The mean square of the Riemann zeta-function in the critical strip III

by
Kohji Matsumoto (Morioka) and Tom Meurman (Turku)

1. Introduction. Let $\zeta(s)$ be the Riemann zeta-function, and define $E(T)$ by

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t=T \log T+(2 \gamma-1-\log 2 \pi) T+E(T)
$$

for $T \geq 2$, where γ is Euler's constant. In 1949, Atkinson [1] proved the following now famous formula for $E(T)$. For any positive number ξ, let

$$
\begin{gathered}
e(T, \xi)=\left(1+\frac{\pi \xi}{2 T}\right)^{-1 / 4}\left(\frac{2 T}{\pi \xi}\right)^{-1 / 2}\left(\operatorname{arsinh} \sqrt{\frac{\pi \xi}{2 T}}\right)^{-1} \\
f(T, \xi)=2 T \operatorname{arsinh} \sqrt{\frac{\pi \xi}{2 T}}+\left(\pi^{2} \xi^{2}+2 \pi \xi T\right)^{1 / 2}-\frac{\pi}{4}
\end{gathered}
$$

and

$$
g(T, \xi)=T \log \frac{T}{2 \pi \xi}-T+\frac{\pi}{4}
$$

Then Atkinson's formula asserts that for any positive number X with $X \asymp T$ (i.e. $T \ll X \ll T$), the relation

$$
\begin{equation*}
E(T)=\Sigma_{1}(T, X)-\Sigma_{2}(T, X)+O\left(\log ^{2} T\right) \tag{1.1}
\end{equation*}
$$

holds, where

$$
\begin{aligned}
\Sigma_{1}(T, X) & =\sqrt{2}\left(\frac{T}{2 \pi}\right)^{1 / 4} \sum_{n \leq X}(-1)^{n} d(n) n^{-3 / 4} e(T, n) \cos (f(T, n)), \\
\Sigma_{2}(T, X) & =2 \sum_{n \leq B(T, \sqrt{X})} d(n) n^{-1 / 2}\left(\log \frac{T}{2 \pi n}\right)^{-1} \cos (g(T, n)),
\end{aligned}
$$

$d(n)$ is the number of positive divisors of the integer n, and

$$
B(T, \xi)=\frac{T}{2 \pi}+\frac{1}{2} \xi^{2}-\xi\left(\frac{T}{2 \pi}+\frac{1}{4} \xi^{2}\right)^{1 / 2} .
$$

The analogue of Atkinson's formula in the strip $1 / 2<\sigma=\operatorname{Re}(s)<1$ was first investigated by Matsumoto [9]. Define $E_{\sigma}(T)$ by

$$
\int_{0}^{T}|\zeta(\sigma+i t)|^{2} d t=\zeta(2 \sigma) T+(2 \pi)^{2 \sigma-1} \frac{\zeta(2-2 \sigma)}{2-2 \sigma} T^{2-2 \sigma}+E_{\sigma}(T) .
$$

Matsumoto proved that if $1 / 2<\sigma<3 / 4$ and $X \asymp T$, then

$$
\begin{equation*}
E_{\sigma}(T)=\Sigma_{1, \sigma}(T, X)-\Sigma_{2, \sigma}(T, X)+O(\log T), \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Sigma_{1, \sigma}(T, X) \\
& \quad=\sqrt{2}\left(\frac{T}{2 \pi}\right)^{3 / 4-\sigma} \sum_{n \leq X}(-1)^{n} \sigma_{1-2 \sigma}(n) n^{\sigma-5 / 4} e(T, n) \cos (f(T, n)), \\
& \Sigma_{2, \sigma}(T, X) \\
& =2\left(\frac{T}{2 \pi}\right)^{1 / 2-\sigma} \sum_{n \leq B(T, \sqrt{X})} \sigma_{1-2 \sigma}(n) n^{\sigma-1}\left(\log \frac{T}{2 \pi n}\right)^{-1} \cos (g(T, n)),
\end{aligned}
$$

with the notation $\sigma_{a}(n)=\sum_{d \mid n} d^{a}$, and the implied constant depends only on σ.

The reason of the restriction $1 / 2<\sigma<3 / 4$ in [9] is as follows. Define

$$
D_{1-2 \sigma}(\xi)=\sum_{n \leq \xi}^{\prime} \sigma_{1-2 \sigma}(n),
$$

where the symbol \sum^{\prime} means that the last term is to be halved if ξ is an integer. In case $\sigma=1 / 2$, the classical formula of Voronoï asserts

$$
D_{0}(\xi)=\xi \log \xi+(2 \gamma-1) \xi+1 / 4+\Delta_{0}(\xi)
$$

with

$$
\begin{align*}
\Delta_{0}(\xi)= & \frac{1}{\pi \sqrt{2}} \xi^{1 / 4} \sum_{n=1}^{\infty} d(n) n^{-3 / 4}\{\cos (4 \pi \sqrt{n \xi}-\pi / 4) \tag{1.3}\\
& \left.-\frac{3}{32 \pi}(n \xi)^{-1 / 2} \sin (4 \pi \sqrt{n \xi}-\pi / 4)\right\}+O\left(\xi^{-3 / 4}\right)
\end{align*}
$$

This formula is one of the essential tools in the proof of Atkinson's formula. Analogously, Matsumoto's proof of (1.2) depends on the following Voronoï-
type formula of Oppenheim [16]:

$$
\begin{equation*}
D_{1-2 \sigma}(\xi)=\zeta(2 \sigma) \xi+\frac{\zeta(2-2 \sigma)}{2-2 \sigma} \xi^{2-2 \sigma}-\frac{1}{2} \zeta(2 \sigma-1)+\Delta_{1-2 \sigma}(\xi) \tag{1.4}
\end{equation*}
$$

with

$$
\begin{array}{r}
\Delta_{1-2 \sigma}(\xi)=\frac{1}{\pi \sqrt{2}} \xi^{3 / 4-\sigma} \sum_{n=1}^{\infty} \sigma_{1-2 \sigma}(n) n^{\sigma-5 / 4}\{\cos (4 \pi \sqrt{n \xi}-\pi / 4) \tag{1.5}\\
\left.-\frac{16(1-\sigma)^{2}-1}{32 \pi}(n \xi)^{-1 / 2} \sin (4 \pi \sqrt{n \xi}-\pi / 4)\right\}+O\left(\xi^{-1 / 4-\sigma}\right)
\end{array}
$$

However, the series in (1.5) converges only for $\sigma<3 / 4$, which gives rise to the restriction $1 / 2<\sigma<3 / 4$ in [9]. Therefore a new method is required to obtain an analogue of Atkinson's formula beyond the line $\sigma=3 / 4$.

In this paper we shall prove
Theorem 1. For any σ and X satisfying $1 / 2<\sigma<1$ and $X \asymp T$, the formula (1.2) holds.

Our starting point is the Voronoï-type formula for

$$
\widetilde{D}_{1-2 \sigma}(\xi)=\int_{0}^{\xi} \sum_{n \leq t} \sigma_{1-2 \sigma}(n) d t
$$

given in the next section. The crucial point is that the Voronoï series for $\widetilde{D}_{1-2 \sigma}(\xi)$ converges for any σ satisfying $1 / 2<\sigma<1$. The basic principle of the proof of Theorem 1 is similar to the proofs of (1.1) and (1.2), but the details are more complicated.

In [9], as an application of (1.2), the upper bound estimate

$$
\begin{equation*}
E_{\sigma}(T)=O\left(T^{1 /(1+4 \sigma)} \log ^{2} T\right) \tag{1.6}
\end{equation*}
$$

has been proved for $1 / 2<\sigma<3 / 4$. Now it follows easily from Theorem 1 that (1.6) holds for $1 / 2<\sigma<1$. We should mention that already in 1990 , in a different way, Motohashi [15] proved (1.6) for $1 / 2<\sigma<1$, and Ivić [6, Ch. 2] gave an improvement by using the theory of exponent pairs. (See also Ivić [7].) (${ }^{1}$)

Another application of Theorem 1 is the mean square result for $E_{\sigma}(T)$. In [9] it has been shown that

[^0]\[

$$
\begin{align*}
& \int_{2}^{T} E_{\sigma}(t)^{2} d t \tag{1.7}\\
= & \frac{2}{5-4 \sigma}(2 \pi)^{2 \sigma-3 / 2} \frac{\zeta^{2}(3 / 2)}{\zeta(3)} \zeta\left(\frac{5}{2}-2 \sigma\right) \zeta\left(\frac{1}{2}+2 \sigma\right) T^{5 / 2-2 \sigma}+F_{\sigma}(T)
\end{align*}
$$
\]

with $F_{\sigma}(T)=O\left(T^{7 / 4-\sigma} \log T\right)$ for $1 / 2<\sigma<3 / 4$, and in [10], the improvement $F_{\sigma}(T)=O(T)$ has been proved. In case $3 / 4 \leq \sigma<1$, by using Heath-Brown's [4] method and Theorem 1, it can be shown easily that

$$
\begin{equation*}
\int_{2}^{T} E_{\sigma}(t)^{2} d t \ll T \log ^{2} T \tag{1.8}
\end{equation*}
$$

This can be slightly improved. In particular, for $\sigma=3 / 4$ we get an asymptotic formula.

Theorem 2. We have

$$
\int_{2}^{T} E_{3 / 4}(t)^{2} d t=\frac{\zeta^{2}(3 / 2) \zeta(2)}{\zeta(3)} T \log T+O\left(T(\log T)^{1 / 2}\right),
$$

and for $3 / 4<\sigma<1$, we have

$$
\int_{2}^{T} E_{\sigma}(t)^{2} d t \ll T
$$

Corollary. $E_{3 / 4}(T)=\Omega\left((\log T)^{1 / 2}\right)$.
Comparing Theorem 2 with (1.7), we can observe, as has already been pointed out in [9], that the line $\sigma=3 / 4$ is a kind of "critical line" in the theory of the Riemann zeta-function, or at least for the function $E_{\sigma}(T)$.

It might be possible to reduce the error term $O\left(T(\log T)^{1 / 2}\right)$ to $O(T)$ in Theorem 2 without any new idea but only with a lot of extra work.

We also prove in this paper the following result, which has been announced in [10].

Theorem 3. For any fixed σ satisfying $1 / 2<\sigma<3 / 4$, we have

$$
E_{\sigma}(T)=\Omega_{+}\left(T^{3 / 4-\sigma}(\log T)^{\sigma-1 / 4}\right)
$$

Corollary. $F_{\sigma}(T)=\Omega\left(T^{9 / 4-3 \sigma}(\log T)^{3 \sigma-3 / 4}\right)$.
We can deduce Theorem 3 from (1.2). The problem of deducing a certain Ω_{+}-result in case $3 / 4 \leq \sigma<1$ seems to be much more difficult. This situation also suggests the critical property of the line $\sigma=3 / 4$.
2. A Voronoï-type formula. Hereafter, except for the last section, we assume $3 / 4 \leq \sigma<1$. Let $\xi \geq 1$, and define $\widetilde{\Delta}_{1-2 \sigma}(\xi)$ by

$$
\begin{align*}
\widetilde{D}_{1-2 \sigma}(\xi)= & \frac{1}{2} \zeta(2 \sigma) \xi^{2}+\frac{\zeta(2-2 \sigma)}{(2-2 \sigma)(3-2 \sigma)} \xi^{3-2 \sigma}-\frac{1}{2} \zeta(2 \sigma-1) \xi \tag{2.1}\\
& +\frac{1}{12} \zeta(2 \sigma-2)+\widetilde{\Delta}_{1-2 \sigma}(\xi) .
\end{align*}
$$

Then the following Voronoii-type formula holds.
Lemma 1. We have

$$
\begin{align*}
& \widetilde{\Delta}_{1-2 \sigma}(\xi)=c_{1} \xi^{5 / 4-\sigma} \sum_{n=1}^{\infty} \sigma_{1-2 \sigma}(n) n^{\sigma-7 / 4} \cos \left(c_{2} \sqrt{n \xi}+c_{3}\right) \tag{2.2}\\
& \quad+c_{4} \xi^{3 / 4-\sigma} \sum_{n=1}^{\infty} \sigma_{1-2 \sigma}(n) n^{\sigma-9 / 4} \cos \left(c_{2} \sqrt{n \xi}+c_{5}\right)+O\left(\xi^{1 / 4-\sigma}\right)
\end{align*}
$$

where the two infinite series on the right-hand side are uniformly convergent on any finite closed subinterval in $(0, \infty)$, and the values of the constants are $c_{1}=-1 /\left(2 \sqrt{2} \pi^{2}\right), c_{2}=4 \pi, c_{3}=\pi / 4, c_{4}=(5-4 \sigma)(7-4 \sigma) /\left(64 \sqrt{2} \pi^{3}\right)$ and $c_{5}=-\pi / 4$.

Voronoï-type formulas are studied in Hafner [3] in a fairly general situation. We can prove the formula (2.2) as a special case of Hafner's theorem. In fact, let $F(s)=\pi^{-s} \zeta(s) \zeta(s-1+2 \sigma)$ and $G(s)=\Gamma(s / 2) \Gamma((s-1+2 \sigma) / 2)$. Then the functional equation

$$
G(s) F(s)=G(2-2 \sigma-s) F(2-2 \sigma-s)
$$

holds, which agrees with Hafner's Definition 1.1 with $a(n)=b(n)=\sigma_{1-2 \sigma}(n)$, $\lambda_{n}=\mu_{n}=\pi n, \phi(s)=\psi(s)=F(s), \sigma_{a}^{*}=\sigma_{a}=1, \Delta(s)=G(s), N=2$, $\alpha_{1}=\alpha_{2}=1 / 2, \beta_{1}=0, \beta_{2}=\sigma-1 / 2, S=\{1-2 \sigma, 0,2-2 \sigma, 1\}, D=\mathbb{C}-S$, $\chi(s)=G(s) F(s)$ and $r=2-2 \sigma$. Also we choose $\varrho=1, b=3, c=3 / 2$ and $R=2$ in Hafner's notation. In this case Hafner's $A_{\varrho}(x)$ is equal to

$$
\sum_{\pi n \leq x} \sigma_{1-2 \sigma}(n)(x-\pi n)=\pi \int_{0}^{x / \pi} \sum_{n \leq t} \sigma_{1-2 \sigma}(n) d t
$$

which is obviously continuous in $(0, \infty)$. Therefore, (2.2) and the claim of uniform convergence in Lemma 1 follow from Theorem B and Lemma 2.1 (with $m=1$) of Hafner [3]. Hafner does not give the values of the constants c_{1}, \ldots, c_{5} explicitly, but the values of c_{1}, c_{2}, c_{3} and c_{5} can be determined by combining Lemma 2.1 of Hafner [3] with the explicit values of μ and h given in Lemma 1 of Chandrasekharan-Narasimhan [2]. (There is a minor misprint in Hafner's paper. The right-hand side of (2.3) in [3] should be multiplied by $\sqrt{2}$.) The value of c_{4} may also be determined by tracing the
proof of Lemma 1 in Chandrasekharan-Narasimhan [2] carefully, but the value of c_{4} is not necessary for the purpose of the present paper.

Meurman [13] gives a considerably simpler proof of (1.3). All the steps of Meurman's proof are explicit, and the same method can be applied to our present case. Therefore we can obtain a different proof of Lemma 1, with explicit values of all the constants c_{1}, \ldots, c_{5}. The details, omitted here, are given in a manuscript form [14].

By using Lemma 1, we can prove the following useful estimate.
Lemma 2. We have $\widetilde{\Delta}_{1-2 \sigma}(\xi)=O\left(\xi^{r} \log \xi\right)$, where

$$
r=\frac{-4 \sigma^{2}+7 \sigma-2}{4 \sigma-1} \leq \frac{1}{2}
$$

Proof. We first note the elementary estimate

$$
\begin{equation*}
\Delta_{1-2 \sigma}(v) \ll v^{1-\sigma} . \tag{2.3}
\end{equation*}
$$

In fact, by the Euler-Maclaurin summation formula we have

$$
\begin{gathered}
\sum_{m \leq \sqrt{v}} m^{-2 \sigma}=\frac{1}{1-2 \sigma} v^{1 / 2-\sigma}+\zeta(2 \sigma)+O\left(v^{-\sigma}\right) \\
\sum_{m \leq \sqrt{v}} m^{2 \sigma-2}=\frac{1}{2 \sigma-1} v^{\sigma-1 / 2}+\zeta(2-2 \sigma)+O\left(v^{\sigma-1}\right),
\end{gathered}
$$

and, for $1 \leq n \leq \sqrt{v}$,

$$
\sum_{m \leq v / n} m^{1-2 \sigma}=\frac{1}{2-2 \sigma}\left(\frac{v}{n}\right)^{2-2 \sigma}+c(\sigma)+O\left(v^{1 / 2-\sigma}\right)
$$

where $c(\sigma)$ is a constant depending on σ. By the well-known splitting up argument of Dirichlet (see Titchmarsh [18, §12.1]), we get

$$
\begin{aligned}
& \sum_{n \leq v} \sigma_{1-2 \sigma}(n) \\
& \quad=v \sum_{m \leq \sqrt{v}} m^{-2 \sigma}+\sum_{n \leq \sqrt{v}}\left(\sum_{m \leq v / n} m^{1-2 \sigma}-\sum_{m \leq \sqrt{v}} m^{1-2 \sigma}\right)+O\left(v^{1-\sigma}\right)
\end{aligned}
$$

Applying the above summation formulas we get

$$
\sum_{n \leq v} \sigma_{1-2 \sigma}(n)=\zeta(2 \sigma) v+\frac{\zeta(2-2 \sigma)}{2-2 \sigma} v^{2-2 \sigma}+O\left(v^{1-\sigma}\right)
$$

which implies (2.3). Hence, by (1.4) and (2.1),

$$
\widetilde{\Delta}_{1-2 \sigma}(\xi)-\widetilde{\Delta}_{1-2 \sigma}(u)=\int_{u}^{\xi} \Delta_{1-2 \sigma}(v) d v \ll|\xi-u| \xi^{1-\sigma}
$$

for $u \asymp \xi$. Hence

$$
\widetilde{\Delta}_{1-2 \sigma}(\xi)=Q^{-1} \int_{\xi}^{\xi+Q} \widetilde{\Delta}_{1-2 \sigma}(u) d u+O\left(Q \xi^{1-\sigma}\right)
$$

for $0<Q \ll \xi$. Formula (2.2) gives trivially

$$
\begin{gathered}
\widetilde{\Delta}_{1-2 \sigma}(u)=c_{1} u^{5 / 4-\sigma} \sum_{n>N} \sigma_{1-2 \sigma}(n) n^{\sigma-7 / 4} \cos \left(4 \pi \sqrt{n u}+c_{3}\right) \\
\\
+O\left(u^{3 / 4-\sigma}\right)+O\left(u^{5 / 4-\sigma} N^{\sigma-3 / 4} \log N\right),
\end{gathered}
$$

where $N \geq 1$. It follows that

$$
\begin{aligned}
\widetilde{\Delta}_{1-2 \sigma}(\xi)= & c_{1} Q^{-1} \sum_{n>N} \sigma_{1-2 \sigma}(n) n^{\sigma-7 / 4} \int_{\xi}^{\xi+Q} u^{5 / 4-\sigma} \cos \left(4 \pi \sqrt{n u}+c_{3}\right) d u \\
& +O\left(Q \xi^{1-\sigma}\right)+O\left(\xi^{5 / 4-\sigma} N^{\sigma-3 / 4} \log N\right)
\end{aligned}
$$

The integral here is $\ll \xi^{7 / 4-\sigma} n^{-1 / 2}$ by the first derivative test. Therefore the series contributes

$$
O\left(Q^{-1} \xi^{7 / 4-\sigma} N^{\sigma-5 / 4}\right)
$$

Choosing $N=\xi Q^{-2}$ and $Q=\xi^{(2 \sigma-1) /(4 \sigma-1)}$ completes the proof of Lemma 2.

The following lemma gives the average order of $\widetilde{\Delta}_{1-2 \sigma}(\xi)$. We shall need it because the factor $\log \xi$ in Lemma 2 causes trouble when $\sigma=3 / 4$.

Lemma 3. We have

$$
\int_{1}^{x} \widetilde{\Delta}_{1-2 \sigma}(\xi)^{2} d \xi \ll x^{7 / 2-2 \sigma}
$$

Proof. By Lemma 1, for $1 \leq \xi \leq x$ we have

$$
\begin{aligned}
& \widetilde{\Delta}_{1-2 \sigma}(\xi) \\
& \quad=c_{1} \xi^{5 / 4-\sigma} \sum_{n \leq N(x)} \sigma_{1-2 \sigma}(n) n^{\sigma-7 / 4} \cos (4 \pi \sqrt{n \xi}+\pi / 4)+O\left(\xi^{5 / 4-\sigma}\right)
\end{aligned}
$$

with a sufficiently large $N(x)$ depending only on x (and σ). The rest of the proof is standard and proceeds similarly to the proof of Theorem 13.5 in Ivić [5].

It is not hard to refine Lemma 3 by showing that

$$
\int_{1}^{x} \widetilde{\Delta}_{1-2 \sigma}(\xi)^{2} d \xi=\frac{\zeta^{2}(5 / 2) \zeta(7 / 2-2 \sigma) \zeta(3 / 2+2 \sigma)}{8 \pi^{4}(7-4 \sigma) \zeta(5)} x^{7 / 2-2 \sigma}+O\left(x^{3-2 \sigma}\right) .
$$

However, Lemma 3 is sufficient for our purpose.

It should be noted that except for the inequality $r \leq 1 / 2$ in Lemma 2 , the results in this section are also valid for $1 / 2<\sigma<3 / 4$. However, estimate (4.2) depends on the inequality $r \leq 1 / 2$, and in $\S 6$ there are several estimates which require the condition $3 / 4 \leq \sigma<1$. Therefore the proof of Theorem 1 is valid only on this condition.
3. The basic decomposition. Now we start the proof of Theorem 1. At first we assume $X \asymp T$ and X is not an integer. Let u be a complex variable, $\xi \geq 1$,

$$
h(u, \xi)=2 \int_{0}^{\infty} y^{-u}(1+y)^{u-2 \sigma} \cos (2 \pi \xi y) d y
$$

and define

$$
\begin{aligned}
& g_{1}(u)=\sum_{n \leq X} \sigma_{1-2 \sigma}(n) h(u, n), \\
& g_{2}(u)=\Delta_{1-2 \sigma}(X) h(u, X), \\
& g_{3}(u)=\int_{X}^{\infty}\left(\zeta(2 \sigma)+\zeta(2-2 \sigma) \xi^{1-2 \sigma}\right) h(u, \xi) d \xi, \\
& g_{4}(u)=\int_{X}^{\infty} \Delta_{1-2 \sigma}(\xi) \frac{\partial h(u, \xi)}{\partial \xi} d \xi .
\end{aligned}
$$

Since the integral $h(u, \xi)$ is absolutely convergent for $\operatorname{Re}(u)<1, g_{1}(u)$ and $g_{2}(u)$ can be defined in the same region. Also, Matsumoto [9, (4.2)] gives the analytic continuation of $g_{3}(u)$ to the region $\operatorname{Re}(u)<1$. Hence, if $g_{4}(u)$ can be analytically continued to $\operatorname{Re}(u)<1$, then we can define

$$
G_{j}=\int_{\sigma-i T}^{\sigma+i T} g_{j}(u) d u \quad(1 \leq j \leq 4)
$$

for $1 / 2<\sigma<1$, and obtain (see [9, (4.3)])

$$
\begin{equation*}
E_{\sigma}(T)=-i\left(G_{1}-G_{2}+G_{3}-G_{4}\right)+O(1) . \tag{3.1}
\end{equation*}
$$

Now we show the analytic continuation of $g_{4}(u)$. From (1.4) and (2.1) it follows that

$$
\frac{1}{12} \zeta(2 \sigma-2)+\widetilde{\Delta}_{1-2 \sigma}(\xi)=\int_{0}^{\xi} \Delta_{1-2 \sigma}(t) d t
$$

Hence, by integration by parts we have

$$
\begin{equation*}
g_{4}(u)=-\widetilde{\Delta}_{1-2 \sigma}(X) h^{\prime}(u, X)-\int_{X}^{\infty} \widetilde{\Delta}_{1-2 \sigma}(\xi) h^{\prime \prime}(u, \xi) d \xi, \tag{3.2}
\end{equation*}
$$

where h^{\prime} and $h^{\prime \prime}$ mean $\partial h / \partial \xi$ and $\partial^{2} h / \partial \xi^{2}$, respectively. Here we have used Lemma 2 and the estimate

$$
\begin{equation*}
h^{\prime}(u, \xi)=O\left(\xi^{\operatorname{Re}(u)-2}\right) \tag{3.3}
\end{equation*}
$$

for $\operatorname{Re}(u)<1$ and bounded u, proved in Atkinson [1]. Differentiating the expression

$$
h(u, \xi)=\int_{0}^{i \infty} y^{-u}(1+y)^{u-2 \sigma} e^{2 \pi i \xi y} d y+\int_{0}^{-i \infty} y^{-u}(1+y)^{u-2 \sigma} e^{-2 \pi i \xi y} d y
$$

with respect to ξ, and estimating the resulting integrals, we obtain (3.3). One more differentiation gives

$$
\begin{align*}
h^{\prime \prime}(u, \xi)= & -4 \pi^{2} \int_{0}^{i \infty} y^{2-u}(1+y)^{u-2 \sigma} e^{2 \pi i \xi y} d y \tag{3.4}\\
& -4 \pi^{2} \int_{0}^{-i \infty} y^{2-u}(1+y)^{u-2 \sigma} e^{-2 \pi i \xi y} d y
\end{align*}
$$

and from this formula we can deduce that

$$
\begin{equation*}
h^{\prime \prime}(u, \xi)=O\left(\xi^{\operatorname{Re}(u)-3}\right) . \tag{3.5}
\end{equation*}
$$

It follows from (3.5) and Lemma 2 that the integral on the right-hand side of (3.2) is absolutely convergent for $\operatorname{Re}(u)<1$. Hence (3.2) gives the desired analytic continuation of $g_{4}(u)$. And we divide G_{4} as

$$
\begin{align*}
G_{4}= & -\widetilde{\Delta}_{1-2 \sigma}(X) \int_{\sigma-i T}^{\sigma+i T} h^{\prime}(u, X) d u \tag{3.6}\\
& -\int_{X}^{\infty} \widetilde{\Delta}_{1-2 \sigma}(\xi) \int_{\sigma-i T}^{\sigma+i T} h^{\prime \prime}(u, \xi) d u d \xi \\
= & -G_{4}^{*}-G_{4}^{* *},
\end{align*}
$$

say.
The integrals G_{1}, G_{2} and G_{3} can be treated by the method described in [$9, \S 4-\S 5]$, and the results are

$$
\begin{align*}
& G_{1}=i \Sigma_{1, \sigma}(T, X)+O\left(T^{1 / 4-\sigma}\right), \tag{3.7}\\
& G_{2}=O\left(T^{1 / 2-\sigma}\right), \tag{3.8}\\
& G_{3}=-2 \pi i \zeta(2 \sigma-1)+O\left(T^{\sigma-1}\right) . \tag{3.9}
\end{align*}
$$

We note that the proof of (3.8) uses (2.3) instead of [9, Lemma 2].
4. Evaluation of G_{4}^{*}. We have

$$
\begin{aligned}
& \int_{\sigma-i T}^{\sigma+i T} h^{\prime}(u, X) d u=\frac{\partial}{\partial X} \int_{\sigma-i T}^{\sigma+i T} h(u, X) d u \\
& =\frac{\partial}{\partial X}\left(2 i \int_{0}^{\infty} y^{-\sigma}(1+y)^{-\sigma} \cos (2 \pi X y) \int_{-T}^{T}\left(\frac{1+y}{y}\right)^{i t} d t d y\right) \\
& =\frac{\partial}{\partial X}\left(4 i \int_{0}^{\infty} \frac{\cos (2 \pi X y) \sin (T \log ((1+y) / y))}{y^{\sigma}(1+y)^{\sigma} \log ((1+y) / y)} d y\right) \\
& =\frac{\partial}{\partial X}\left(4 i \int_{0}^{\infty} \frac{X^{2 \sigma-1} \cos (2 \pi y) \sin (T \log ((X+y) / y))}{y^{\sigma}(X+y)^{\sigma} \log ((X+y) / y)} d y\right) \\
& =4 i(2 \sigma-1) X^{2 \sigma-2} \int_{0}^{\infty} \frac{\cos (2 \pi y) \sin (T \log ((X+y) / y))}{y^{\sigma}(X+y)^{\sigma} \log ((X+y) / y)} d y \\
& +4 i X^{2 \sigma-1} T \int_{0}^{\infty} \frac{\cos (2 \pi y) \cos (T \log ((X+y) / y))}{y^{\sigma}(X+y)^{\sigma+1} \log ((X+y) / y)} d y \\
& -4 i \sigma X^{2 \sigma-1} \int_{0}^{\infty} \frac{\cos (2 \pi y) \sin (T \log ((X+y) / y))}{y^{\sigma}(X+y)^{\sigma+1} \log ((X+y) / y)} d y \\
& -4 i X^{2 \sigma-1} \int_{0}^{\infty} \frac{\cos (2 \pi y) \sin (T \log ((X+y) / y))}{y^{\sigma}(X+y)^{\sigma+1} \log ^{2}((X+y) / y)} d y
\end{aligned}
$$

We split up these four integrals at $y=T$. Then we estimate in each case \int_{T}^{∞} by the first derivative test and \int_{0}^{T}, after the further splitting up into integrals over the intervals $\left(2^{-k} T, 2^{-k+1} T\right] \quad(k=1,2, \ldots)$, by the second derivative test (see Ivić $[5,(2.3),(2.5)])$. This gives

$$
\begin{equation*}
\int_{\sigma-i T}^{\sigma+i T} h^{\prime}(u, X) d u \ll T^{-1 / 2} \tag{4.1}
\end{equation*}
$$

Together with Lemma 2 and the definition of G_{4}^{*} this gives

$$
\begin{equation*}
G_{4}^{*} \ll \log T \tag{4.2}
\end{equation*}
$$

The integral in (4.1) has already been calculated in Matsumoto [9, §4], but there are some misprints in the formula stated between (4.6) and (4.7) in [9]. The above calculation contains the correction.
5. Evaluation of $G_{4}^{* *}$ (the first step). In this section we evaluate the inner integral of $G_{4}^{* *}$. Integrating (3.4) twice by parts, we have

$$
\begin{aligned}
h^{\prime \prime}(u, \xi)= & 2 \xi^{-2} \int_{0}^{\infty}\left\{(2-u)(1-u) y^{-u}(1+y)^{u-2 \sigma}\right. \\
& +2(2-u)(u-2 \sigma) y^{1-u}(1+y)^{u-2 \sigma-1} \\
& \left.+(u-2 \sigma)(u-2 \sigma-1) y^{2-u}(1+y)^{u-2 \sigma-2}\right\} \cos (2 \pi \xi y) d y .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\int_{\sigma-i T}^{\sigma+i T} h^{\prime \prime}(u, \xi) d u=2 \xi^{-2} \int_{0}^{\infty}(1+y)^{-2 \sigma-2} I(y) \cos (2 \pi \xi y) d y \tag{5.1}
\end{equation*}
$$

where

$$
I(y)=\int_{\sigma-i T}^{\sigma+i T}\left(u^{2}+P_{1}(y) u+P_{2}(y)\right)\left(\frac{1+y}{y}\right)^{u} d u
$$

and $P_{j}(y)$ is a polynomial in y of degree j whose coefficients may depend on σ. We have

$$
\begin{gathered}
\int_{\sigma-i T}^{\sigma+i T} x^{u} d u=2 i x^{\sigma} \frac{\sin (T \log x)}{\log x}, \\
\int_{\sigma-i T}^{\sigma+i T} u x^{u} d u= \\
=2 i x^{\sigma} \frac{\sigma \sin (T \log x)+T \cos (T \log x)}{\log x}-2 i x^{\sigma} \frac{\sin (T \log x)}{\log ^{2} x}, \\
\int_{\sigma-i T}^{\sigma+i T} u^{2} x^{u} d u= \\
=2 i x^{\sigma} \frac{\sigma^{2} \sin (T \log x)+2 \sigma T \cos (T \log x)-T^{2} \sin (T \log x)}{\log x} \\
\\
-4 i x^{\sigma} \frac{\sigma \sin (T \log x)+T \cos (T \log x)}{\log ^{2} x}+4 i x^{\sigma} \frac{\sin (T \log x)}{\log ^{3} x} .
\end{gathered}
$$

Hence

$$
\begin{aligned}
& I(y)=2 i\left(\frac{1+y}{y}\right)^{\sigma}\left(\log \frac{1+y}{y}\right)^{-1}\left\{-T^{2} \sin \left(T \log \frac{1+y}{y}\right)\right. \\
& \left.\quad+H_{1}(y) T \cos \left(T \log \frac{1+y}{y}\right)+H_{0}(y) \sin \left(T \log \frac{1+y}{y}\right)\right\}
\end{aligned}
$$

where $H_{0}(y)$ and $H_{1}(y)$ are linear combinations of terms of the form

$$
y^{\mu}\left(\log \frac{1+y}{y}\right)^{-\nu}
$$

with non-negative integers μ and ν satisfying $\mu+\nu \leq 2$. We substitute this
expression for $I(y)$ into (5.1). The method used in $\S 4$ gives

$$
\int_{0}^{\infty} \frac{\exp (i T \log ((1+y) / y)) \cos (2 \pi \xi y)}{y^{\sigma-\mu}(1+y)^{\sigma+2}(\log ((1+y) / y))^{\nu+1}} d y \ll T^{-1 / 2}
$$

for $\xi \geq X$. Hence

$$
\begin{aligned}
& \int_{\sigma-i T}^{\sigma+i T} h^{\prime \prime}(u, \xi) d u \\
& \quad=-4 i T^{2} \xi^{-2} \int_{0}^{\infty} \frac{\cos (2 \pi \xi y) \sin (T \log ((1+y) / y))}{y^{\sigma}(1+y)^{\sigma+2} \log ((1+y) / y)} d y+O\left(\xi^{-2} T^{1 / 2}\right) .
\end{aligned}
$$

Then we apply [9, Lemma 3] to estimate the integral on the right hand side. Substituting the result into the definition of $G_{4}^{* *}$ we arrive at

$$
G_{4}^{* *}=(i \sqrt{\pi})^{-1} T^{5 / 2} J+O\left(T^{1 / 2} \int_{X}^{\infty} \xi^{-2}\left|\widetilde{\Delta}_{1-2 \sigma}(\xi)\right| d \xi\right),
$$

where

$$
J=\int_{X}^{\infty} \frac{\widetilde{\Delta}_{1-2 \sigma}(\xi) \sin (T V+2 \pi \xi U-\pi \xi+\pi / 4)}{\xi^{3} V U^{1 / 2}(U-1 / 2)^{\sigma}(U+1 / 2)^{\sigma+2}} d \xi
$$

with

$$
U=\left(\frac{T}{2 \pi \xi}+\frac{1}{4}\right)^{1 / 2}, \quad V=2 \operatorname{arsinh} \sqrt{\frac{\pi \xi}{2 T}} .
$$

Using Lemma 3 we get

$$
\begin{equation*}
G_{4}^{* *}=(i \sqrt{\pi})^{-1} T^{5 / 2} J+O\left(T^{3 / 4-\sigma}\right) . \tag{5.2}
\end{equation*}
$$

6. Evaluation of $G_{4}^{* *}$ (the second step). Now our problem is reduced to the evaluation of J. Consider the truncated integral

$$
J(b)=\int_{X}^{b} \frac{\widetilde{\Delta}_{1-2 \sigma}(\xi) \sin (T V+2 \pi \xi U-\pi \xi+\pi / 4)}{\xi^{3} V U^{1 / 2}(U-1 / 2)^{\sigma}(U+1 / 2)^{\sigma+2}} d \xi \quad(b>X),
$$

and substitute (2.2) into the right-hand side. By Lemma 1 the series in the expression for $\widetilde{\Delta}_{1-2 \sigma}(\xi)$ are uniformly convergent when b is finite, so that in $J(b)$ we can perform termwise integration to obtain

$$
\begin{align*}
J(b)= & c_{1} \sum_{n=1}^{\infty} \sigma_{1-2 \sigma}(n) n^{\sigma-7 / 4} J_{1}(n, b) \tag{6.1}\\
& +c_{4} \sum_{n=1}^{\infty} \sigma_{1-2 \sigma}(n) n^{\sigma-9 / 4} J_{2}(n, b)+O\left(T^{-\sigma-7 / 4}\right),
\end{align*}
$$

where

$$
J_{1}(n, b)=\int_{X}^{b} \xi^{-7 / 4-\sigma} \frac{\cos (4 \pi \sqrt{n \xi}+\pi / 4) \sin (T V+2 \pi \xi U-\pi \xi+\pi / 4)}{V U^{1 / 2}(U-1 / 2)^{\sigma}(U+1 / 2)^{\sigma+2}} d \xi
$$

and

$$
J_{2}(n, b)=\int_{X}^{b} \xi^{-9 / 4-\sigma} \frac{\cos (4 \pi \sqrt{n \xi}-\pi / 4) \sin (T V+2 \pi \xi U-\pi \xi+\pi / 4)}{V U^{1 / 2}(U-1 / 2)^{\sigma}(U+1 / 2)^{\sigma+2}} d \xi
$$

Hence our task is to evaluate the integral

$$
\int_{X}^{b} \frac{\exp (i(\pm 4 \pi \sqrt{n \xi}-T V-2 \pi \xi U+\pi \xi))}{\xi^{\sigma+\mu} V U^{1 / 2}\left(U^{2}-1 / 4\right)^{\sigma}(U+1 / 2)^{2}} d \xi=\left(\frac{2 \pi}{T}\right)^{\sigma} I_{\mu}(n, b ; \pm)
$$

where

$$
\begin{aligned}
I_{\mu}(n, b ; \pm)= & \int_{\sqrt{X}}^{\sqrt{b}} x^{1-2 \mu}\left(\operatorname{arsinh}\left(x \sqrt{\frac{\pi}{2 T}}\right)\right)^{-1}\left(\frac{T}{2 \pi x^{2}}+\frac{1}{4}\right)^{-1 / 4} \\
& \times\left(\left(\frac{T}{2 \pi x^{2}}+\frac{1}{4}\right)^{1 / 2}+\frac{1}{2}\right)^{-2} \exp \{i(\pm 4 \pi x \sqrt{n} \\
& \left.\left.-2 T \operatorname{arsinh}\left(x \sqrt{\frac{\pi}{2 T}}\right)-\left(2 \pi T x^{2}+\pi^{2} x^{4}\right)^{1 / 2}+\pi x^{2}\right)\right\} d x
\end{aligned}
$$

Lemma 4. For $b \geq T^{2}$ and for $\mu=7 / 4$ or $\mu=9 / 4$ we have

$$
\begin{aligned}
I_{\mu}(n, b ; \pm)= & 2 \delta_{n}\left(\frac{2 \pi}{T}\right)^{2} n^{\mu-\sigma-1}\left(\frac{T}{2 \pi}-n\right)^{7 / 2+2 \sigma-2 \mu}\left(\log \frac{T}{2 \pi n}\right)^{-1} \\
& \times \exp \left(i\left(T-T \log \frac{T}{2 \pi n}+\frac{\pi}{4}\right)\right) \\
& +O\left(\delta_{n} n^{\mu-\sigma-1}\left(\frac{T}{2 \pi}-n\right)^{2+2 \sigma-2 \mu} T^{-3 / 2}\right)+O\left(e^{-c T-c \sqrt{n T}}\right) \\
& +O\left(X^{1 / 2+\sigma-\mu} \min \left\{1,\left| \pm 2 \sqrt{n}+\sqrt{X}-\left(X+\frac{2 T}{\pi}\right)^{1 / 2}\right|^{-1}\right\}\right) \\
& +O\left(b^{1 / 2+\sigma-\mu} n^{-1 / 2}\right)
\end{aligned}
$$

where c is a positive constant and

$$
\delta_{n}= \begin{cases}1 & \text { if } 1 \leq n<T /(2 \pi), n X \leq(T /(2 \pi)-n)^{2} \\ & \text { and the double sign takes }+, \\ 0 & \text { otherwise. }\end{cases}
$$

This is a slight modification of Lemma 3 of Atkinson [1], and we omit the proof.

We have $\delta_{n}=1$ if and only if $1 \leq n \leq B(T, \sqrt{X})$ and the double sign takes + . Apply the above lemma to $J_{2}(n, b)$, and substitute the result into (6.1). The contribution of the error term including b vanishes as b tends to infinity. Noting that $B(T, \sqrt{X}) \ll T$ and $T / 2 \pi-B(T, \sqrt{X}) \gg T$, we conclude that the total contribution of $J_{2}(n, b)$ to J is $O\left(T^{-\sigma-7 / 4}\right)$.

Next, applying Lemma 4 to $J_{1}(n, b)$, we have

$$
\begin{align*}
& J_{1}(n, b)=-\left(\frac{2 \pi}{T}\right)^{\sigma}\left\{\delta_{n}\left(\frac{2 \pi}{T}\right)^{2} n^{3 / 4}\left(\log \frac{T}{2 \pi n}\right)^{-1}\right. \tag{6.2}\\
& \left.\quad \times \sin \left(T-T \log \frac{T}{2 \pi n}+\frac{\pi}{4}\right)+O\left(R_{1}+R_{2}+R_{3}^{+}+R_{3}^{-}+R_{4}\right)\right\}
\end{align*}
$$

where

$$
\begin{aligned}
R_{1} & =\delta_{n} n^{3 / 4}\left(\frac{T}{2 \pi}-n\right)^{-3 / 2} T^{-3 / 2} \\
R_{2} & =e^{-c T-c \sqrt{n T}} \\
R_{3}^{ \pm} & =X^{-5 / 4} \min \left\{1,\left| \pm 2 \sqrt{n}+\sqrt{X}-\left(X+\frac{2 T}{\pi}\right)^{1 / 2}\right|^{-1}\right\}, \\
R_{4} & =b^{-5 / 4} n^{-1 / 2}
\end{aligned}
$$

The contribution of the error term R_{4} to $J(b)$ vanishes as b tends to infinity. The contribution of R_{1} and R_{2} can be easily estimated by $O\left(T^{-3}\right)$. The contribution of R_{3}^{+}is

$$
\begin{aligned}
& \ll T^{-\sigma-5 / 4} \sum_{n=1}^{\infty} \sigma_{1-2 \sigma}(n) n^{\sigma-7 / 4} \min \left\{1,|2(\sqrt{n}-\sqrt{B(T, \sqrt{X})})|^{-1}\right\} \\
& =T^{-\sigma-5 / 4}\left(\sum_{n \leq B / 2}+\sum_{B / 2<n \leq B-\sqrt{B}}\right. \\
& \left.+\sum_{B-\sqrt{B}<n \leq B+\sqrt{B}}+\sum_{B+\sqrt{B}<n<2 B}+\sum_{2 B \leq n}\right) \\
& =T^{-\sigma-5 / 4}\left(R_{31}+R_{32}+R_{33}+R_{34}+R_{35}\right),
\end{aligned}
$$

say, where $B=B(T, \sqrt{X})$. Since $B \asymp T$ it is easy to see that $R_{31}=$ $O\left(T^{\sigma-5 / 4} \log T\right)$ and $R_{35}=O\left(T^{\sigma-5 / 4}\right)$. Next,

$$
\begin{align*}
R_{32} & \ll B^{1 / 2} \sum_{B / 2<n \leq B-\sqrt{B}} \sigma_{1-2 \sigma}(n) n^{\sigma-7 / 4}(B-n)^{-1} \tag{6.3}\\
& \ll B^{\sigma-5 / 4} \sum_{\sqrt{B} \leq n \leq B / 2} n^{-1} \sigma_{1-2 \sigma}([B]-n),
\end{align*}
$$

where $[B]$ means the greatest integer $\leq B$. For any positive numbers x and
y, the elementary estimate

$$
\begin{equation*}
\sum_{x<n \leq x+y} \sigma_{1-2 \sigma}(n) \ll y+\sqrt{x} \tag{6.4}
\end{equation*}
$$

holds (see Matsumoto-Meurman [10, (2.1)]). By using this inequality and partial summation, the last sum in (6.3) can be estimated by $O(\log T)$, whence $R_{32}=O\left(T^{\sigma-5 / 4} \log T\right)$. Quite similarly, we have $R_{34}=$ $O\left(T^{\sigma-5 / 4} \log T\right)$. Also, since

$$
R_{33} \ll \sum_{B-\sqrt{B}<n \leq B+\sqrt{B}} \sigma_{1-2 \sigma}(n) n^{\sigma-7 / 4},
$$

the estimate $R_{33}=O\left(T^{\sigma-5 / 4}\right)$ follows by using (6.4) again. Hence, the total contribution of R_{3}^{+}is $O\left(T^{-5 / 2} \log T\right)$, and likewise for R_{3}^{-}, because $R_{3}^{-} \leq R_{3}^{+}$for any n. Therefore we now arrive at

$$
\begin{aligned}
J=-c_{1} & \left(\frac{2 \pi}{T}\right)^{\sigma+2} \sum_{n \leq B} \sigma_{1-2 \sigma}(n) n^{\sigma-1} \\
& \times\left(\log \frac{T}{2 \pi n}\right)^{-1} \sin \left(T-T \log \frac{T}{2 \pi n}+\frac{\pi}{4}\right)+O\left(T^{-5 / 2} \log T\right),
\end{aligned}
$$

which by (5.2) implies

$$
G_{4}^{* *}=-i \Sigma_{2, \sigma}(T, X)+O(\log T),
$$

since $c_{1}=-1 /\left(2 \pi^{2} \sqrt{2}\right)$. Combining this with (4.2) and (3.6) gives

$$
G_{4}=i \Sigma_{2, \sigma}(T, X)+O(\log T) .
$$

Combining this with (3.7)-(3.9) and (3.1), we obtain (1.2) when X is not an integer. This last condition can be removed, because we can easily show that $\Sigma_{j, \sigma}(T, X)-\Sigma_{j, \sigma}\left(T, X^{\prime}\right) \ll 1(j=1,2)$ if $X-X^{\prime} \ll \sqrt{T}$, by using (6.4) and the fact that $B(T, \sqrt{X})-B\left(T, \sqrt{X^{\prime}}\right) \ll \sqrt{T}$. The proof of Theorem 1 is, therefore, now complete.
7. An averaged formula. Now we consider the mean square of $E_{\sigma}(T)$. To prove the weak estimate (1.8), Theorem 1 is enough. But the proof of Theorem 2 requires the following ideas: the averaging technique introduced in Meurman [12]; the application of Montgomery-Vaughan's inequality as Preissmann [17] did; the application of the mean value theorem for Dirichlet polynomials similarly to Matsumoto-Meurman [10]. In this section we prove an averaged formula for $E_{\sigma}(T)$.

From (3.1) and (3.6)-(3.9) we get

$$
E_{\sigma}(T)=\Sigma_{1, \sigma}(T, X)-i G_{4}^{*}-i G_{4}^{* *}+O(1)
$$

for $X \asymp T$. We average with respect to X. Let $X=(L+\mu)^{2}$, where $L \asymp \sqrt{T}, 0 \leq \mu \leq M$ and $M \asymp \sqrt{T}$.

We note that in Matsumoto-Meurman [10] we chose $M \asymp T^{1 / 4}$. This was necessary to get $O\left(T^{-1 / 4}\right)$ in [10, (3.29)]. In the present situation $O(1)$ is enough (and in fact the best we can get for $\sigma=3 / 4$), and hence we may choose $M \asymp \sqrt{T}$.

We have

$$
\frac{1}{M} \int_{0}^{M} \Sigma_{1, \sigma}\left(T,(L+\mu)^{2}\right) d \mu=\Sigma_{1, \sigma}^{*}(T, L, M)
$$

where $\Sigma_{1, \sigma}^{*}(T, L, M)$ is the same as $\Sigma_{1, \sigma}\left(T,(L+M)^{2}\right)$ except that its terms are multiplied by the function

$$
w_{1}(n)= \begin{cases}1 & \text { if } n \leq L^{2} \\ 1+\frac{L}{M}-\frac{\sqrt{n}}{M} & \text { if } L^{2}<n \leq(L+M)^{2}\end{cases}
$$

From (3.6) and (4.1) we have

$$
G_{4}^{*} \ll T^{-1 / 2}\left|\widetilde{\Delta}_{1-2 \sigma}(X)\right| .
$$

Hence, using Lemma 3, we obtain

$$
\frac{1}{M} \int_{0}^{M} G_{4}^{*} d \mu \ll 1
$$

From (5.2) we have

$$
\frac{1}{M} \int_{0}^{M} G_{4}^{* *} d \mu=(i \sqrt{\pi})^{-1} T^{5 / 2} \frac{1}{M} \int_{0}^{M} J d \mu+O(1)
$$

and

$$
\frac{1}{M} \int_{0}^{M} J d \mu=c_{1}\left(\frac{2 \pi}{T}\right)^{\sigma} \sum_{n=1}^{\infty} \sigma_{1-2 \sigma}(n) n^{\sigma-7 / 4} K_{n}+O\left(T^{-7 / 4-\sigma}\right),
$$

where

$$
\begin{aligned}
K_{n}= & \frac{1}{M} \int_{0}^{M} \int_{L+\mu}^{\infty} x^{-5 / 2}\left(\operatorname{arsinh}\left(x \sqrt{\frac{\pi}{2 T}}\right)\right)^{-1}\left(\frac{T}{2 \pi x^{2}}+\frac{1}{4}\right)^{-1 / 4} \\
& \times\left(\left(\frac{T}{2 \pi x^{2}}+\frac{1}{4}\right)^{1 / 2}+\frac{1}{2}\right)^{-2} \sin \left(f\left(T, x^{2}\right)-\pi x^{2}+\pi / 2\right) \\
& \times\left\{\cos (4 \pi x \sqrt{n}+\pi / 4)+c_{1}^{-1} c_{4} \frac{1}{x \sqrt{n}} \cos (4 \pi x \sqrt{n}-\pi / 4)\right\} d x d \mu
\end{aligned}
$$

This is obtained by applying Lemma 1 , and the constants c_{1} and c_{4} are as in Lemma 1. The change of the summation and the integrations can be
justified as in Matsumoto-Meurman [10]. We can evaluate K_{n} by Jutila [8, Theorem 2.2]. The saddle point is $x_{0}=n^{-1 / 2}(T /(2 \pi)-n)$. Note that $c_{0}=1$ in Jutila's theorem. We get

$$
\begin{aligned}
K_{n}= & -w_{2}(n, T)\left(\frac{2 \pi}{T}\right)^{2} n^{3 / 4}\left(\log \frac{T}{2 \pi n}\right)^{-1} \cos (g(T, n)) \\
& +O\left(M^{-1} T^{-5 / 4} \sum_{j=0}^{1} \min \left\{1,(\sqrt{n}-\sqrt{B(T, L+j M)})^{-2}\right\}\right) \\
& +O\left(R(n) T^{-5 / 2} n^{3 / 4}\right)
\end{aligned}
$$

where

$$
w_{2}(n, T)= \begin{cases}1 & \text { if } n<B(T, L+M) \\ \frac{1}{M}\left(\frac{T}{2 \pi \sqrt{n}}-\sqrt{n}-L\right) & \text { if } B(T, L+M) \leq n<B(T, L) \\ 0 & \text { if } n \geq B(T, L)\end{cases}
$$

and

$$
R(n)= \begin{cases}T^{-1 / 2} & \text { if } n<B(T, L+M) \\ 1 & \text { if } B(T, L+M) \leq n<B(T, L) \\ 0 & \text { if } n \geq B(T, L)\end{cases}
$$

Hence

$$
\begin{aligned}
\frac{1}{M} \int_{0}^{M} J d \mu=-c_{1}\left(\frac{2 \pi}{T}\right)^{\sigma+2} & \sum_{n=1}^{\infty} \sigma_{1-2 \sigma}(n) n^{\sigma-1} w_{2}(n, T) \\
& \times\left(\log \frac{T}{2 \pi n}\right)^{-1} \cos (g(T, n))+O\left(T^{-5 / 2}\right)
\end{aligned}
$$

Collecting the above results, we now obtain

$$
\begin{equation*}
E_{\sigma}(T)=\Sigma_{1, \sigma}^{*}(T, L, M)-\Sigma_{2, \sigma}^{*}(T, L, M)+O(1) \tag{7.1}
\end{equation*}
$$

where $\Sigma_{2, \sigma}^{*}(T, L, M)$ is the same as $\Sigma_{2, \sigma}(T, B(T, L))$ except that its terms are multiplied by $w_{2}(n, T)$.
8. Proof of Theorem 2. Let $T \leq t \leq 2 T$. From (7.1) with $L=M=$ $\frac{1}{2} \sqrt{T}$ we have

$$
E_{\sigma}(t)=\Sigma_{1, \sigma}^{*}\left(t, \frac{1}{2} \sqrt{T}, \frac{1}{2} \sqrt{T}\right)-\Sigma_{2, \sigma}^{*}\left(t, \frac{1}{2} \sqrt{T}, \frac{1}{2} \sqrt{T}\right)+O(1)
$$

We shall prove that

$$
\int_{T}^{2 T}\left(\Sigma_{1, \sigma}^{*}\left(t, \frac{1}{2} \sqrt{T}, \frac{1}{2} \sqrt{T}\right)\right)^{2} d t= \begin{cases}\zeta^{2}\left(\frac{3}{2}\right) \frac{\zeta(2)}{\zeta(3)} T \log T+O(T) & \text { if } \sigma=\frac{3}{4} \tag{8.1}\\ O(T) & \text { if } \sigma>\frac{3}{4}\end{cases}
$$

and that

$$
\begin{equation*}
\int_{T}^{2 T}\left(\Sigma_{2, \sigma}^{*}\left(t, \frac{1}{2} \sqrt{T}, \frac{1}{2} \sqrt{T}\right)\right)^{2} d t=O(T) \tag{8.2}
\end{equation*}
$$

Theorem 2 then follows easily.
Consider the left-hand side of (8.1). We square out and integrate term by term. The non-diagonal terms give $O(T)$, as in Matsumoto-Meurman [10]. The diagonal terms contribute

$$
\begin{aligned}
& \frac{1}{2} \sum_{n \leq T} w_{1}(n)^{2} n^{2 \sigma-2} \sigma_{1-2 \sigma}(n)^{2} \\
& \quad \times \int_{T}^{2 T}\left(\frac{t}{2 \pi}\right)^{1-2 \sigma}\left(\operatorname{arsinh} \sqrt{\frac{\pi n}{2 t}}\right)^{-2}\left(\frac{2 t}{\pi n}+1\right)^{-1 / 2} d t \\
& +\frac{1}{2} \sum_{n \leq T} w_{1}(n)^{2} n^{2 \sigma-2} \sigma_{1-2 \sigma}(n)^{2} \\
& \quad \times \int_{T}^{2 T}\left(\frac{t}{2 \pi}\right)^{1-2 \sigma}\left(\operatorname{arsinh} \sqrt{\frac{\pi n}{2 t}}\right)^{-2}\left(\frac{2 t}{\pi n}+1\right)^{-1 / 2} \cos (2 f(t, n)) d t
\end{aligned}
$$

Here we have used the formula $\cos ^{2} z=\frac{1}{2}+\frac{1}{2} \cos (2 z)$. The second sum is $O\left(T^{2-2 \sigma}\right)$, which we can see by estimating the integral by Ivić [5, Lemma 15.3]. For the first sum we use

$$
(\operatorname{arsinh} z)^{-2}=z^{-2}+O(1) \quad(z \rightarrow 0)
$$

and

$$
(z+1)^{-1 / 2}=z^{-1 / 2}+O\left(z^{-3 / 2}\right) \quad(z \rightarrow \infty)
$$

to deduce that it is equal to

$$
\frac{1}{2} \sum_{n \leq T} w_{1}(n)^{2} n^{2 \sigma-2} \sigma_{1-2 \sigma}(n)^{2} \int_{T}^{2 T}\left(\frac{t}{2 \pi}\right)^{1-2 \sigma}\left(\frac{2 t}{\pi n}\right)^{1 / 2} d t+O(T)
$$

For $\sigma>3 / 4$ this is $O(T)$, proving the second part of (8.1). For $\sigma=3 / 4$ the above is equal to

$$
T \sum_{n \leq T} w_{1}(n)^{2} n^{-1} \sigma_{-1 / 2}(n)^{2}+O(T)=T \sum_{n \leq T / 4} n^{-1} \sigma_{-1 / 2}(n)^{2}+O(T),
$$

because the terms with $T / 4<n \leq T$ contribute $O(T)$ and for $n \leq T / 4$ we have $w_{1}(n)=1$. By Titchmarsh [18, (1.3.3)] and Perron's formula we get

$$
\sum_{n \leq T / 4} n^{-1} \sigma_{-1 / 2}(n)^{2}=\frac{\zeta^{2}(3 / 2) \zeta(2)}{\zeta(3)} \log T+O(1)
$$

which proves the first part of (8.1).

Next we prove (8.2). The left-hand side of (8.2) is

$$
\begin{equation*}
\ll T^{1-2 \sigma} \int_{T}^{2 T}\left|\sum_{n} w_{2}(n, t) \sigma_{1-2 \sigma}(n) n^{\sigma-1+i t}\left(\log \frac{t}{2 \pi n}\right)^{-1}\right|^{2} d t . \tag{8.3}
\end{equation*}
$$

We proceed to remove the factor $w_{2}(n, t) / \log (t /(2 \pi n))$ in the above sum by partial summation. We have $B(t, \sqrt{T}) \geq \alpha T$ for some sufficiently small positive α. Consequently, $w_{2}(n, t)=1$ for $n \leq \alpha T$. For $n>\alpha T$ we have $w_{2}(n+1, t)-w_{2}(n, t) \ll T^{-1}$. It follows that

$$
\begin{align*}
w_{2}(n+1, t)\left(\log \frac{t}{2 \pi(n+1)}\right)^{-1} & -w_{2}(n, t)\left(\log \frac{t}{2 \pi n}\right)^{-1} \tag{8.4}\\
& \ll\left(n \log ^{2} \frac{t}{2 \pi n}\right)^{-1} \ll\left(n \log ^{2} \frac{T}{n}\right)^{-1} .
\end{align*}
$$

In particular, since $w_{2}(n, t)=0$ for $n \geq B\left(t, \frac{1}{2} \sqrt{T}\right)$, we have

$$
\begin{equation*}
w_{2}(\beta, t)\left(\log \frac{t}{2 \pi \beta}\right)^{-1} \ll T^{-1} \tag{8.5}
\end{equation*}
$$

where β means the greatest integer $\leq B\left(t, \frac{1}{2} \sqrt{T}\right)$. Now using (8.4), (8.5) and partial summation we see that the sum \sum_{n} in (8.3) is
$\ll T^{-1}\left|\sum_{n=1}^{\beta} \sigma_{1-2 \sigma}(n) n^{\sigma-1+i t}\right|+\sum_{n=1}^{\beta-1}\left(n \log ^{2} \frac{T}{n}\right)^{-1}\left|\sum_{m=1}^{n} \sigma_{1-2 \sigma}(m) m^{\sigma-1+i t}\right|$.
The first sum here is trivially $O\left(T^{\sigma}\right)$, so its contribution to the left-hand side of (8.2) is $O(1)$. Hence it remains to show that

$$
\int_{T}^{2 T}\left(\sum_{n \leq T / 2}\left(n \log ^{2} \frac{T}{n}\right)^{-1}\left|\sum_{m=1}^{n} \sigma_{1-2 \sigma}(m) m^{\sigma-1+i t}\right|\right)^{2} d t \ll T^{2 \sigma},
$$

since $\beta-1 \leq T / 2$. Here we use Schwarz's inequality, take the integration under the summation and use the mean value theorem for Dirichlet polynomials (see Ivić [5, Theorem 5.2]). We also need the elementary estimate

$$
\sum_{n \leq x} \sigma_{1-2 \sigma}(n)^{2} \ll x
$$

(see $[10, \S 2]$). Then (8.2) follows and the proof of Theorem 2 is complete.
9. Proof of Theorem 3. In this final section we assume $1 / 2<\sigma<3 / 4$. Let G be a parameter satisfying $G=o(T)$. Our first goal is to deduce from (1.2) a suitable expression for $E_{\sigma}(T+u)$, where $|u| \leq G$. In (1.2) we take $X=T$. For $n \leq T$ and $|u| \leq G$ we find by straightforward calculation that

$$
e(T+u, n)=e(T, n)\left(1+O\left(|u| T^{-1}\right)\right)=O(1),
$$

$$
(T+u)^{3 / 4-\sigma}=T^{3 / 4-\sigma}\left(1+O\left(|u| T^{-1}\right)\right),
$$

and

$$
f(T+u, n)=f(T, n)+2 u \operatorname{arsinh} \sqrt{\frac{\pi n}{2 T}}+u^{2} d(T, n)+O\left(|u|^{3} T^{-2}\right),
$$

where $d(T, n)$ is real and

$$
\begin{equation*}
d(T, n) \ll T^{-1} \tag{9.1}
\end{equation*}
$$

(see Meurman [11, p. 363]). We have

$$
B(T+u, \sqrt{T})=c_{6} T+O(|u|),
$$

where

$$
\begin{equation*}
c_{6}=\frac{1}{4 \pi^{2}}\left(\frac{1}{2 \pi}+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{2 \pi}\right)^{1 / 2}\right)^{-1}<\frac{1}{4 \pi^{2}} . \tag{9.2}
\end{equation*}
$$

For $n \leq B(T+u, \sqrt{T})$ and $|u| \leq G$ we have

$$
\begin{aligned}
(T+u)^{1 / 2-\sigma} & =T^{1 / 2-\sigma}\left(1+O\left(|u| T^{-1}\right)\right) \\
\left(\log \frac{T+u}{2 \pi n}\right)^{-1} & =\left(\log \frac{T}{2 \pi n}\right)^{-1}+O\left(|u| T^{-1}\right)
\end{aligned}
$$

and

$$
g(T+u, n)=g(T, n)+u \log \frac{T}{2 \pi n}+\frac{u^{2}}{2 T}+O\left(|u|^{3} T^{-2}\right) .
$$

Using these facts and (6.4), it may be easily deduced from (1.2) that for $|u| \leq G$ we have

$$
\begin{align*}
E_{\sigma}(T & +u) \tag{9.3}\\
= & \sqrt{2}\left(\frac{T}{2 \pi}\right)^{3 / 4-\sigma} \sum_{n \leq T} a(n) e(T, n) \\
& \times \cos \left(f(T, n)+2 u \operatorname{arsinh} \sqrt{\frac{\pi n}{2 T}}+u^{2} d(T, n)\right) \\
& -2\left(\frac{T}{2 \pi}\right)^{1 / 2-\sigma} \sum_{n \leq c_{6} T} \sigma_{1-2 \sigma}(n) n^{\sigma-1}\left(\log \frac{T}{2 \pi n}\right)^{-1} \\
& \times \cos \left(g(T, n)+u \log \frac{T}{2 \pi n}+\frac{u^{2}}{2 T}\right) \\
& +O(\log T)+O\left(G^{3} T^{-3 / 2}\right)+O\left(G T^{-1 / 2}\right),
\end{align*}
$$

where

$$
a(n)=(-1)^{n} \sigma_{1-2 \sigma}(n) n^{\sigma-5 / 4} .
$$

Set $Z=\sqrt{2 T / \pi Y}$, and suppose that Y satisfies

$$
\begin{equation*}
1 \leq Y \leq T^{1 / 4} \tag{9.4}
\end{equation*}
$$

Our next goal is to deduce from (9.3) an expression for

$$
\begin{equation*}
E_{\sigma}(T, Y)=\int_{-G / Z}^{G / Z} E_{\sigma}(T+Z t) e^{-t^{2}} d t \tag{9.5}
\end{equation*}
$$

For this purpose we have to consider the integrals

$$
\begin{array}{r}
I_{1}(n)=\int_{-G / Z}^{G / Z} \exp \left(2 i Z\left(\operatorname{arsinh} \sqrt{\frac{\pi n}{2 T}}\right) t-\left(1-i d(T, n) Z^{2}\right) t^{2}\right) d t \tag{9.6}\\
(n \leq T)
\end{array}
$$

and

$$
\begin{align*}
I_{2}(n)= & \int_{-G / Z}^{G / Z} \exp \left(i Z\left(\log \frac{T}{2 \pi n}\right) t-\left(1-\frac{i Z^{2}}{2 T}\right) t^{2}\right) d t \tag{9.7}\\
& \left(n \leq c_{6} T\right)
\end{align*}
$$

By the general formula

$$
\int_{-\infty}^{\infty} \exp \left(A t-B t^{2}\right) d t=(\pi / B)^{1 / 2} \exp \left(A^{2} / 4 B\right) \quad(\operatorname{Re}(B)>0)
$$

(see Ivić $[5,(\mathrm{~A} .38)])$ we get
$I_{1}(n)=\left(\frac{\pi}{1-i d(T, n) Z^{2}}\right)^{1 / 2} \exp \left(-\frac{(Z \operatorname{arsinh} \sqrt{\pi n / 2 T})^{2}}{1-i d(T, n) Z^{2}}\right)+O\left(e^{-(G / Z)^{2}}\right)$
and

$$
I_{2}(n)=\left(\frac{\pi}{1-i Z^{2} / 2 T}\right)^{1 / 2} \exp \left(-\frac{(Z \log (T / 2 \pi n))^{2}}{4-2 i Z^{2} / T}\right)+O\left(e^{-(G / Z)^{2}}\right)
$$

Suppose now that $G \geq T^{1 / 2+\varepsilon}$ for some fixed positive ε. Then $\exp \left(-(G / Z)^{2}\right)$ $\ll \exp \left(-T^{\varepsilon}\right)$. In case $n \leq Y^{2}$ we have

$$
\left(\frac{\pi}{1-i d(T, n) Z^{2}}\right)^{1 / 2}=\pi^{1 / 2}+O\left(Z^{2} T^{-1}\right)=\pi^{1 / 2}+O\left(Y^{-1}\right)
$$

by (9.1), since $d(T, n)$ is real. Also, using (9.4) and the formula $\operatorname{arsinh} x=$ $x+O\left(x^{3}\right)$, we have

$$
\begin{aligned}
-\frac{(Z \operatorname{arsinh} \sqrt{\pi n / 2 T})^{2}}{1-i d(T, n) Z^{2}} & =-Z^{2} \frac{\pi n}{2 T}+O\left(\left(\frac{Z n}{T}\right)^{2}\right)+O\left(Z^{4} T^{-2} n\right) \\
& =-n Y^{-1}+O\left(n Y^{-2}\right)
\end{aligned}
$$

Hence it follows that, for $n \leq Y^{2}$,

$$
\begin{align*}
I_{1}(n) & =\pi^{1 / 2} e^{-n / Y}\left(1+O\left(Y^{-1}\right)+O\left(n Y^{-2}\right)\right)+O\left(\exp \left(-T^{\varepsilon}\right)\right) \tag{9.8}\\
& =\pi^{1 / 2} e^{-n / Y}+O\left(n^{-1}\right)
\end{align*}
$$

In case $Y^{2}<n \leq T$ we have

$$
\begin{align*}
I_{1}(n) & \ll \exp \left(-c_{7} Z^{2} n / T\right)+\exp \left(-T^{\varepsilon}\right) \tag{9.9}\\
& =\exp \left(-2 c_{7} n / \pi Y\right)+\exp \left(-T^{\varepsilon}\right)
\end{align*}
$$

with some positive c_{7}. For any $n \leq c_{6} T$ we have

$$
\begin{equation*}
I_{2}(n) \ll \exp \left(-c_{8}\left(Z \log \frac{T}{2 \pi c_{6} T}\right)^{2}\right)+\exp \left(-T^{\varepsilon}\right) \ll \exp \left(-T^{\varepsilon}\right) \tag{9.10}
\end{equation*}
$$

with some positive c_{8}. By (9.3) and (9.5)-(9.7) we get

$$
\begin{aligned}
& E_{\sigma}(T, Y)=\sqrt{2}\left(\frac{T}{2 \pi}\right)^{3 / 4-\sigma} \sum_{n \leq T} a(n) e(T, n) \operatorname{Re}\left(e^{i f(T, n)} I_{1}(n)\right) \\
&-2\left(\frac{T}{2 \pi}\right)^{1 / 2-\sigma} \sum_{n \leq c_{6} T} \sigma_{1-2 \sigma}(n) n^{\sigma-1}\left(\log \frac{T}{2 \pi n}\right)^{-1} \\
& \times \operatorname{Re}\left(e^{i g(T, n)} I_{2}(n)\right)+O\left(G^{3} T^{-3 / 2}\right)
\end{aligned}
$$

Here we have combined the error terms using $G \geq T^{1 / 2+\varepsilon}$. Then we use (9.8)-(9.10) to obtain

$$
\begin{aligned}
& E_{\sigma}(T, Y)=\sqrt{2 \pi}\left(\frac{T}{2 \pi}\right)^{3 / 4-\sigma} \sum_{n \leq Y^{2}} a(n) e(T, n) e^{-n / Y} \cos (f(T, n)) \\
&+O\left(G^{3} T^{-3 / 2}\right)+O\left(T^{3 / 4-\sigma}\right)
\end{aligned}
$$

Now we choose $G=T^{3 / 4-\sigma / 3}$ whence $T^{1 / 2+\varepsilon} \leq G=o(T)$ with $\varepsilon=1 / 4-$ $\sigma / 3$, as required. Then, since $e(T, n)=1+O(n / T)$ and

$$
f(T, n)=\sqrt{8 \pi n T}-\pi / 4+O\left(n^{3 / 2} T^{-1 / 2}\right)
$$

(see $[5,(15.74),(15.75)])$, and noting (9.4), we get easily

$$
\begin{equation*}
E_{\sigma}(T, Y)=\sqrt{2 \pi}\left(\frac{T}{2 \pi}\right)^{3 / 4-\sigma}(S(T, Y)+O(1)) \tag{9.11}
\end{equation*}
$$

where

$$
\begin{equation*}
S(T, Y)=\sum_{n \leq Y^{2}} a(n) e^{-n / Y} \cos (\sqrt{8 \pi n T}-\pi / 4) \tag{9.12}
\end{equation*}
$$

From (9.5) and (9.11) it is clear that Theorem 3 follows from

Lemma 5. For any positive T_{1} we can choose $T \geq T_{1}$ and Y satisfying (9.4) for which

$$
\begin{equation*}
S(T, Y) \geq 10^{-11} \zeta(2 \sigma)^{-2}(\log T)^{\sigma-1 / 4} \tag{9.13}
\end{equation*}
$$

To prove Lemma 5, we shall first obtain a lower bound for the sum

$$
\varrho(x)=\sum_{n \leq x}(-1)^{n} \sigma_{1-2 \sigma}(n) .
$$

Lemma 6. There exists a constant $c_{9}=c_{9}(\sigma) \geq 1$ such that $\varrho(x) \geq x / 12$ for any $x \geq c_{9}$.

Proof. Since

$$
\sigma_{1-2 \sigma}(2 n) \geq 1+2^{1-2 \sigma} \sigma_{1-2 \sigma}(n)
$$

and

$$
\sum_{n \leq x} \sigma_{1-2 \sigma}(n) \sim \zeta(2 \sigma) x
$$

(see (1.4)), it follows that

$$
\begin{aligned}
\varrho(x) & =2 \sum_{n \leq x / 2} \sigma_{1-2 \sigma}(2 n)-\sum_{n \leq x} \sigma_{1-2 \sigma}(n) \\
& \geq 2[x / 2]+2^{2-2 \sigma} \sum_{n \leq x / 2} \sigma_{1-2 \sigma}(n)-\sum_{n \leq x} \sigma_{1-2 \sigma}(n) \\
& \sim\left(1+\left(2^{1-2 \sigma}-1\right) \zeta(2 \sigma)\right) x .
\end{aligned}
$$

By Titchmarsh $[18,(2.2 .1)]$, the coefficient of x equals

$$
1-\sum_{n=1}^{\infty}(-1)^{n-1} n^{-2 \sigma} \geq 2^{-2 \sigma}-3^{-2 \sigma} \geq \frac{1}{2} \cdot 3^{-3 / 2}>\frac{1}{12}
$$

which completes the proof of Lemma 6.
We denote by q the greatest integer $\leq 10^{8} \zeta(2 \sigma)^{2}$. Clearly we may suppose that $T_{1} \geq \exp \left(\left(c_{9} q\right)^{4}\right)$. Let $Y=\log T_{1}$. Then $Y \geq 1$, as required in (9.4). We apply Dirichlet's theorem (see Ivić [5, Lemma 9.1]) to find a T satisfying

$$
T_{1} \leq T \leq T_{1} q^{2 q Y}, \quad\|\sqrt{2 n T / \pi}\| \leq q^{-1} \quad(1 \leq n \leq q Y)
$$

where $\|x\|$ denotes the distance of x from the nearest integer. Then $Y \leq$ $\log T \leq T^{1 / 4}$ as required in (9.4). Moreover, it follows that

$$
\log T \leq \log T_{1}+2 q Y \log q \leq q^{2} Y
$$

whence

$$
\begin{equation*}
Y^{\sigma-1 / 4} \geq q^{1 / 2-2 \sigma}(\log T)^{\sigma-1 / 4} \geq q^{-1}(\log T)^{\sigma-1 / 4} \tag{9.14}
\end{equation*}
$$

Another consequence is that

$$
\begin{align*}
\left\lvert\, \frac{1}{\sqrt{2}}\right. & -\cos (\sqrt{8 \pi n T}-\pi / 4) \mid \tag{9.15}\\
& =|\cos (-\pi / 4)-\cos (\pm 2 \pi\|\sqrt{2 n T / \pi}\|-\pi / 4)| \\
& \leq 2 \pi\|\sqrt{2 n T / \pi}\| \leq 2 \pi q^{-1} \quad(1 \leq n \leq q Y) .
\end{align*}
$$

By a simple elementary argument we have

$$
\begin{equation*}
\sum_{n \leq x} \sigma_{1-2 \sigma}(n) \leq \zeta(2 \sigma) x \tag{9.16}
\end{equation*}
$$

Hence

$$
\sum_{n \leq x}|a(n)| \leq 4 \zeta(2 \sigma) x^{\sigma-1 / 4}
$$

and

$$
\sum_{n>x}|a(n)| n^{-1} \leq 3 \zeta(2 \sigma) x^{\sigma-5 / 4} .
$$

Using the last two inequalities and (9.15) we get

$$
\begin{equation*}
S(T, Y)=S_{1}(Y)-S_{2}(Y)-S_{3}(Y), \tag{9.17}
\end{equation*}
$$

where

$$
\begin{align*}
S_{1}(Y) & =\frac{1}{\sqrt{2}} \sum_{n \leq q Y} a(n) e^{-n / Y}, \\
S_{2}(Y) & =\sum_{n \leq q Y} a(n) e^{-n / Y}\left(\frac{1}{\sqrt{2}}-\cos (\sqrt{8 \pi n T}-\pi / 4)\right) \tag{9.18}\\
& \leq 2 \pi q^{-1} \sum_{n \leq q Y}|a(n)| \leq 8 \pi \zeta(2 \sigma) q^{-1 / 2} Y^{\sigma-1 / 4}, \\
S_{3}(Y) & =-\sum_{q Y<n \leq Y^{2}} a(n) e^{-n / Y} \cos (\sqrt{8 \pi n T}-\pi / 4) \tag{9.19}\\
& \leq Y \sum_{n>q Y}|a(n)| n^{-1} \leq 3 \zeta(2 \sigma) q^{-1 / 2} Y^{\sigma-1 / 4} .
\end{align*}
$$

Consider $S_{1}(Y)$. We define $\phi(x)=x^{\sigma-5 / 4} e^{-x / Y}$. Then

$$
\phi^{\prime}(x)=-\left(\left(\frac{5}{4}-\sigma\right) x^{-1}+Y^{-1}\right) \phi(x),
$$

which is negative, and for $1 \leq x \leq c_{9}$ we have $\left|\phi^{\prime}(x)\right| \leq 2 / x$. Using these facts, (9.16) and partial summation we get

$$
S_{1}(Y)=\frac{1}{\sqrt{2}} \sum_{n \leq q Y}(-1)^{n} \sigma_{1-2 \sigma}(n) \phi(n)=S_{11}(Y)-S_{12}(Y)-S_{13}(Y),
$$

where

$$
\begin{aligned}
& S_{11}(Y)=-\frac{1}{\sqrt{2}} \int_{c_{9}}^{q Y} \phi^{\prime}(x) \varrho(x) d x \\
& S_{12}(Y)=\frac{1}{\sqrt{2}} \int_{1}^{c_{9}} \phi^{\prime}(x) \varrho(x) d x \leq \sqrt{2} \zeta(2 \sigma) c_{9} \leq \zeta(2 \sigma) q^{-1 / 2} Y^{\sigma-1 / 4}, \\
& S_{13}(Y)=-\frac{1}{\sqrt{2}} \phi(q Y) \varrho(q Y) \leq \zeta(2 \sigma) q^{-1 / 2} Y^{\sigma-1 / 4} .
\end{aligned}
$$

Consider $S_{11}(Y)$. Since $Y \geq c_{9}$, we get, by Lemma 6 ,

$$
\begin{aligned}
S_{11}(Y) & \geq-\frac{1}{\sqrt{2}} \int_{Y}^{q Y} \phi^{\prime}(x) \varrho(x) d x \geq-\frac{Y}{12 \sqrt{2}} \int_{Y}^{q Y} \phi^{\prime}(x) d x \\
& =\frac{Y}{12 \sqrt{2}}(\phi(Y)-\phi(q Y)) \geq \frac{1}{100} Y^{\sigma-1 / 4}
\end{aligned}
$$

Hence

$$
S_{1}(Y) \geq\left(\frac{1}{100}-2 \zeta(2 \sigma) q^{-1 / 2}\right) Y^{\sigma-1 / 4}
$$

Combined with (9.17)-(9.19) and (9.14) this gives

$$
S(T, Y) \geq c_{10} Y^{\sigma-1 / 4} \geq c_{10} q^{-1}(\log T)^{\sigma-1 / 4},
$$

where $c_{10}=\frac{1}{100}-(8 \pi+5) \zeta(2 \sigma) q^{-1 / 2}$. By the choice of q we have

$$
c_{10} q^{-1} \geq \frac{1}{200} q^{-1}>10^{-11} \zeta(2 \sigma)^{-2},
$$

which completes the proof of Lemma 5, and hence of Theorem 3.

References

[1] F. V. Atkinson, The mean-value of the Riemann zeta function, Acta Math. 81 (1949), 353-376.
[2] K. Chandrasekharan and R. Narasimhan, Approximate functional equations for a class of zeta-functions, Math. Ann. 152 (1963), 30-64.
[3] J. L. Hafner, On the representation of the summatory functions of a class of arithmetical functions, in: Analytic Number Theory, M. I. Knopp (ed.), Lecture Notes in Math. 899, Springer, 1981, 148-165.
[4] D. R. Heath-Brown, The mean value theorem for the Riemann zeta-function, Mathematika 25 (1978), 177-184.
[5] A. Ivić, The Riemann Zeta-Function. The Theory of the Riemann Zeta-Function with Applications, Wiley, 1985.
[6] -, Mean Values of the Riemann Zeta Function, Lectures on Math. 82, Tata Inst. Fund. Res., Springer, 1991.
[7] -, La valeur moyenne de la fonction zêta de Riemann, Sém. Théorie des Nombres 1990/91, Université Orsay, Paris, to appear.
[8] M. Jutila, A Method in the Theory of Exponential Sums, Lectures on Math. 80, Tata Inst. Fund. Res., Springer, 1987.
[9] K. Matsumoto, The mean square of the Riemann zeta-function in the critical strip, Japan. J. Math. 15 (1989), 1-13.
[10] K. Matsumoto and T. Meurman, The mean square of the Riemann zetafunction in the critical strip II, Journées Arithmétiques de Genève 1991, Astérisque 209 (1992), 265-274.
[11] T. Meurman, A generalization of Atkinson's formula to L-functions, Acta Arith. 47 (1986), 351-370.
[12] -, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford (2) 38 (1987), 337-343.
[13] -, A simple proof of Voronoï's identity, to appear.
[14] -, Voronoï's identity for the Riesz mean of $\sigma_{\alpha}(n)$, unpublished manuscript, 24 pp .
[15] Y. Motohashi, The mean square of $\zeta(s)$ off the critical line, unpublished manuscript, 11 pp .
[16] A. Oppenheim, Some identities in the theory of numbers, Proc. London Math. Soc. (2) 26 (1927), 295-350.
[17] E. Preissmann, Sur la moyenne quadratique de la fonction zêta de Riemann, preprint.
[18] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Univ. Press, Oxford 1951.

DEPARTMENT OF MATHEMATICS	DEPARTMENT OF MATHEMATICS
FACULTY OF EDUCATION	UNIVERSITY OF TURKU
IWATE UNIVERSITY	SF-20500 TURKU
MORIOKA 020	FINLAND
JAPAN	

[^0]: $\left({ }^{1}\right)$ Added in proof (June 1993). In [6] there is an error on top of p. 89 invalidating Theorem 2.11 and its Corollary 1 but not its Corollary 2. However, Professor Ivi/c has informed us that he can now recover his corollaries.

