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1. Introduction. In 1964 Erdős and Heilbronn [2] proved that if p is a
prime and A is a set of at least 3

√
6p residues modulo p, then

∑
b∈B b ≡ 0

(mod p) for a non-empty subset B of A. Subsequently Olson [5] proved
the essentially best possible result that if A is a set of more than

√
4p− 3

non-zero residues modulo p then for every integer n there is a non-empty
subset B of A such that

∑
b∈B b ≡ n (mod p).

In 1985, Burr and Erdős [1] studied infinite sequences A of natural num-
bers such that if A = A1 ∪ A2 then every (or every sufficiently large) num-
ber n is a sum of distinct terms of some Ai, with i depending on n. This is
a Ramsey-type question (see [3], [4]) for integers: when is it true that every
partition is such that at least one of the parts has a certain property?

Our aim in this note is to study some new question related to the prob-
lems above.

Denote by fk(n) the minimal integer m such that no matter how we
divide the integers from 1 to m into k classes, n is a sum of distinct terms
of one of the classes. What can one say about fk(n)? Also, let us denote by
gk(n) the minimal integer m such that there is a subset A of {1, 2, . . . , n−1}
with gk(n) =

∑
a∈A a such that if the integers in A are partitioned into

k classes, then n is always a sum of some integers from the same class.
What can one say about gk(n)? In this paper we shall investigate these two
questions for k = 2.

It is easily seen that if
∑m

i=1 i ≤ 2n − 2 then f2(n) > m; thus f2(n) ≥
b2
√

n− 1 + 1/2c. In Theorem 4 in the second section we shall show that
this trivial lower bound is close to the true value of f2(n), namely that
f2(n) ≤ 2

√
n + c0 log n for some constant c0. It is rather surprising that it

seems to be difficult to improve substantially the trivial lower bound above:
all we shall show is that f2(n) ≥ b2

√
nc+2 if n is large enough (Theorem 5).

It is immediate from the definitions that gk(n) ≤ fk(n)(fk(n) + 1)/2 so
g2(n) ≤ 2n + c1

√
n log n. However, concerning a lower bound on g2(n), it is
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not even obvious that g2(n) ≥ 2n. In Theorem 7 in the third section we shall
show that g2(n) is substantially larger than 2n, in fact, g2(n) ≥ 2n+

√
2n/8

if n is sufficiently large.

2. Bounds for the function f2(n). In order to give an upper bound
for f2(n) we need three easy lemmas. As usual, denote by [b] and [a, b] the
sets of integers {i : 1 ≤ i ≤ b} and {i : a ≤ i ≤ b} respectively.

Lemma 1. Let c < d and m be positive integers. Suppose that A ⊂ [m]
does not contain elements a and b with c ≤ b− a ≤ d. Then

σ(A) ≤ c

2(c + d)
(m + d + r + 1)(m− r) + 1

2 (2r − e + 1)e ,

where r = m− bm/(c + d)c(c + d) and e = min{r, c}. In particular ,

σ(A) ≤ c

2(c + d)
(m + 1)(m + d) .

For the sake of convenience, given a finite set A ⊂ N denote by σ(A)
the total sum of its elements, and let Σ(A) = {σ(B) : B ⊂ A} be the set
of integers that can be written as a sum of some elements of A. Our upper
bound on f2(n) will be the function

(1) m(n) = b2
√

n + log5/4 n + 8c .

Lemma 2. If m ≥ 3 and A ⊂ [m] contains all odd numbers not greater
than m then Σ(A) ⊃ [3, σ(A) − 3]. In particular , if n ≥ 2 and A ⊂ [m(n)]
contains all odd numbers not greater than m then n ∈ Σ(A).

P r o o f. The assertion is easily checked for 3 ≤ m ≤ 7; the rest follows
by induction on m since σ(A)− 5 ≥ m + 1 for m ≥ 7.

Lemma 3. For n ≥ 4, if [m(n)] = A1 ∪A2 and neither A1 nor A2 is the
set of all odd numbers in [m(n)] then for some i we have

σ(Ai) ≥
m(n)(m(n) + 1)

4
− m(n)− 3

4
=

(m(n))2 − 3
4

and in Ai there are two integers with difference 1.

P r o o f. The lemma is trivial if both A1 and A2 contain two integers with
difference 1. Suppose that A2 does not contain two integers with difference 1.
Then A1 must contain two integers with difference 1. Indeed, otherwise, one
of A1 and A2 must be the set of all odd numbers in [m(n)].

Since A2 does not contain two integers with difference 1, we have

σ(A2) ≤ m(n) + (m(n)− 2) + (m(n)− 4) + . . .

≤ m(n)(m(n) + 1)
4

+
m(n)− 3

4
.
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As A1 ∪A2 = [m(n)], this gives

σ(A1) ≥
m(n)(m(n) + 1)

4
− m(n)− 3

4
=

(m(n))2 − 3
4

,

completing the proof of the lemma.

Theorem 4. If n is sufficiently large then

f2(n) ≤ m(n) = b2
√

n + log5/4 n + 8c .

P r o o f. Let [m(n)] = A1 ∪ A2. To prove the theorem, we have to show
that

n ∈ Σ(A1) ∪Σ(A2) .

By Lemmas 2 and 3, we may assume that

(2) σ(A1) ≥
m(n)(m(n) + 1)

4
− m(n)− 3

4
=

(m(n))2 − 3
4

,

and there are a and b in A1 such that b− a = 1.
We claim that A1 contains a set Fl = {a1, b1, . . . , al, bl}, where l ≤

d 1
2 log5/4 ne+ 6, such that the set{ l∑

i=1

ci : ci = ai or bi

}
contains the interval [a, b], where a =

∑l
i=1 ai and b =

∑l
i=1 bi, and this

interval has length at least m(n). Having proved the claim it is easy to see
that n ∈ Σ(A1). Indeed, inequalities (1) and (2) imply that

σ(A1 − F ′
l ) ≥

(m(n))2 − 3
4

− a > n ,

where F ′
l = {a1, . . . , al}. Let D be a maximal subset of A1 − Fl such that

σ(D) ≤ n− a .

Then, rather crudely, σ(D) + m(n) ≥ n− a, so

σ(D) + a ≤ n ≤ σ(D) + b .

Hence n ∈ Σ(A1), as asserted by our theorem.
Now we return to prove our claim. To construct the sequence Fl, pick

elements a1, b1 ∈ A1 with b1 − a1 = 1. Suppose we have constructed
{a1, b1, . . . , ai−1, bi−1}, where 2 ≤ i ≤ l. Inequality (2) and Lemma 1 imply
that there are two elements ai, bi ∈ A1 − {a1, b1, . . . , ai−1, bi−1} such that

(3) 1 ≤ bi − ai ≤
i−1∑
j=1

(bj − aj) + 1

and bi − ai is maximal subject to (3). We get a new set {a1, b1, . . .
. . . , ai−1, bi−1, ai, bi}. This completes the construction of the set Fl.
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To see the first property of the set Fl = {a1, b1, . . . , ai, bi}, note that if
the integers 1 ≤ c1 ≤ c2 ≤ . . . ≤ ck are such that ci ≤

∑i−1
j=1 cj + 1 for

every i, i = 1, . . . , k, then every integer m ≤
∑k

i=1 ci can be represented as
m =

∑
i∈I ci for some I ⊂ [k]. Therefore, the first property holds.

Now we shall prove that the set Fl satisfies the second property. Lemma 1
and maximality of bi − ai imply that

1
4

i−1∑
j=1

(bj − aj) ≤ bi − ai ≤
i−1∑
j=1

(bj − aj) + 1

for every i = 1, 2, . . . , l. This gives that

b− a =
l∑

j=1

(bj − aj) ≥
(

5
4

)l−1

≥ m(n) ,

completing the proof of the claim and so that of the theorem.

As we remarked in the introduction, the above upper bound on f2(n) is
close to being best possible. Indeed, if m is the maximal integer such that∑m

i=1 i ≤ 2n−2 then [m] has a subset A1 = {m,m−1, . . . ,m−j}∪{m−h}
with σ(A1) = n − 1, so with A2 = [m] − A1 we have [m] = A1 ∪ A2,
σ(A1) = n− 1 and σ(A2) ≤ n− 1. Hence f2(n) ≥ b2

√
n− 1 + 1/2c. It does

not seem unreasonable to conjecture that if
∑m

i=1 i ≥ 2n then f2(n) ≤ m+1.
Our next aim is to show that this is not the case.

Theorem 5. If n is sufficiently large then

f2(n) ≥ b2
√

nc+ 2 .

P r o o f. Suppose that n ≥ 1100 and f2(n) ≤ m, where

(4) m = b2
√

nc+ 1 .

Then for all partitions [m] = A1∪A2, either n ∈ Σ(A1) or n ∈ Σ(A2). Note
first that

(5)
m∑

i=1

i = m(m + 1)/2 ≤ 2n + 3
√

n + 1 .

Let k be the integer such that

l − k < n and l ≥ n

where l =
∑m

i=k i. Then k ≤
√

2n + 2, so m − k ≥ 3 and l < n + k <
n + 3m − 3k + 3. Let A1 = [k + 1,m] and A2 = [k]. Then n 6∈ Σ(A1) so
n ∈ Σ(A2). Thus k(k + 1)/2 ≥ n. Therefore

(6) k >
√

2n− 1 .
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To arrive at a contradiction, we shall partition [m] into classes A1 and A2

such that n 6∈ Σ(Ai) for any i. Depending on the value of l, n ≤ l <
n + 3m− 3k + 3, we partition the integers from 1 to m into two classes A1

and A2 in the following way.

(i) If n ≤ l < n + m − k + 1 then let A1 = [k − 4,m] − {a} and
A2 = [k − 5] ∪ {a}, where a = l + k − n.

(ii) If n+m−k+1 ≤ l < n+2m−2k+2 then let A1 = [k−5,m]−{a, b}
and A2 = [k−6]∪{a, b}, where a, b ∈ [k−1,m], a 6= b and l+2k−2−n = a+b.

(iii) If n + 2m− 2k + 2 ≤ l < n + 3m− 3k + 3 then let A1 = [k− 6,m]−
{a, b, c} and A2 = [k− 7]∪{a, b, c}, where a, b, c ∈ [k,m], a 6= b 6= c 6= a and
l + 3k − 5− n = a + b + c.

To complete the proof, we simply check that n 6∈ Σ(A1)∪Σ(A2) for the
partitions above.

C a s e (i). By (6), we have

(7) σ(A1) = l−a+k−1+k−2+k−3+k−4 = n+3k−10 > n+3
√

2n−13 .

Then, by (5), we have σ(A2) < n, so n 6∈ Σ(A2).
Suppose that n ∈ Σ(A1). Let Q be a subset of A1 such that n = σ(Q).

Since, by (7), σ(A1) = n + 3k − 10 and the minimal integer of A1 is k − 4,
we have |A1 − Q| ≤ 2. But by (4) and (7), σ(A1) > n + 3

√
2n − 13 >

n+m+(m−1) so we have |A1−Q| ≥ 3, contradicting the inequality above.

C a s e (ii). By (6), we have

σ(A1) = l + k − 1 + k − 2 + k − 3 + k − 4 + k − 5− a− b(8)

= n + 3k − 13 > n + 3
√

2n− 16 .

Then, by (5), we have σ(A2) < n, so n 6∈ Σ(A2).
Suppose that n ∈ Σ(A1). Let Q be a subset of A1 such that n = σ(Q).

Since, by (8), σ(A1) = n + 3k − 13 and the minimal integer of A1 is k − 5,
we have |A1 − Q| ≤ 2. But by (4) and (8), σ(A1) > n + 3

√
2n − 16 >

n + m + (m− 1) so we have |A1 −Q| ≥ 3, which is a contradiction.
C a s e (iii). By (6), we have

σ(A1) = l + k − 1 + k − 2 + k − 3 + k − 4 + k − 5 + k − 6− a− b− c(9)

= n + 3k − 16 > n + 3
√

2n− 19 .

Then, by (5), we have σ(A2) < n, so n 6∈ Σ(A2).
Suppose that n ∈ Σ(A1). Let Q be a subset of A1 such that n = σ(Q).

Since, by (9), σ(A1) = n + 3k − 16 and the minimal integer of A1 is k − 6,
we have |A1 − Q| ≤ 2. But by (4) and (9), σ(A1) > n + 3

√
2n − 19 >

n + m + (m− 1) so we have the contradiction that |A1 −Q| ≥ 3.
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It would be of interest to decide whether f2(n)−2
√

n is bounded or not.
We are inclined to hazard the guess that it tends to infinity.

3. Bounds for g2(n). As Theorem 4 implies easily that g2(n) is close
to 2n, the real question is the order of g2(n)− 2n. Since, trivially, g2(n) ≤
f2(n)(f2(n)+1)/2, Theorem 4 gives the following upper bound on g2(n)−2n.

Theorem 6. If n is sufficiently large then

g2(n)− 2n ≤ 3
√

n log5/4 n .

When trying to prove a good lower bound for g2(n)− 2n, we encounter
considerably more serious difficulties than in giving a lower bound for f2(n).
It is intuitively obvious that g2(n)−2n ≥ 0 but, somewhat surprisingly, this
does not seem to be trivial to prove. Nevertheless, we shall show that the
bound 5

√
n log2 n in Theorem 6 is not far from the truth.

Theorem 7. If n ≥ 3 then

g2(n)− 2n ≥
√

2n/8 .

P r o o f. As the proof is rather long, we shall put most of the work
into five lemmas. Suppose that, contrary to the assertion, there is a set
A ⊂ [n − 1] such that σ(A) < 2n +

√
2n/8 and n ∈ Σ(A1) ∪ Σ(A2) for all

partitions A = A1 ∪ A2. Let A = {a1, a2, . . . , am}, where n > a1 > a2 >
. . . > am > 0.

Our first aim is to define an increasing sequence of indices k0, k1, . . . , kt.
In order to make this definition somewhat more convenient, let us add an
auxiliary term to the sequence (ai)m

i=1, namely the term am+1 = n. Let k0

be the minimal index such that s(k0) =
∑k0

i=1 ai ≥ n. Clearly k0 ≥ 2. If
s(k0) > n then set t = 0, otherwise let k1 be the minimal index such that

s(k1) =
k1∑

i=1

ai − ak0 ≥ n .

If s(k1) > n then set t = 1, otherwise let k2 be the minimal index such that

s(k2) =
k2∑

i=1

ai − ak0 − ak1 ≥ n .

As we have the auxiliary term am+1 = n, continuing in this way we arrive
at a sequence k0, k1, . . . , kt, where kj is the minimal index such that s(kj) =∑kj

i=1 ai−
∑j−1

l=0 akl
≥ n. Thus s(kj) = n for j = 0, 1, . . . , t−1, and s(kt) > n.

Let us start with some easy observations concerning the sequence ak0 ,

ak1 , . . . , akt . As s(k0) =
∑k0

i=0 ai = n, we have k0 ≥ 2 and

(10) ak0 < n/k0 ≤ n/2 .
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Furthermore, as

akj
=

kj+1∑
i=kj+1

ai

holds for j = 0, 1, . . . , t− 2, we have

(11) akj+1 < akj /(kj+1 − kj) ≤ akj /2 ,

implying

(12)
t−1∑
j=0

akj
< ak0

t−1∑
j=0

2−j < 2ak0 < n .

Our next aim is to prove a simple lemma claiming that, in fact, the
auxiliary term am+1 is not needed in the definition above.

Lemma 8. In the notation above, we have kt ≤ m.

P r o o f. Suppose that, contrary to the assertion, kt = m+1. Then t ≥ 1
and so

s(kt−1) =
kt−1∑
i=1

ai −
t−2∑
j=0

akj = n

and
akt−1 > akt−1+1 + akt−1+2 + . . . + am .

Consequently,

(13)
m∑

i=1

ai −
t−1∑
j=0

akj < n .

Inequalities (12) and (13) suggest a partition A = A1 ∪A2 contradicting
our assumption on A: setting A1 = {akj

: 0 ≤ j < t} and A2 = A − A1,
clearly n 6∈ Σ(A1) ∪Σ(A2).

Our next lemma is a considerable extension of Lemma 8: not only do
we have kt ≤ m but also the sum akt+1 + akt+2 + . . . + am is quite large. In
the proof of this lemma, and in the rest of the proof of Theorem 7, we shall
make use of two sets, namely

K = {ak0 , ak1 , . . . , akt−1}, L = {a1, a2, . . . , akt
} −K .

Note that σ(L) = s(kt) > n and σ(K) < σ(L)− akt < n.

Lemma 9. We have akt
≥
√

2n/4 and

(14)
m∑

i=kt+1

ai ≥ n/16 .
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P r o o f. Clearly, inequality (14) implies that akt
≥ akt+1 + 1 ≥

√
2n/4,

so it suffices to prove (14).
First we assume that t ≤ 3. Let A1 = L and A2 = A − L = K ∪

{akt+1, . . . , am}. By the definition of ki, we have n 6∈ Σ(A1) so, by our
assumption, n must be in the set Σ(A2). A fortiori,

σ(A2) =
t−1∑
i=0

aki +
m∑

i=kt+1

ai ≥ n ,

so, recalling (10) and (11), we find that

(15)
m∑

i=kt+1

ai ≥ n−
t−1∑
i=0

aki
> n− ak0

t−1∑
i=0

2−i > n− n

2

2∑
i=0

2−i = n/8 .

Assume now that t ≥ 4 and (14) is false. We claim that k0 = 2, k1 = 4
and k2 = 6. Indeed, if k0 ≥ 3 then with A1 = L and A2 = A − A1 =
K ∪ {akt+1, . . . , am} we have n 6∈ Σ(A1) so n ∈ Σ(A2). Consequently,
analogously to (15), we have

m∑
i=kt+1

ai > n− ak0

t−1∑
i=0

2−i > n− n

k0

2∑
i=0

2−i > n− 2n/k0 ≥ n/3 .

This shows that, contrary to our assumption, (14) does hold. The assertions
k1 = 4 and k2 = 6 are proved in a similar manner, by making use of the
inequality in (11) for j = 0 and j = 1.

As n = a1 + a2, a2 = a3 + a4 and a4 = a5 + a6, we have a2 < n/2,
a4 < n/4 and a6 < n/8; furthermore,

(16) a1 + a3 + a5 + a6 = a1 + a3 + a4 = a1 + a2 = n

and

(17) a2 + a3 + a5 + a6 = a2 + a3 + a4 = 2a2 < a1 + a2 = n .

Our next aim is to show that

(18) a1 − a2 + a3 − a4 + a5 − a6 > n/16 .

To this end, let A1 = {a2, a3, a4, a5, a6} and A2 = {a1, a7, a8, . . . , am}. By
assumption, either n ∈ Σ(A1) or n ∈ Σ(A2).

In the first case, as σ(A1)− a4 < n by inequality (17), we have

(19) 2a2 + a6 = a2 + (a3 + a4) + a6 = σ(A1)− a5 ≤ n .

As a4 + 3a6/2 < 7n/16, inequalities (16) and (19) imply that



Ramsey problems 349

a1 − a2 + a3 − a4 + a5 − a6

= a1 + a3 + a5 + a6 − (a2 + a6/2)− (a4 + 3a6/2)

> n− n/2− 7n/16 = n/16 .

In the second case n ≤ σ(A2) so

2a2 + a4 = a2 + (a3 + a4) + (a5 + a6) = σ(A1)(20)

= σ(A)− σ(A2) < 2n +
√

2n/8− n = n +
√

2n/8 .

As a4/2 + 2a6 < 3n/8, inequalities (16) and (20) imply that

a1 − a2 + a3 − a4 + a5 − a6

= a1 + a3 + a5 + a6 − (a2 + a4/2)− (a4/2 + 2a6)

> n− n/2−
√

2n/16− 3n/8 = n/8−
√

2n/16 ≥ n/16 ,

completing the proof of (18).
Armed with (18), the proof of our lemma is easily completed. Indeed,

set A1 = L − {akt
} and A2 = A − A1 = K ∪ {akt

, akt+1, . . . , am}. Then
σ(A1) < n so σ(A2) ≥ n. Hence, by inequality (18),

m∑
i=kt+1

ai = σ(A2)− σ(K)− akt
≥ n−

t∑
j=0

akj

> σ(A1)−
t∑

j=0

akj
≥

t∑
j=0

(akj−1 − akj
)

> a1 − a2 + a3 − a4 + a5 − a6 > n/16 ,

as claimed.

From Lemma 9 and the definitions of kt and s(kt), we easily deduce two
more lemmas.

Lemma 10. Let Q be a set of integers with σ(Q) < n+akt − s(kt). Then
n 6∈ Σ(L ∪Q).

P r o o f. Let us assume that n ∈ Σ(L ∪Q). Then there is a set Q1 such
that Q1 ⊂ L∪Q and σ(Q1) = n. As σ(L) > n, there is an aj in L such that
aj 6∈ Q1. Therefore

σ(Q1) ≤ σ(L ∪Q)− aj ≤ s(kt)− akt + σ(Q)
< s(kt)− akt + n + akt − s(kt) ≤ n .

Lemma 11. n + akt
− s(kt) >

√
2n/8.

P r o o f. Let A1 = L and A2 = A− L. Then n 6∈ Σ(A1), so n ∈ Σ(A2).
As σ(A) < 2n +

√
2n/8, we have

s(kt) = σ(A1) < 2n +
√

2n/8− σ(A2) ≤ n +
√

2n/8 .
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Therefore, by Lemma 9,

n + akt
− s(kt) > n +

√
2n/4− (n +

√
2n/8) =

√
2n/8 .

Before we can complete the proof of Theorem 7, we need one more
lemma; this lemma is the heart of the entire proof. For the sake of con-
venience, let us extend the sequence a1 > a2 > . . . > am by the trivial term
am+1 = 0.

Lemma 12. There is an index h with kt + 1 ≤ h ≤ m + 1 such that
n 6∈ Σ(L ∪ {ah}) and

(21) σ(K) +
h−1∑

i=kt+1

ai < n .

P r o o f. We shall consider two cases.

C a s e 1. kt − kt−1 ≥ 3. We shall make use of the set

B = { aj + n− s(kt) : kt−1 + 1 ≤ j ≤ kt } .

First assume that there is an index h with kt + 1 ≤ h ≤ kt + (kt − kt−1)
such that ah 6∈ B. It is easy to check that n 6∈ Σ(L ∪ {ah}). Indeed, if
n ∈ Σ(L ∪ {ah}), i.e. there is a set Q ⊂ L ∪ {ah} such that n = σ(Q), then
Q = L∪ {ah}− {ai} for some ai in L, so n = σ(Q) = s(kt) + ah − ai. Since
ah 6∈ B, we have i < kt−1, so ai > at−1 > akt−1+1 + akt−1+2. Thus

n = s(kt) + ah − ai < s(kt) + ah − akt−1

< s(kt) + ah − akt−1+1 − akt−1+2 < s(kt)− akt
< n ,

which is a contradiction. Therefore n 6∈ Σ(L ∪ {ah}), showing the first
assertion of the lemma. To see the second assertion, note that as j ≤
kt + (kt − kt−1), we have

σ(K) +
j−1∑

i=kt+1

ai <

kt−1∑
i=1

ai − σ(K) +
kt−1∑

i=kt−1+1

ai = σ(L)− akt
< n .

Assume now that aj ∈ B for all j with kt + 1 ≤ j ≤ kt + (kt − kt−1)
and so B = {akt+1, akt+2, . . . , a2kt−kt−1}. Then, in particular, a2kt−kt−1 =
akt + n− s(kt). We shall show that h = 2kt − kt + 1 will do. Clearly,

σ(L∪{ah})−akt
= σ(L∪{a2kt−kt−1+1})−akt

< σ(L)+a2kt−kt−1−akt
= n .

As akt
is the smallest term in L and σ(L) > n, this implies that n 6∈

Σ(L ∪ {ah}). Furthermore,

{ak0−1, ak1−1, . . . , akt−1−1} ⊂ L− {akt−1+1, akt−1+2, . . . , akt} ,



Ramsey problems 351

so

σ(K) =
t−1∑
i=0

aki
<

t−1∑
i=0

aki−1 ≤ σ(L)−
kt∑

i=kt−1+1

ai

implying

σ(K) +
h−1∑

j=kt+1

aj < σ(L)−
kt∑

i=kt−1+1

ai +
h−1∑

j=kt+1

aj

= σ(L)−
kt−kt−1∑

i=1

(akt−1+i − akt+i)

≤ σ(L) + ah−1 − akt = n .

Therefore Lemma 12 holds if kt − kt−1 ≥ 3.
C a s e 2. kt − kt−1 = 2. This time we set

B = { ai + n− s(kt) : kt−2 + 1 ≤ i ≤ kt, i 6= kt−1}

and b = kt−kt−2−1 = |B|. Since s(kt) =
∑kt

i=1 ai−
∑t−1

i=0 aki < n+
√

2n/8,
n = s(kt−1) =

∑kt−1
i=1 ai −

∑t−2
i=0 aki , and, by Lemma 9, akt >

√
2n/4, we

have

akt−1 = s(kt−1)−
kt−1−1∑

i=1

ai +
t−2∑
i=0

aki
(22)

= s(kt−1)−
kt−1∑
i=1

ai +
t−1∑
i=0

aki
= n− s(kt) + akt−1 + akt

> akt−1 + akt
−
√

2n/8 > akt−1 + akt
/2 .

Let us assume first that kt−2 − kt−1 ≥ 4 so that b ≥ 5 and akt−2 ≥
akt−2+1 +akt−2+2 +akt−2+3. Let h be the first index in the interval kt +1 ≤
h ≤ kt + b + 1 such that ah 6∈ B. Then n 6∈ Σ(L ∪ {ah}). Indeed, suppose
that n ∈ Σ(L ∪ {ah}), i.e. there is a set Q ⊂ L ∪ {ah} with n = σ(Q). As

σ(L ∪ {ah} − {akt
, akt−1}) = s(kt)− akt

− akt−1 + ah < s(kt)− akt
< n ,

the set Q is of the form Q = L∪{ah}−{ai} for some ai ∈ L so n = σ(Q) =
s(kt) + ah − ai. Therefore ah = ai + n − s(kt), and as ah 6∈ B, we have
i 6∈ [kt−2 + 1, kt] so i ≤ kt−2 and ai ≥ akt−2 > akt−2+1 + akt−2+2. Thus

n = s(kt) + ah − ai < s(kt) + ah − akt−2+1 − akt−2+2

< s(kt)− akt−2+1 < s(kt)− akt
< n ,

which is a contradiction. Therefore n 6∈ Σ(L ∪ {ah}), showing the first
assertion of the lemma.
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Let us turn to the proof of (21). If h ≤ kt + b − 1, we can see (21) as
follows:

σ(K) +
h−1∑

i=kt+1

ai =
t−1∑
i=0

aki
+

h−1∑
i=kt+1

ai <
t−1∑
i=0

aki−1 +
h−1∑

i=kt+1

ai

≤
(
σ(L)−

kt−1−2∑
j=kt−2+1

aj −
kt∑

j=kt−1+1

aj

)
+

h−1∑
i=kt+1

ai

= σ(L)−
( kt−1−2∑

j=kt−2+1

aj +
kt−1∑

j=kt−1+1

aj −
h−1∑

i=kt+1

ai

)
− akt

< σ(L)− akt
= s(kt)− akt

< n .

Thus we may suppose that h = kt + b or h = kt + b + 1. Then
akt+1, akt+2, . . . , ah−1 ∈ B so ah−1 = al+n−s(kt) for some l with l−kt−2 ≥
h− kt. Hence l ≥ h− kt + kt−2 ≥ b + kt−2 = kt − 1. Therefore, arguing as
above, by (22) we have

σ(K) +
h−1∑

i=kt+1

ai < σ(L)−
kt−1−2∑

j=kt−2+1

aj −
kt∑

j=kt−1+1

aj +
h−1∑

i=kt+1

ai

< s(kt)−
kt−2+2∑

j=kt−2+1

aj −
kt−1−2∑

j=kt−2+3

aj −
kt∑

j=kt−1+1

aj

+
kt+3∑

i=kt+1

ai +
h−2∑

i=kt+4

ai + ah−1

= s(kt)−
( kt−2+2∑

j=kt−2+1

aj −
kt+3∑

i=kt+1

ai

)

−
( kt−1−2∑

j=kt−2+3

aj +
kt∑

j=kt−1+1

aj − al −
h−2∑

i=kt+4

ai

)
+ ah−1 − al .

The sums in the parentheses are non-negative: the first by inequality (22),
and the second as it has (kt−1 − kt−2 − 4) + (kt − kt−1) positive terms and
1 + (h − kt − 5) ≤ (kt−1 − kt−2 − 4) + (kt − kt−1) smaller negative terms.
Thus,

σ(K) +
h−1∑

i=kt+1

ai < s(kt) + ah−1 − al = n .

Hence the lemma holds if kt−2 − kt−1 ≥ 4.
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Let us assume then that kt−2 − kt−1 ≤ 3. Suppose first that there is an
h such that kt + 1 ≤ h ≤ kt + b − 1 and ah 6∈ B. Then, arguing as above,
we find that n 6∈ Σ(L ∪ {ah}), and, as h ≤ kt + b− 1,

σ(K) +
h−1∑

i=kt+1

ai < s(kt)− at < n ,

as required.
Suppose then that aj ∈ B for all j with kt + 1 ≤ j ≤ kt + b − 1. Then

either (i) akt+b−1 = akt−1 + n− s(kt) or (ii) akt+b−1 = akt
+ n− s(kt).

To complete the proof of our lemma, we shall show that the assertions
of the lemma hold in these two cases.

(i) Assume that akt+b−1 = akt−1 + n− s(kt). Since akt+b−2, akt+b−3, . . .
. . . , akt+1 are all in B, they are all of the form ai + n− s(kt), where ai ∈ L.
We have akt+b−2 ≥ akt−3, akt+b−3 ≥ akt−4, . . . and

(23′) akt+1 ≥ akt−2+1 + n− s(kt) .

In fact, as dkt+1 = ai + n − s(kt) for some i ≥ kt−2 + 1, we have equality
in (23′):

(23) akt+1 = akt−2+1 + n− s(kt) .

Similarly, if kt−2 + 2 6= kt−1 then

(24) akt+2 = akt−2+2 + n− s(kt) ,

and if kt−2 + 2 = kt−1 then

(25) akt+2 = akt−1+1 + n− s(kt) .

Inequalities (24) and (25) imply

(26) s(kt) + akt+2 − akt
> n ,

and as, by Lemma 9, s(kt) < n +
√

2n/8 and akt >
√

2n/4 inequality (26)
implies that

(27) akt+1 > akt+2 > akt
+ n− n−

√
2n/8 >

√
2n/8 .

Let us partition A by setting A1 = L∪ {akt+1, akt+2} − {akt
} and A2 =

A−A1. Then, by (26) and (27), we have σ(A1) > n+
√

2n/8, so σ(A2) < n
and thus n ∈ Σ(A1). Let Q be a subset of A1 such that n = σ(Q). Since
s(kt)− akt < 0, inequality (26) implies that there is an aj ∈ L− {akt} such
that Q = A1 − {aj}. Therefore, by (23),

n = σ(Q) = σ(A1)− aj = σ(L) + akt+1 + akt+2 − akt
− aj

= s(kt) + akt+1 + akt+2 − akt
− aj

= s(kt) + akt−2+1 + n− s(kt) + akt+2 − akt − aj

= n + (akt−2+1 − aj + akt+2 − akt) .
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However, we claim that

(28) akt−2+1 − aj + akt+2 − akt
6= 0 .

It is trivial that (28) holds for aj = akt−2+1. If aj = akt−2+2, then kt−2+2 6=
kt−1, so, by (23) and (24), akt−2+1−aj +akt+2−akt

= akt−2+1 +n−s(kt)−
akt

> akt−2+1+n−s(kt)−akt+1 = 0. If aj = akt−1+1, then, by (26) and (27),
akt−2+1 +akt+2 > akt−1 +

√
2n/8 > aj +akt , so, inequality (28) holds again.

In fact, these are all the cases since kt−1−kt−2 ≤ 3 and kt−kt−1 = 2. Thus
(28) does hold, which is a contradiction.

(ii) Assume now that akt+b−1 = akt + n − s(kt). We shall show that
h = kt + b will do for the claim in the lemma. Clearly

σ(L ∪ {ah})− akt = s(kt) + akt+b − akt < s(kt) + akt+b−1 − akt = n .

As σ(L) > n and akt is the smallest term in L, this implies n 6∈ Σ(L ∪
{akt+b}), showing the first assertion of the lemma. To see the second asser-
tion, note that

σ(K) +
h−1∑

i=kt+1

ai < s(kt)−
kt−1−2∑

i=kt−2+1

ai −
kt∑

i=kt−1+1

ai +
kt+b−1∑
i=kt+1

ai

= s(kt)−
( kt−1−2∑

i=kt−2+1

ai +
kt−1∑

i=kt−1+1

ai −
kt+b−2∑
i=kt+1

ai

)
− akt

+ akt+b−1

< s(kt)− akt
+ akt+b−1 = n ,

since the sum in parentheses is positive as there are b−2 positive terms and
b− 2 smaller negative terms. This completes the proof of the lemma.

Armed with Lemma 12, the proof of Theorem 6 is easily completed. Let
h be the index whose existence is guaranteed by Lemma 12.

Assume first that ah ≥
√

2n/8. Let A1 = L ∪ {ah} and A2 = A− A1 =
K ∪ {akt+1, . . . , am} − {ah}. Then σ(A1) > n +

√
2n/8, so σ(A2) < n, and

so n 6∈ Σ(A2). However, by Lemma 11, n 6∈ Σ(A1). This contradicts our
assumption on the set A.

Let us assume then that ah <
√

2n/8. Then
∑m

i=h ai ≥
√

2n/8. In-
deed, otherwise let A1 = L ∪ {ah, . . . , am} and A2 = A − A1 = K ∪
{akt+1, . . . , ah−1}. Lemmas 10 and 11 imply that n 6∈ Σ(A1). However,
by Lemma 12,

σ(A2) = σ(K) +
h−1∑

i=kt+1

ai < n ,
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so n 6∈ Σ(A2), contradicting our assumption. Therefore
∑m

i=h ai ≥
√

2n/8,
as claimed.

Since ah <
√

2n/8, 0 < s(kt) − n <
√

2n/8 and ah > ah+1 > . . . > am,
there exists an index l, h ≤ l ≤ m, such that

n +
√

2n/8− s(kt) ≤
l∑

i=h

ai < n +
√

2n/4− s(kt) ≤ n + akt
− s(kt) .

Let Q = {ah, ah+1, . . . , al} so that σ(Q) < n + akt
− s(kt). Set A1 = L ∪Q

and
A2 = A−A1 = K ∪ {akt+1, . . . , ah−1} ∪ {al+1, . . . , am} .

Then, by Lemma 10, n 6∈ Σ(A1). However, by the definition of l,

σ(A1) = s(kt) +
l∑

i=h

ai ≥ n +
√

2n/8 ,

so σ(A2) < n and hence n 6∈ Σ(A2), contradicting our assumption on A and
completing the proof of the theorem.

It is tempting to conjecture that g2(n) = f2(n)(f2(n)+1)/2 but, if true,
this seems to be rather difficult. It may be easier to show that, as we suspect,
(g2(n)− 2n)/

√
n →∞.
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