
ACTA ARITHMETICA

LXIV.4 (1993)

Generating units modulo an odd integer
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An addition-subtraction chain is a finite sequence of integers that begins
with 1, and in which every member except the first one is the sum or the
difference of two not necessarily different earlier members.

Theorem 1. Let n be an odd integer , and let a be an integer satisfying
gcd(a, n) = 1. Then there exists an addition-subtraction chain that ends
with a and that consists of integers that are relatively prime to n.

This theorem is proved below. It answers a question that F. Alberto
Grünbaum raised in connection with the phase problem in crystallography.

In principle, one can use our proof of Theorem 1 to obtain an upper
bound for the length of the addition-subtraction chain and for the absolute
values of its members, but it is not likely to be a very good one.

Let Z be the ring of integers, and let n ∈ Z. Denote by Z/nZ the ring
of integers modulo n. The image of an integer a under the natural map
Z → Z/nZ is denoted by (a mod n), or simply by a if there is no ambiguity
about n. Let (Z/nZ)∗ be the group of units of Z/nZ, and let the order of
(Z/nZ)∗ be denoted by ϕ(n).

Theorem 2. Let n be a positive odd integer , and let H ⊂ (Z/nZ)∗

be a subgroup containing −1 with the property that if u ∈ H is such that
u− 1 ∈ (Z/nZ)∗, then u− 1 ∈ H. Then H = (Z/nZ)∗.

We shall first prove Theorem 2. It will be used in the proof of Theorem 1.
If n, H satisfy the conditions of Theorem 2, then we have

(1) if u, v ∈ H are such that u + v ∈ (Z/nZ)∗, then u + v ∈ H.
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To prove this, put w = −uv−1. Then w ∈ H and w − 1 = −v−1(u + v) ∈
(Z/nZ)∗, so w − 1 ∈ H and therefore u + v = −v(w − 1) ∈ H. From (1) it
follows that

(2) 2 ∈ H, 4 ∈ H .

The proof of Theorem 2 depends on the following auxiliary result.

Lemma. Let n, H satisfy the conditions of Theorem 2, and let d be a
divisor of n. Assume that the following conditions are satisfied :

(i) gcd(d, n/d) = 1;
(ii) there exists u ∈ H, u 6= 1, with u ≡ 1 mod d;
(iii) for each u ∈ H, u 6= 1, with u ≡ 1 mod d one has gcd(u− 1, n) = d.

Then n/d is a prime number , and the number of u ∈ H with u ≡ 1 mod d
is (n/d)− 1.

In the proof of the lemma we write e = n/d. We have gcd(d, e) = 1, so by
the Chinese remainder theorem we may identify Z/nZ with (Z/dZ)×(Z/eZ);
in this identification, (a mod n) corresponds to (a mod d, a mod e), and we
have (Z/nZ)∗ = (Z/dZ)∗ × (Z/eZ)∗. Write

I = {v ∈ (Z/eZ)∗ : (1, v) ∈ H} .

This is a subgroup of (Z/eZ)∗, and it is isomorphic to the kernel of the
natural map H → (Z/dZ)∗ that sends u to (u mod d). Condition (ii) of the
lemma is clearly equivalent to #I > 1, and condition (iii) to

(3) v − 1 ∈ (Z/eZ)∗ for all v ∈ I, v 6= 1 .

From #I > 1 it follows that e > 1. We claim that

(4)
∑
x∈I

x = 0 (in Z/eZ) .

To prove this, choose v ∈ I, v 6= 1. Then vI = I, so

(v − 1)
∑
x∈I

x =
∑
x∈I

vx−
∑
x∈I

x = 0 .

By (3), this implies (4). Next we show that

(5) v + 1 ∈ (Z/eZ)∗ for all v ∈ I, v 6= −1 .

Suppose that v ∈ I is such that v+1 6∈ (Z/eZ)∗. Then we have v 6= 1. Also,
from v2 ∈ I and v2 − 1 = (v − 1)(v + 1) 6∈ (Z/eZ)∗ it follows by (3) that
v2 = 1. Then (v − 1)(v + 1) = 0, which by (3) implies that v + 1 = 0, so
v = −1. This proves (5).

Let v ∈ I, v 6= −1. Then (1, v) ∈ H and (1, v) + (1, 1) = (2, v + 1) ∈
(Z/dZ)∗×(Z/eZ)∗ = (Z/nZ)∗, so (2, v + 1) ∈H. By (2), this implies that
(1, (v+1)/2) = (2, v+1)·2−1 ∈ H, and therefore (v+1)/2 ∈ I and v+1 ∈ 2I.
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This proves that I +1 ⊂ (2I)∪{0}. The cardinality of I +1 is one less than
that of (2I)∪{0}. We can determine the missing element by comparing the
sums of the elements in the two sets. Putting k = #I we find from (4) that∑

x∈I+1

x = k mod e,
∑

x∈(2I)∪{0}

x = 0 .

Therefore we have

(6) (I + 1) ∪ {−k mod e} = (2I) ∪ {0} .

Comparing the cardinalities of the two sets we see that (−k mod e) 6∈ I +1,
that is,

(7) (−k − 1 mod e) 6∈ I .

Since k is the order of a subgroup of (Z/eZ)∗, we have 1 ≤ k ≤ ϕ(e) < e, so
(−k mod e) 6= 0. Therefore (6) shows that (−k mod e) ∈ 2I, so (1,−k/2) ∈
H and hence (2,−k) = 2 · (1,−k/2) ∈ H. However, from (7) we see that
(2,−k)− 1 = (1,−k− 1) 6∈ H, so (1,−k− 1) 6∈ (Z/nZ)∗. Therefore we have

(8) gcd(k + 1, e) > 1 .

From (−k mod e) 6= 0 and (6) we find that 0 ∈ I + 1, that is, −1 ∈ I.
Because −1 has order 2 it follows that the order k of I is even. From
−I = I and (6) we obtain

(9) (I − 1) ∪ {k mod e} = (2I) ∪ {0} .

We deduce that if 1 ≤ i ≤ k, then (i mod e) ∈ I if i is odd and (i mod e) ∈ 2I
if i is even. This is proved by induction on i, the case i = 1 being obvious.
If i is even, 2 ≤ i ≤ k, then by the inductive assumption we have i− 1 ∈ I,
so i = (i − 1) + 1 ∈ I + 1, and from (6) and i 6= 0 one gets i ∈ 2I. If i is
odd, 1 < i < k, then by the inductive assumption we have i − 1 ∈ 2I, and
from (9) and i 6= k + 1 one obtains i ∈ I.

We claim that actually

I = {±1, ±3, . . . , ±(k − 1)}, 2I = {±2, ±4, . . . ,±k} .

The inclusions ⊃ follow from what we just proved combined with −1 ∈ I.
To show equality it suffices to prove that the k elements of each of the sets
on the right are pairwise distinct modulo e; and this follows from the fact
that all differences are even and less than 2e in absolute value.

Since all elements of I are relatively prime to e, the description of I given
above shows that e has no prime divisor less than k. Therefore (8) implies
that

k + 1 is the least prime divisor of e.
Suppose that e is not a prime number. Then k < e/2, so the description

of I given above shows that 2 6∈ I. Hence 4 6∈ 2I, which by the description
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of 2I given above implies that k = 2. Then the number k + 1 = 3 divides
e, so 3 does not divide d. From (2) and (1,−1) ∈ H we obtain (2,−2) ∈ H.
Since (2,−2) + 1 = (3,−1) ∈ (Z/nZ)∗ we have (3,−1) ∈ H, so also (3, 1) =
(3,−1) · (1,−1) ∈ H. From (3, 1) + 1 = (4, 2) ∈ (Z/nZ)∗ we get (4, 2) ∈ H,
which by (4, 4) = 4 ∈ H implies that (1, 2) ∈ H. This contradicts the fact
that 2 6∈ I.

We conclude that e is a prime number. Then k + 1 = e, so we have
#I = k = e− 1. This completes the proof of the lemma.

We now prove Theorem 2 by induction on n. The case n = 1 is obvious,
so let n > 1.

Let it first be assumed that n has a repeated prime factor. Let p be a
prime number for which p2 divides n, and write n = dpm, where d 6≡ 0 mod p
and m ≥ 2. Then condition (i) of the lemma is satisfied.

We prove that for any integer l with 1 ≤ l ≤ m−1 the image of H under
the natural map f : Z/nZ → Z/dplZ is the full unit group (Z/dplZ)∗. By
the induction hypothesis, it suffices for this to check that −1 ∈ fH and that
for any w ∈ fH with w − 1 ∈ (Z/dplZ)∗ one has w − 1 ∈ fH. The first of
these follows from −1 ∈ H and f(−1) = −1. To prove the second, choose
u ∈ H with w = f(u). Then f(u− 1) = w − 1, so from w − 1 ∈ (Z/dplZ)∗

and the fact that n and dpl have the same prime factors it follows that
u − 1 ∈ (Z/nZ)∗. Therefore one has u − 1 ∈ H, which leads to the desired
conclusion w − 1 = f(u− 1) ∈ fH.

Applying what we just proved to l = 1 one finds that #H ≥ ϕ(dp) >
ϕ(d). Therefore the natural map g:H → (Z/dZ)∗ is not injective, and the
kernel of g contains an element u 6= 1. This means that condition (ii) of the
lemma is satisfied.

The conclusion of the lemma does not hold, since n/d = pm is not a
prime number. Therefore condition (iii) of the lemma is not satisfied, and
there exists u ∈ H with u 6= 1, u ≡ 1 mod d, gcd(u − 1, n) 6= d. Then we
have gcd(u − 1, n) = dpl for some integer l with 1 ≤ l ≤ m − 1, so we can
write u = 1 + drpl for some integer r with r 6≡ 0 mod p. It follows that for
each non-negative integer i there is an integer ri with

upi

= 1 + drip
l+i, ri 6≡ 0 mod p .

One proves this by induction on i, by means of the binomial theorem. In
particular, we see that

upm−l

= 1, upm−l−1
6= 1 (in Z/dpmZ = Z/nZ) ,

so the order of u equals pm−l.
Now consider the natural map f :H → (Z/dplZ)∗. We showed above

that f is surjective, so #fH = ϕ(dpl). The kernel of f contains u, so
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# ker f ≥ pm−l. Hence we have #H = #ker f ·#fH ≥ pm−l ·ϕ(dpl) = ϕ(n),
and therefore H = (Z/nZ)∗, as required.

Let it next be supposed that n has no repeated prime factor, so that
it is squarefree. Let d = max{gcd(u − 1, n) : u ∈ H, u 6= 1}; note that
this is well-defined, since −1 ∈ H, −1 6= 1. Then conditions (ii) and (iii)
of the lemma are clearly satisfied. Condition (i) is also satisfied, since n
is squarefree. The lemma now implies that the number n/d, which we
denote by e, is a prime number, and that the kernel of the natural map
g:H → (Z/dZ)∗ has order e − 1. We claim that g is surjective. By the
induction hypothesis, it suffices for this to check that −1 ∈ gH and that
for any w ∈ gH with w − 1 ∈ (Z/dZ)∗ one has w − 1 ∈ gH. The first
of these follows from −1 ∈ H and g(−1) = −1. To prove the second, we
identify (Z/nZ)∗ with (Z/dZ)∗ × (Z/eZ)∗, as we did in the proof of the
lemma. Then from # ker g = e − 1 it follows that {1} × (Z/eZ)∗ ⊂ H,
and this implies that H = gH × (Z/eZ)∗. Therefore, if w ∈ gH then for
each v ∈ (Z/eZ)∗ the element u = (w, v) belongs to H. Choose v 6= 1;
then u− 1 ∈ (Z/nZ)∗, so u− 1 ∈ H, which leads to the desired conclusion
w − 1 = g(u− 1) ∈ gH.

The surjectivity of g implies that H = gH × (Z/eZ)∗ = (Z/dZ)∗ ×
(Z/eZ)∗ = (Z/nZ)∗, as required. This completes the proof of Theorem 2.

Theorem 2 admits the following reformulation. Let n be a positive odd
integer, and let a subset S ⊂ (Z/nZ)∗ be called additively closed if for any
u, v ∈ S with u + v ∈ (Z/nZ)∗ one has u + v ∈ S. With this terminol-
ogy, Theorem 2 implies that the only additively closed subset of (Z/nZ)∗

containing 1 and −1 is (Z/nZ)∗ itself .
To prove this, denote by H the intersection of all additively closed subsets

of (Z/nZ)∗ that contain 1 and −1. It clearly suffices to prove that H =
(Z/nZ)∗. Obviously, H itself is additively closed, and so is −H. Also, −H
contains both −1 and 1, so by definition of H we have H ⊂ −H. It follows
that H = −H. Next let u ∈ H. Then u−1H is additively closed, and
it contains 1 and −1, so we have H = u−1H. This implies that H is a
subgroup of (Z/nZ)∗. The conditions of Theorem 2 are satisfied, so we find
that H = (Z/nZ)∗, as required.

We now prove Theorem 1. Let n be an odd integer, and let the set
T ⊂ Z consist of all integers a for which an addition-subtraction chain as in
the conclusion of the theorem exists. We need to prove that T consists of
all integers that are relatively prime to n.

If a, b ∈ T are such that gcd(a+b, n) = 1, then one clearly has a+b ∈ T ,
and likewise for a− b. By induction on i one finds that 2i ∈ T for all non-
negative integers i. From 1− 2 = −1 one obtains −1 ∈ T , and this readily
implies that T = −T .
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Let l be a positive integer for which 2l ≡ 1 mod n, and put m = 2l − 1.
Then m is a positive odd integer, and m is a multiple of n. By induction
on i we prove that im + 1 ∈ T for all non-negative integers i. For i = 0
this is clear, so let i > 0. Then we have (i − 1)m + 1 ∈ T by the inductive
assumption, and from ((i − 1)m + 1) + 2l = im + 2 and gcd(im + 2, n) =
gcd(2, n) = 1 it follows that im + 2 ∈ T . By (im + 2) + (−1) = im + 1,
gcd(im + 1, n) = 1 this implies that im + 1 ∈ T , as asserted. From (im +
1)− 2 = im− 1 we find that also im− 1 ∈ T for all non-negative integers i.
With T = −T it follows that im± 1 ∈ T for all integers i.

Let S ⊂ (Z/mZ)∗ be the set of residue classes (a mod m) with the prop-
erty that gcd(a,m) = 1 and a + mZ ⊂ T . We just proved that (1 mod m),
(−1 mod m) ∈ S, and one readily verifies that S is additively closed, as
defined above (with m in the role of n). Hence, by what we proved above,
we have S = (Z/mZ)∗, and therefore every integer that is relatively prime
to m belongs to T .

Now let a ∈ Z, gcd(a, n) = 1. For every prime number p dividing m,
choose ap ∈ Z such that ap 6≡ 0 mod p, ap 6≡ a mod p; this can be done since
m is odd. Next, let b ∈ Z be such that b ≡ ap mod p for each prime number
p dividing m. Then we have gcd(b, m) = gcd(a− b, m) = 1, so b, a− b ∈ T ,
and therefore a = b + (a− b) ∈ T . This proves Theorem 1.

Acknowledgements. The author thanks F. Alberto Grünbaum for
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