longer be irreducible after completion. This happens in Case A
(unramified, split extension), since g is then a square in F̂ . In the other
cases the above polynomial remains irreducible.

More generally, let G be any field extension of F , and j : F → G.

C a s e 1: The equation z2 − g = 0 has solutions in G, say z1, z2. Let
ji : F [z] → G be the canonical imbeddings ji(z) = zi, i = 1, 2.

Proposition 1. The following diagram is a morphism of exact triangles
of W (F )-modules:

W (F )
j∗−−−→ W (G)

↗s∗ ↗
∑

〈zi〉·

W (F [z])
y〈1,−g〉

2

⊕
i=1

j∗i

−−−→ W (G)⊕W (G)
y〈1,−g〉=0

↖i∗ ↖⊕ id

W (F )
j∗−−−→ W (G)

P r o o f. We check the commutations.

(i) j∗ ◦ s∗ =
∑2

i=1〈zi〉 · j∗i . We check this on the generators of the W (F )-
module W (F [z]):

s∗(〈1〉) = 0 ,
2∑

i=1

〈zi〉 · j∗i (〈1〉) =
2∑

i=1

〈zi〉 = 0 ;

j∗ ◦ s∗(〈z − c〉) = j∗(〈2〉 · 〈1, g − c2〉) = 〈2〉〈1, g − c2〉 ,
2∑

i=1

〈zi〉 · j∗i (〈z − c〉) =
2∑

i=1

〈zi〉〈zi − c〉 = 〈g − cz1, g − cz2〉

= 〈2g〉 · 〈1, g2 − gc2〉 = 〈2〉〈1, g − c2〉 .

The other commutations are obvious.
(ii) j∗i ◦ i∗ = j∗.
(iii) j∗ is a ring homomorphism hence it commutes with multiplication.

C a s e 2: The equation z2 − g = 0 has no solutions in G. We consider
the field extension G[z] : G, z2 = g. Let j3 : F [z] → G[z], j3(z) = z, be
the extension of j. The exact triangle of a quadratic extension is functorial,
hence:

Proposition 2. The following diagram is a morphism of exact triangles
of W (F )-modules:
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W (F )
j∗−→ W (G)

↗s∗ ↗ŝ∗

W (F [z])
y〈1,−g〉

j∗3−→ W (G[z])
y〈1,−g〉

↖i∗ ↖î∗

W (F )
j∗−→ W (G)

This completes the proof of Theorem 1 since the residue ring homomor-
phism is a ring isomorphism for complete valuations when the characteristic
of the residue field is different from 2 (see [3, 7]). We only have to notice
that in the nonsplit cases (B, C) the transfer mapping has been changed
hence we have to multiply it by a proper scaling factor (namely γm). We
check the formula for the trace mapping in Case C. It is enough to consider
the generators 〈1〉, 〈1〉 · γ1:

Tr(〈1〉) = ∂ ◦ ŝ∗(〈1〉) = 0 ,

Tr(〈1〉 · γ1) = ∂ ◦ ŝ∗(〈z̃〉) = ∂ ◦ ŝ∗

(〈
z

2πm

〉)
= ∂

(〈
2 · 1

2πm

〉
· 〈1, uπ2m+1〉

)
= (〈1〉+ 〈u〉 · γ) · γm .

5. The Snake Lemma. The crucial point of the proofs of Theorems
2–4 is to consider the direct sum of morphisms of exact triangles and to
construct a snake type homomorphism from the cokernel to kernel side.

Lemma 1 (The Snake Lemma). Let Ai, Bi, keri and cokeri be abelian
groups, and αi, βi, ωi, πi, ji and j− be group homomorphisms such that the
following diagram is commutative:

0 −→ ker3
j3−→ A3

ω3−→ B3 −→ 0
↓ α3 ↓ β3

0 −→ ker1
j1−→ A1

ω1−→ B1
π1−→ coker1 −→ 0

↓ α1 ↓ β1

0 −→ A2
ω2−→ B2 −→ 0

↓ α2 ↓ β2

0 −→ ker3
j3−→ A3

ω3−→ B3 −→ 0
↓ α3 ↓ β3

0 −→ ker1
j1−→ A1

ω1−→ B1
π1−→ coker1 −→ 0

↓ α1 ↓ β1

0 −→ A2
ω2−→ B2 −→ 0
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Moreover , suppose that the horizontal and vertical lines are exact , the A3/B3

sequence splits and j− is the left inverse of j3. Then:

1) the sequence

0−→ coker1
γ−→ ker3

δ−→ ker1 → 0

is exact , where
γ(a) = j− ◦ α2 ◦ ω−1

2 ◦ β1(π−1
1 (a)) ,

δ(a) = j−1
1 (α3 ◦ j3(a)) .

2) the triangle
B1

↗ω1

A1

yj−◦α2◦ω−1
2 ◦β1

↖α3◦j3

ker3
is exact.

P r o o f. First we show that γ and δ are well-defined functions. Let
a = π1(b). Then π−1

1 (a) = b + ω1(A1). Hence (since α2 ◦α1 = 0 ) we obtain

j− ◦ α2 ◦ ω−1
2 ◦ β1(π−1

1 (a)) = j− ◦ α2 ◦ ω−1
2 ◦ β1(b + ω1(A1))

= j− ◦ α2(ω−1
2 ◦ β1(b) + α1(A1))

= j−(α2 ◦ ω−1
2 ◦ β1(b) + α2 ◦ α1(A1))

= j− ◦ α2 ◦ ω−1
2 ◦ β1(b) .

Therefore γ does not depend on the choice of b.
Since j1 is injective we have to show that α3 ◦ j3(a) belongs to its image.

Indeed,
ω1 ◦ α3 ◦ j3 = β3 ◦ ω3 ◦ j3 = 0 ,

and the kernel of ω1 equals the image of j1; hence δ is well-defined.
Next we prove the exactness.

(i) δ ◦ γ = 0. Indeed,

ω3(α2 ◦ ω−1
2 ◦ β1) = β2 ◦ β1 = 0 .

Hence the image of α2 ◦ ω−1
2 ◦ β1 is contained in the image of j3 and

j1 ◦ δ ◦ j− ◦ α2 ◦ ω−1
2 ◦ β1 = α3 ◦ j3 ◦ j− ◦ α2 ◦ ω−1

2 ◦ β1

= α3 ◦ α2 ◦ ω−1
2 ◦ β1 = 0 .

Since j1 is injective,

δ ◦ j− ◦ α2 ◦ ω−1
2 ◦ β1 = 0 .
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(ii) ker δ = im γ. Indeed, let c ∈ ker δ. We shall show that there exists
d ∈ coker1 such that γ(d) = c. We have α3 ◦ j3(c) = j1 ◦ δ(c) = 0. Hence
there exists c1 ∈ A2 such that α2(c1) = j3(c). Moreover,

β2 ◦ ω2(c1) = ω3 ◦ α2(c1) = ω3 ◦ j3(c) = 0 .

Thus there exists c2 ∈ B1 such that β1(c2) = ω2(c1). We put d = π1(c2).
Then

γ(d) = γ ◦ π1(c2) = j− ◦ α2 ◦ ω−1
2 ◦ β1(c2)

= j− ◦ α2(c1) = j− ◦ j3(c) = c .

(iii) δ is onto. Let c ∈ ker1. Then

α1 ◦ j1(c) = ω−1
2 ◦ ω2 ◦ α1 ◦ j1(c) = ω−1

2 ◦ β1 ◦ ω1 ◦ j1 = 0 .

Hence there exists c1 ∈ A3 such that α3(c1) = j1(c). Moreover,

β3 ◦ ω3(c1) = ω1 ◦ α3(c1) = ω1 ◦ j1(c) = 0 .

Thus there exists c2 ∈ B2 such that β2(c2) = ω3(c1). We put

d = j−(c1 − α2 ◦ ω−1
2 (c2)) .

Then
ω3(c1 − α2 ◦ ω−1

2 (c2)) = ω3(c1)− β2(c2) = 0 ,

thus c1 − α2 ◦ ω−1
2 (c2) belongs to the image of j3 and

j1(δ(d)− c) = α3j3j−(c1 − α2 ◦ ω−1
2 (c2))− j−(c)

= (α3(c1)− j−(c))− α3 ◦ α2 ◦ ω−1
2 (c2) = 0 .

Since j1 is injective, δ(d) = c.

(iv) γ is injective. Let c ∈ coker1 and γ(c) = 0. We shall show that for
every b ∈ B1 such that π1(b) = c there exists d ∈ A1 such that ω1(d) = b.
We have

j−(α2 ◦ ω−1
2 ◦ β1(b)) = γ(c) = 0

and

ω3(α2 ◦ ω−1
2 ◦ β1(b)) = β2 ◦ ω2 ◦ ω−1

2 ◦ β1(b) = β2 ◦ β1(b) = 0 .

Hence α2 ◦ ω−1
2 ◦ β1(b) = 0 and there exists c1 ∈ A1 such that α1(c1) =

ω−1
2 ◦ β1(b). Then

β1(b− ω1(c1)) = (ω2 ◦ α1 − β1 ◦ ω1)(c1) = 0 .

Thus there exists c2 ∈ B3 such that β3(c2) = b − ω1(c1). Since ω3 is onto,
there exists c3 ∈ A3 such that ω3(c3) = c2. We put d = α3(c3) + c1. Then

ω1(d) = ω1α3(c3) + ω1(c1) = β3(c2) + ω1(c1) = b .

This completes the proof of the first assertion of the lemma. The second
is a direct corollary of it.
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6. Exact triangles associated with algebraic curves. We remark
that from the assumption that the polynomial g(x) is square-free we know
that for a valuation v ∈ P there are only three possibilities:

v(g) =

 0 if v ∈ A ∪B \ {v∞} ,
1 if v ∈ C \ {v∞} ,
−deg g if v = v∞ .

Hence for all valuations v ∈ P other than v∞, the induced morphisms of
exact triangles split as in Remark 1. To prove Theorems 2–4 one has to
choose a proper set of morphisms to obtain a diagram as in the Snake
Lemma.

P r o o f o f T h e o r e m 2. We consider the direct sum of the follow-
ing morphisms: the ones induced by the second residue homomorphisms
for v ∈ A ∪B \ {v1, v2}:

W (F )
∂2

v−−−→ W (K)

↗s∗ ↗trv

W (F [z])
y〈1,−g〉

⊕
χ(v′)=v

∂2
v′

−−−−−−→
⊕

χ(v′)=v

W (Kv′)
y〈1,−u〉

↖i∗ ↖⊕ id

W (F )
∂2

v−−−→ W (K)

the ones shown in Remark 1 with i = 2 for v ∈ C \ {v1, v2}:

W (F )
∂2

v−→ W (K)
↗s∗ ↗〈u〉

W (F [z])
y〈1,−g〉

∂2
v′−→ W (K)

y
↖i∗ ↖

W (F ) −→ 0

and the morphism induced by both residue homomorphisms (as in Theo-
rem 1) for v1.

We obtain the following commutative diagram of homomorphisms of
W (K)-modules with vertical and horizontal lines exact:
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v∈C\{v1,v2}

W (Kv)
j−→ W (F )

∆′
−→W (Kv1 )⊕W (Kv1 )⊕

⊕
v∈A∪B\{v1,v2}

W (Kv) −→ 0

↓ ↓ i∗ ↓ i′

ker −→ W (F [z])
∆̃−→

⊕
χ(v)=v1

(W (Kv)⊕W (Kv))⊕
⊕

χ(v) 6=v1,v2

W (Kv)

↓ s∗ ↓ tr

0 −→ W (F )
∆−→ W (Kv1 )⊕W (Kv1 )⊕

⊕
v 6=v1,v2

W (Kv) −→ 0

↓ 〈1,−g〉 ↓ m′⊕
v∈C\{v1,v2}

W (Kv)
j−→ W (F )

∆′
−→W (Kv1 )⊕W (Kv1 )⊕

⊕
v∈A∪B\{v1,v2}

W (Kv) −→ 0

↓ ↓ i∗ ↓ i′

ker −→ W (F [z])
∆̃−→

⊕
χ(v)=v1

(W (Kv)⊕W (Kv))⊕
⊕

χ(v) 6=v1,v2

W (Kv)

↓ s∗ ↓ tr

0 −→ W (F )
∆−→ W (Kv1 )⊕W (Kv1 )⊕

⊕
v 6=v1,v2

W (Kv) −→ 0

where ∆ (respectively ∆′, ∆̃) is the direct sum of the second residue homo-
morphisms for v ∈ P \ {v2} (resp. v ∈ P \ (C ∪ {v2} \ {v1}), χ(v) 6= v2)
and the first residue homomorphism for v1 (resp. v1, χ(v) = v1); and i′, tr
and m′ are compositions of the corresponding mappings of the second exact
triangles (the targets).

Since ∆ is a group isomorphism the kernel of ∆′ is isomorphic to the
direct sum ⊕

v∈C\{v1,v2}
W (Kv) ,

and the homomorphism r is given by the restriction of the inverse mapping
of ∆ to the subgroup

{0} ⊕
⊕

v∈C\{v1,v2}
W (Kv)⊕

⊕
v∈P\(C∪{v2}\{v1})

{0}

of the direct sum

W (Kv1)⊕
⊕

v 6=v2

W (Kv) .

Obviously the direct sum of second residue homomorphisms⊕
v∈C\{v1,v2}

∂2
v

is a left inverse of r.

P r o o f o f T h e o r e m 3. We consider the direct sum of the following
morphisms: the ones induced by the second residue homomorphisms for
v ∈ A ∪ B; the ones shown in Remark 1 with i = 2 for v ∈ C \ {v∞}; and
the one shown in Remark 1 with i = 1 for v = v∞.
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We obtain the following commutative diagram of homomorphisms of
W (K)-modules with exact lines:⊕

v∈C

W (Kv) r−→ W (F ) ∆′

−→
⊕

v∈A∪B

W (Kv) −→ 0

↓ ↓ i∗ ↓ i′

ker −→ W (F [z]) ∆̃−→
⊕

v∈Pg

W (Kv)

↓ s∗ ↓ tr

0 −→ W (F ) ∆−→
⊕

v∈P

W (Kv) −→ 0

↓ 〈1,−g〉 ↓ m′⊕
v∈C

W (Kv) r−→ W (F ) ∆′

−→
⊕

v∈A∪B

W (Kv) −→ 0

↓ ↓ i∗ ↓ i′

ker −→ W (F [z]) ∆̃−→
⊕

v∈Pg

W (Kv)

↓ s∗ ↓ tr

0 −→ W (F ) ∆−→
⊕

v∈P

W (Kv) −→ 0

where ∆̃ (respectively ∆′, ∆) is the direct sum of the second residue homo-
morphisms for v ∈ Pg (resp. v ∈ P \ C, v ∈ P \ {v∞} and the first residue
homomorphism for v∞ in the last case); and i′, tr and m′ are compositions
of the corresponding mappings of the second exact triangles (the targets).

Since ∆ is a group isomorphism the kernel of ∆′ is isomorphic to⊕
v∈C W (Kv), and r is the restriction of the inverse of ∆ to the subgroup

W (K∞)⊕
⊕

v∈C\{v∞}
W (Kv)⊕

⊕
v∈P\C

{0}

of

W (Kv∞)⊕
⊕

v 6=v∞

W (Kv) .

Obviously ∂1
v∞ ⊕

⊕
v∈C\{v∞} ∂2

v is a left inverse of r.

P r o o f o f T h e o r e m 4. We consider the direct sum of the follow-
ing morphisms: the ones induced by the second residue homomorphisms
for v ∈ A ∪ B \ {v0, v∞}; the ones shown in Remark 1 with i = 2 for
v ∈ C \ {v∞}; the morphism induced by ∂2

v0
+ id (see Remark 2); and when

v0 6= v∞ (resp. v0 = v∞), the morphism induced by both residue homomor-
phisms (as in Theorem 1) for v∞ (resp. the one induced by the first residue
homomorphism for v = v∞).
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We obtain the following commutative diagram of homomorphisms of
W (K)-modules with exact lines:⊕
v∈C\{v∞}

W (Kv)
r−→ W (F )

∆′
−→ W (Kv∞ )⊕W (Kv∞ )⊕

⊕
v∈A∪B\{v∞}

W (Kv) −→ 0

↓ ↓ i∗ ↓ i′

ker −→W (F [z])
∆̃−→

⊕
χ(v)=v∞

(W (Kv)⊕W (Kv))⊕
⊕

χ(v) 6=v∞
W (Kv)

↓ s∗ ↓ tr

0 −→ W (F )
∆−→ W (Kv∞ )⊕W (Kv∞ )⊕

⊕
v 6=v∞

W (Kv) −→ 0

↓ 〈1,−g〉 ↓ m′⊕
v∈C\{v∞}

W (Kv)
r−→ W (F )

∆′
−→ W (Kv∞ )⊕W (Kv∞ )⊕

⊕
v∈A∪B\{v∞}

W (Kv) −→ 0

↓ ↓ i∗ ↓ i′

ker −→W (F [z])
∆̃−→

⊕
χ(v)=v∞

(W (Kv)⊕W (Kv))⊕
⊕

χ(v) 6=v∞
W (Kv)

↓ s∗ ↓ tr

0 −→ W (F )
∆−→ W (Kv∞ )⊕W (Kv∞ )⊕

⊕
v 6=v∞

W (Kv) −→ 0

where ∆ (respectively ∆′, ∆̃) is the direct sum of the second residue ho-
momorphisms for v ∈ P \ {v0} (resp. v ∈ P \ (C ∪ {v0}), χ(v) 6= v0), the
first residue homomorphism for v∞ (resp. v∞ and χ(v) = v∞) and ∂2

v0
+ id

(resp. ∂2
v0

+ id,
⊕

χ(v)=v0
(∂2

v + id)); and i′, tr and m′ are compositions of
the corresponding mappings of the second exact triangles (the targets).

Since ∆ is a group isomorphism the kernel of ∆′ is isomorphic to⊕
v∈C\{v∞} W (Kv), and r is the restriction of the inverse of ∆ to the sub-

group

{0} ⊕
⊕

v∈C\{v∞}
W (Kv)⊕

⊕
v∈P\(C\{v∞})

{0}

of

W (Kv∞)⊕
⊕

v∈P

W (Kv) .

Obviously
⊕

v∈C\{v∞} ∂2
v is a left inverse of r.

7. Exact triangles associated with quadratic number fields. In
number theoretic case one cannot avoid characteristic two.

If g ≡ 1 mod 8 then the 2-adic valuation splits. Let v1 and v2 be its
extensions.

Lemma 2. The following diagram is a morphism of exact triangles of
Witt groups:
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W (Q)
∂2
2−−−→ W (Z2)

↗s∗ ↗tr2

W (Q[
√

g ])
y〈1,−g〉

∂2
v1

⊕ ∂2
v2−−−−−→ W (Z2)⊕W (Z2)

y〈1,1〉=0

↖i∗ ↖⊕ id

W (Q)
∂2
2−−−→ W (Z2)

where tr2(α, β) = α + β.

P r o o f. We apply Proposition 1 for F = Q and G = Q2. Then we
observe that the ring residue homomorphism commutes with addition and
multiplication and take its second component.

If g ≡ 3 mod 4 or g ≡ 0 mod 2 then the extension v of the 2-adic valua-
tion is ramified.

Lemma 3. The following diagram is a morphism of exact triangles of
Witt groups:

W (Q)
∂2
2−→ W (Z2)

↗s∗ ↗id

W (Q[
√

g ])
y〈1,−g〉

∂2
v−→ W (Z2)

y
↖i∗ ↖

W (Q) −→ 0

P r o o f. Let N( ) denote the norm of an element of Q[
√

g ]:

N(a + b
√

g) = a2 − b2g .

The second residue homomorphism ∂2
v may be described in the following

way:

∂2
v(〈c〉) = ∂2

2(〈N(c)〉) =
{

0 if N(c) = 4k(2l + 1) ,
〈1〉 otherwise.

Hence

∂2
v ◦ i∗ = 0 ,

∂2
2 ◦ s∗(〈a + b

√
g〉) = ∂2

2(〈2b〉〈1,−N(a + b
√

g)〉)

=
{

0 if N(a + b
√

g) = 4k(2l + 1) ,
〈1〉 if N(a + b

√
g) = 2 · 4k(2l + 1) ,

= ∂2
v(〈a + b

√
g〉) .

N o t e. We omit the case when the extension of the 2-adic valuation is
nonsplit and unramified (this happens when g ≡ 5 mod 8).
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The proof of Theorem 5 is similar to that of Theorem 2. We consider
the direct sum of the following morphisms: the ones induced by the second
residue homomorphisms for all p-adic valuations; and the morphism induced
by the completion of the archimedean valuation on the field of rational
numbers Q, j : Q → R.

We obtain the following commutative diagram of homomorphisms of
Witt groups with exact lines:⊕

p∈C

W (Fp)
r−→ W (Q) ∆′

−→ W (R)⊕
⊕

p∈A∪B

W (Fp) −→ 0

↓ ↓ i∗ ↓ i′

ker −→ W (Q[
√

g ]) ∆̃−→ W ⊕
⊕

v∈Pg

W (Kv) −→ coker

↓ s∗ ↓ tr

0 −→ W (Q) ∆−→ W (R)⊕
⊕
p∈P

W (Fp) −→ 0

↓ 〈1,−g〉 ↓ m′⊕
p∈C

W (Fp)
r−→ W (Q) ∆′

−→ W (R)⊕
⊕

p∈A∪B

W (Fp) −→ 0

↓ ↓ i∗ ↓ i′

ker −→ W (Q[
√

g ]) ∆̃−→ W ⊕
⊕

v∈Pg

W (Kv) −→ coker

↓ s∗ ↓ tr

0 −→ W (Q) ∆−→ W (R)⊕
⊕
p∈P

W (Fp) −→ 0

where ∆ (respectively ∆′, ∆̃) is the direct sum of the second residue homo-
morphisms for p ∈ P (resp. p ∈ A ∪ B, v ∈ Pg) and the homomorphism j∗

(resp. j∗, j̃); for g > 0 we have W = W (R)⊕W (R) and j̃ = j∗1 ⊕ j∗2 , while
for g < 0, W = W (C) and j̃ = j∗3 ; and i′, tr and m′ are compositions of the
corresponding mappings of the second exact triangles (the targets). Again,
the kernel of ∆′ is isomorphic to

⊕
p∈C W (Fp), and r is the restriction of

the inverse of ∆ to the subgroup

{0} ⊕
⊕
p∈C

W (Fp)⊕
⊕

p∈A∪B

{0}

of W (R)⊕
⊕

p∈P W (Fp). Obviously
⊕

p∈C ∂2
p is a left inverse of r.

References

[1] R. Elman and T. Y. Lam, Quadratic forms under algebraic extensions, Math. Ann.
219 (1976), 21–42.

[2] T. Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin, Reading, Mass.,
1973.



Witt rings 323

[3] F. Lorenz, Quadratische Formen über Körpern, Lecture Notes in Math. 130, Sprin-
ger, 1970.

[4] J. Mi lnor and D. Husemol le r, Symmetric Bilinear Forms, Springer, Berlin 1973.
[5] R. Par imala, Witt groups of conics, elliptic and hyperelliptic curves, J. Number

Theory 28 (1988), 69–93.
[6] R. Par imala and R. Sujatha, Witt groups of hyperelliptic curves, Comment.

Math. Helv. 65 (1990), 559–580.
[7] W. Schar lau, Quadratic and Hermitian Forms, Springer, 1985.
[8] J. E. Shick, Quadratic forms over function-fields of elliptic and hyperelliptic curves,

PhD thesis, Univ. of California, San Diego 1991.

INSTITUTE OF MATHEMATICS

UNIVERSITY OF WARSAW

BANACHA 2

02-097 WARSZAWA, POLAND

Received on 6.10.1992
and in revised form on 18.1.1993 (2314)


