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By an unrestricted Λ-partition of n we mean a solution in non-negative
integers ai of

(1)
∞∑

i=1

aiλi = n ,

where Λ = {λ1, λ2, . . .} is an infinite multiset of positive integers. Much work
has been done, see for example [5], on statistical aspects of the restricted
partitions with ai ≤ 1, but little appears to be known about the distribution
of the number of summands in the solutions of (1) in the unrestricted case
beyond the theorem of Erdős and Lehner for the case Λ = N, which shows
in particular that if all solutions of (1) are equally likely, then the random
variable

π

(
2
3

)1/2 ∞∑
i=1

ai/n1/2 log n

converges in distribution to unity as n →∞. For further details, see [4].
In the paper of Loxton and Yeung [7], there is the following question

communicated to the authors by Erdős: “Does there exist f(c) such that
the number of partitions of n into squares in which the number of summands
is less than cn2/3 log n is asymptotic to f(c)p2(n)?” Here p2(n) is the total
number of partitions of n into squares.

As we shall see, the answer to this problem is

f(c) =
{

0 , c = 0 ,
1 , c > 0 ,

and a more appropriate question is obtained by replacing cn2/3 log n by
cn2/3, when the corresponding f(c) is continuous. We shall derive the equiv-
alent of f(c) for a wide range of sets Λ, including N and the set of squares.

We denote by PΛ(n) the number of solutions of (1), and let Λk be the
multiset consisting of Λ together with k copies of unity. As a prerequisite
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for the proof of our theorem, we must have asymptotic formulae for PΛ(n)
and PΛk

(n) of a particular form; these are shown to exist, with certain
restrictions on Λ, by Meinardus in [8] and by Ingham, Auluck and Haselgrove
in [6] and [2]. The former result can also be found in Chapter 6 of [1]. We
state a suitable version of the latter result.

Theorem (Ingham, Auluck, Haselgrove). Let Λ be a multiset as above.
If

N(n) =
∑

i
λi≤n

1

satisfies

N(n) = Aα−1nα + R(n) ,

where α, A > 0 and , as u →∞,
u∫

0

R(v)
v

dv = a log u + b + o(1) ,

and the elements of Λ have no non-trivial common factor , then

(2) PΛ(n) ∼ {2π(1 + α)}−1/2ebM−(a−1/2)n−1/2+(a−1/2)/(α+1)

× exp{(1 + 1/α)Mnα/(α+1)}

as n →∞, where

M = {AΓ (α + 1)ζ(α + 1)}1/(α+1) .

If Meinardus’s theorem applies also, then the quantities A and α above
are equal to Meinardus’s A and α. Now we can state our theorem.

Theorem. Suppose Λ = {λ1, λ2, . . .}, λ1 ≤ λ2 ≤ . . . , satisfies the con-
ditions of the theorem of Ingham et al. (or the conditions of Meinardus’s
theorem); suppose also that 1 ∈ Λ or there is no λi such that Λ\{λi} has
all its elements divisible by a non-trivial common factor. Then if α = 1 (so
that necessarily

∑
λ−1

i diverges), we have√
Aπ2

6n

{ ∑
i

λi≤n1/2

1/λi

}−1 ∞∑
i=1

ai

tends in distribution to one, and if 0 < α < 1 (so that
∑

λ−1
i converges),

then

M

∞∑
i=1

ai/n1/(1+α)
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converges in distribution to the random variable with moment generating
function

∞∏
i=1

(1− x/λi)−1 .

Hence if the λi are distinct , the limit distribution has distribution function

(3) F (x) = 1−
∞∑

i=1

{ ∞∏
j=1
j 6=i

(1− λi/λj)−1
}

e−λix, x > 0 ,

provided the sum in (3) converges for x > 0.

P r o o f. We consider the auxiliary generating function

g� (x) =
∞∏

i=1

(1− αix
λi)−1 .

The coefficient of xn in g� (x) is∑
partitions
Σaiλi=n

∞∏
i=1

αai
i .

Let k be a fixed positive integer and let l1, l2, . . . be non-negative integers
with

∑∞
i=1 li = k. Let

r(l) = r(r − 1) . . . (r − l + 1), l > 0, r(0) = 1 .

Then ∑
partitions
Σaiλi=n

∞∏
i=1

a
(li)
i

is the coefficient of xn in

h(x) =
∞∏

i=1

(
∂

∂αi

)li

g� (x)
∣∣∣∣
α1=α2=...=1

=
∞∏

i=1

li!xliλi

(1− xλi)li+1
.

Therefore we have∑
partitions
Σaiλi=n

∞∏
i=1

a
(li)
i =

( ∞∏
i=1

li!
)
PΛ′

(
n−

∞∑
i=1

liλi

)
,

where Λ′ is the multiset obtained from Λ by adjoining li copies of λi for
each i. We cannot apply the theorems previously mentioned to obtain an
asymptotic formula for PΛ′(n), since Λ′ is not in general independent of n.
In order to progress, we must restrict the choice of the li so that li = 0 for
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all i such that

λi > n0 = n1/(1+α)/ω(n) ,

where ω(n) →∞ slowly; we shall determine the permissible rate of growth
of ω(n) later. We now show that, under this restriction,

(4) PΛ′

(
n−

∞∑
i=1

liλi

)
=

∞∏
i=1

λ−li
i PΛk

(n)(1 + o(1)) ,

where o(1) depends on the li only through k. Observe that if µ1, . . . , µk are
positive integers and f(m) is a non-decreasing function of m, then

k∏
i=1

µ−1
i

µ1−1∑
b1=0

. . .

µk−1∑
bk=0

f
(
m−

k∑
i=1

ciµi −
k∑

i=1

bi

)

≤ f
(
m−

k∑
i=1

ciµi

)

≤
k∏

i=1

µ−1
i

µ1−1∑
b1=0

. . .

µk−1∑
bk=0

f
(
m−

k∑
i=1

ciµi +
k∑

i=1

bi

)
,

whence if f(m) = 0 for m < 0,

(5)
k∏

i=1

µ−1
i

∑
b1,...,bk

m−Σbi≥0

f
(
m−

k∑
i=1

bi

)

≤
∑

c1,...,ck

m−Σciµi≥0

f
(
m−

k∑
i=1

ciµi

)

≤
k∏

i=1

µ−1
i

∑
b1,...,bk

m+Σµi−Σbi≥0

f
(
m +

k∑
i=1

µi −
k∑

i=1

bi

)
.

By hypothesis and the result of Bateman and Erdős [3], PΛ(m) is non-
decreasing for m sufficiently large, say m ≥ d. Thus by (5), for m =
n−

∑∞
i=1 liλi, which satisfies m ≥ n− kn0 ∼ n, we have

∞∏
i=1

λ−li
i

{ ∑
b1,...,bk

m−Σbi≥0

PΛ

(
m−

k∑
i=1

bi

)
−O(mk−1)

}
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≤
∑

c1,...,ck

m−Σciλji
≥0

PΛ

(
m−

k∑
i=1

ciλji

)

≤
∏

λ−li
i

{ ∑
b1,...,bk

m+Σliλi−Σbi≥0

PΛ

(
m +

∞∑
i=1

liλi −
k∑

i=1

bi

)
+ O(mk−1)

}
,

since there are O(mk−1) solutions of 0 ≤ m−
∑k

i=1 bi ≤ d in positive integers
b1, . . . , bk. Here λj1 , . . . , λjk

are the elements λi with multiplicity li. Clearly,∑
b1,...,bk

m−Σbi≥0

PΛ

(
m−

k∑
i=1

bi

)
= PΛk

(m)

and ∑
c1,...,ck

m−Σciλji
≥0

PΛ

(
m−

k∑
i=1

ciλji

)
= PΛ′(m) ,

so we deduce that
∞∏

i=1

λ−li
i PΛk

(m)(1 + o(1)) ≤ PΛ′(m)(6)

≤
∞∏

i=1

λ−li
i PΛk

(
m +

k∑
i=1

liλi

)
(1 + o(1)) ,

because PΛk
(m) ≥ PΛ(m) and, by (2), log{PΛ(m)/mk−1} ∼ (1 + 1/α)

× Mmα/(α+1). It is easily seen that the theorems of Ingham et al. and
Meinardus apply to Λk; for the former, N(n) corresponding to Λ becomes
N(n) + k for n ≥ 1, and for the latter D(s) and g(τ) corresponding to Λ
become D(s) + k and g(τ) + ke−τ . We obtain in particular

PΛk
(m +

∑
liλi)

PΛk
(m)

=
n−1/2+(a−1/2+k)/(α+1)

(n−
∑

liλi)−1/2+(a−1/2)/(α+1)

× exp
{

(1 + α−1)M
[
nα/(α+1) −

(
n−

∑
liλi

)α/(α+1)]}
,

and since

nα/(α+1) − (n− kn0)α/(α+1) ∼ α

α + 1
k

ω(n)
→ 0 ,

we see that

PΛk

(
m +

∞∑
i=1

liλi

)
= PΛk

(m)(1 + o(1)) ,
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where o(1) depends on the li only through k. Now (4) follows from (6).
Hence ∑

partitions
Σaiλi=n

∞∏
i=1

a
(li)
i =

∞∏
i=1

(
li!
λli

i

)
PΛk

(n)(1 + o(1)) ,

and

E
( ∞∏

i=1

a
(li)
i

)
=

∞∏
i=1

(
li!
λli

i

)
PΛk

(n)
PΛ(n)

(1 + o(1))(7)

=
∞∏

i=1

(
li!
λli

i

)
M−knk/(1+α)(1 + o(1))

by the theorem of Ingham et al . or Meinardus, where o(1) depends on the
li only through k.

We now prove by induction on k that, provided li = 0 for i such that
λi > n0,

(8) E
( ∞∏

i=1

ali
i

)
= E

( ∞∏
i=1

a
(li)
i

)
(1 + o(1))

as n →∞. Let

R = E
( ∞∏

i=1

a
(li)
i

)
− E

( ∞∏
i=1

ali
i

)
.

Then

(9) R =
k∑

d=1

∑
j1,j2,...
0≤ji≤li

Σ(li−ji)=d

( ∞∏
i=1

cji

)
E

( ∞∏
i=1

aji

i

)
,

where cji
is the coefficient of rji in the polynomial r(li). Observe that∏∞

i=1 cji
is bounded in terms of k, for

|cji
| ≤

(
li − 1
ji − 1

)
(li − 1)ji ≤ l2ji

i

for ji ≥ 1, and so
∞∏

i=1

|cji | ≤ (max li)2k ≤ k2k .

The claim (8) is trivial if k = 0, so we assume that k > 0 and that (8) holds
for all j1, j2, . . . with

∑∞
i=1 ji < k, ji ≤ li, when li is replaced by ji. Then

by (7), (9) and the induction hypothesis,∣∣∣R{
E

( ∏
a
(li)
i

)}−1∣∣∣
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≤ A1

k∑
d=1

∑
j1,j2,...
ji≤li

Σ(li−ji)=d

E
( ∏

aji

i

)
Mkn−k/(1+α)

∞∏
i=1

(λli
i /li!)

≤ A2

k∑
d=1

Mdn−d/(1+α)
∑

j1,j2,...
ji≤li

Σ(li−ji)=d

∞∏
i=1

{
ji!
li!

λli−ji

i

}

≤ A3

k∑
d=1

n−d/(1+α)
{ ∑

i
li>0

λi

}d

≤ A3

k∑
d=1

n−d/(1+α){kn1/(1+α)/ω(n)}d = O(1/ω(n)) ,

where A1, A2 and A3 depend only on k.
Hence if li = 0 for i with λi > n0,

(10) E
( ∞∏

i=1

ali
i

)
=

∞∏
i=1

(li!/λli
i )M−knk/(1+α)(1 + o(1)) ,

where, again, o(1) depends on the li only through k. We have

E
{( ∞∑

i=1

ai/n1/(1+α)
)k}

= E

{ ∑
l1,l2,...
Σli=k

(
k

l1, l2, . . .

) ∞∏
i=1

ali
i /nk/(1+α)

}

= E

{ ∑
(0)

(
k

l1, l2, . . .

) ∞∏
i=1

ali
i /nk/(1+α)

}

+
k∑

d=1

E

{ ∑
(d)

(
k

l1, l2, . . .

) ∞∏
i=1

ali
i /nk/(1+α)

}
= E1 + E2 ,

say, where
∑

(d) denotes a sum over all l1, l2, . . . such that
∑

li = k and∑
i

λi>n0

li = d .

We have by (10) that

(11) E1 = k!M−k
∑
(0)

∞∏
i=1

λ−li
i (1 + o(1)) ,
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and since

E
{∑

(0)

∞∏
i=1

ali
i

}

≤ E
{ ∑

l1,l2,...
Σli=k−d

li=0 if λi>n0

∞∏
i=1

ali
i

}{
max

∑
i

λi>n0

ai

}d

≤
∑

l1,l2,...
Σli=k−d

li=0 if λi>n0

∞∏
i=1

(li!/λli
i )M−(k−d)n(k−d)/(1+α)(1 + o(1)){nα/(α+1)ω(n)}d

≤ k!
( ∑

i
λi≤0

1/λi

)k−d

M−(k−d)n(k−d(1−α))/(1+α)ω(n)d(1 + o(1)) ,

we have the bound

(12) E2 ≤ (k!)2
k∑

d=1

( ∑
i

λi≤n0

1/λi

)k−d

×M−(k−d)n−d(1−α)/(1+α)ω(n)d(1 + o(1)) .

If α < 1, and so
∑

1/λi converges, we have E2 → 0 as n →∞ provided
we choose ω(n) so that ω(n) = o(n(1−α)/(1+α)). Hence by (11),

lim
n→∞

E
{(

M
∞∑

i=1

ai/n1/(1+α)
)k}

= k!
∑

l1,l2,...
Σli=k

∞∏
i=1

λ−li
i = k!rk ,

where rk is the coefficient of xk in the power-series

g(x) =
∞∏

i=1

(1− x/λi)−1 ,

and so if M
∑

ai/n1/(1+α) converges in distribution, g(x) is the moment
generating function of the limit distribution. Since (1 − x/λi)−1 is the
moment generating function associated with the distribution function

(13) 1− e−λix, x ≥ 0 ,

the product

(14)
m∏

i=1

(1− x/λi)−1
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is the moment generating function of the sum of m independent random
variables with the distributions (13) for 1 ≤ i ≤ m. Since the product
converges to a function continuous at zero, g(x) is a moment generating
function for a proper distribution function and M

∑
ai/n1/(1+α) converges

to this distribution. The necessary probability theory can be found in [9],
Chapter 6, especially Theorems 6.2 and 6.16. If the λi are distinct, then the
partial fractions representation,

(15)
m∏

i=1

(1− x/λi)−1 =
m∑

i=1

{ m∏
j=1
j 6=i

(1− λi/λj)−1
}

(1− x/λi)−1 ,

shows that the distribution associated with (14) is

1−
m∑

i=1

m∏
j=1
j 6=i

(1− λi/λj)−1e−λix, x ≥ 0 .

This converges to

1−
∞∑

i=1

∞∏
j=1
j 6=i

(1− λi/λj)−1e−λix

for x > 0, provided

lim sup
i→∞

∞∏
j=1
j 6=i

|1− λi/λj |−1/λi ≤ 1 ,

and so the second part of the theorem is established.
If α = 1, then by (11) for k = 1,

lim
n→∞

ME1

{ ∑
i

λi≤n0

1/λi

}−1

= 1 ,

and by (12) for k = 1,

lim
n→∞

ME2

{ ∑
i

λi≤n0

1/λi

}−1

≤ lim
n→∞

(
M

{ ∑
i

λi≤n0

1/λi

}−1

ω(n)
)

= 0 ,

provided ω(n) grows sufficiently slowly that

lim
n→∞

{
ω(n)

/ ∑
i

λi≤n1/2/ω(n)

1/λi

}
= 0 .
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Similarly, for k = 2,

lim
n→∞

M2E1

{ ∑
i

λi≤n0

1/λi

}−2

= lim
n→∞

{
2
[ ∑

i
λi≤n0

1/λ2
i +

∑
i<j

λi,λj≤n0

1/λiλj

]/( ∑
i

λi≤n0

1/λi

)2}

= lim
n→∞

{[( ∑
i

λi≤n0

1/λi

)2

+
∑

i
λi≤n0

1/λ2
i

]/( ∑
i

λi≤n0

1/λi

)2}
= 1 ,

and

lim
n→∞

M2E2

{ ∑
i

λi≤n0

1/λi

}−2

= lim
n→∞

O
(
ω(n)

/ ∑
i

λi≤n0

1/λi

)
= 0 .

Hence, for

(16) Yn = M
{ ∑

i
λi≤n0

1/λi

}−1 ∞∑
i=1

ai/n1/2 ,

we have
lim

n→∞
EYn = 1 and lim

n→∞
var Yn = 0 ,

and so Yn converges in distribution to one. We have thus shown that∑
i

λi≤n0

1/λi

is asymptotically independent of ω(n) provided ω(n) grows sufficiently slowly.
It follows that for any f(n) increasing to infinity and any ω1(n) and ω2(n)
tending to infinity sufficiently slowly compared to f(n),∑

i
λi≤f(n)/ω1(n)

1/λi ∼
∑

i
λi≤f(n)/ω2(n)

1/λi .

If we take f(n) = n1/2ω1(n) and arrange that ω2(n)/ω1(n) → ∞, we see
that we may replace n0 in (16) by n1/2. When we note that

M = {AΓ (2)ζ(2)}1/2 = {Aπ2/6}1/2 ,

we have the first part of the theorem.

Examples. (a) Λ = {1, 2, 3, . . .} = N. Meinardus’s theorem applies
with D(s) = ζ(s) and g(τ) = e−τ/(1−e−τ ). Ingham’s theorem applies with
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R(n) = [n]− n. In either case, we have α = A = 1 and∑
i

λi≤n1/2

1/λi ∼ (1/2) log n ,

whence the first part of our theorem gives the result of Erdős and Lehner.

(b) Λ a union of arithmetic progressions, Λ = {m ∈ N : m ≡ b1, b2, . . . ,
or bl mod k}, (b1, b2, . . . , bl, k) = 1. Meinardus’s theorem applies with

D(s) =
l∑

i=1

k−sζ(s, bi/k)

and

g(τ) =
l∑

i=1

e−biτ/(1− e−kτ ) .

Ingham’s theorem applies with

R(n) = l{[n/k]− n/k}+ cn ,

where cn of the bi belong to congruence classes modulo k with representatives
in the interval ([n/k]k, n]. In either case we have α = 1, A = l/k and∑

i
λi≤n1/2

1/λi ∼ (l/2k) log n ,

whence by the first part of our theorem,

π(2k/3l)1/2(n1/2 log n)−1
∞∑

i=1

ai

converges in distribution to one.

(c) Λ the set of squares. Meinardus’s theorem applies with D(s) = ζ(2s)
and g(τ) =

∑∞
r=1 e−r2τ . One way to see that g(τ) satisfies the required

condition is as follows. If, as Meinardus, we put τ = y + 2πix, where y and
x are real, then for y > 0,

g(y)− Re g(τ) =
∞∑

n=1

e−n2y(1− cos(2πn2x))(17)

≥
∞∑

n=1
cos(2πn2x)≤0

e−n2y ≥
[{log 2/y}1/2]∑

n=1
cos(2πn2x)≤0

1/2 .

As was first shown by Weyl [10], if x is irrational the sequence (n2x)n≥1

is uniformly distributed modulo one, and so, given η > 0, the number of
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summands in (17) is at least ( 1
2 − η){log 2/y}1/2 for sufficiently small y.

Hence for x irrational,

(18) g(y)− Re g(τ) ≥ 1
5 (log 2)1/2y−1/2

for small enough y. Finally, g(τ) is continuous for y > 0, since in any
half-plane y ≥ a > 0, the sum in the definition of g(τ) converges uniformly.
Therefore (18) holds also for rational x, and we may take Meinardus’s ε to
be 1/2.

Ingham’s theorem applies also, since we have R(n) = [n1/2]− n1/2 and

lim
u→∞

{ u∫
1

v1/2 − [v1/2]
v

dv − 1
2

log u

}

= lim
u→∞

u∫
1

v1/2 − [v1/2]− 1
2

v
dv = lim

n→∞

n∑
r=1

(r+1)2∫
r2

v1/2 − [v1/2]− 1
2

v
dv

= lim
n→∞

n∑
r=1

{2− (2r + 1) log(1 + 1/r)} = lim
n→∞

n∑
r=1

O(1/r2)

exists. We have A = α = 1/2. Our theorem now says that

M
∞∑

i=1

ai/n2/3

converges in distribution to the distribution

F (x) = 1− lim
m→∞

m∑
r=1

{ m∏
j=1
j 6=r

(1− r2/j2)−1
}

e−r2x ,

and since
∞∏

j=1
j 6=r

(1− r2/j2)−1 = (−1)r−1
r−1∏
j=1

j2

(r − j)(r + j)

∞∏
j=r+1

j2

(j − r)(j + r)

= (−1)r−1 (r − 1)!2r
(2r − 1)!

(2r)!
r!2

= (−1)r−1 · 2 ,

we have

F (x) =
∞∑

r=−∞
(−1)re−r2x , x > 0 .

By the result of Jacobi and Gauss, given for example on page 23 of [1],

F (x) =
∞∏

m=1

1− e−mx

1 + e−mx
, x ≥ 0 .
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Hence if the factor log n is removed from his original question, Erdős’s dis-
tribution function f(c) satisfies

f(c) = F (Mc) ,

where, since Γ ( 3
2 ) = 1

2

√
π,

M = { 1
4

√
πζ( 3

2 )}2/3 .

In particular the distribution given by f(c) has mean
1
6π5/3{4/ζ( 3

2 )}2/3 = 1.49 . . .

and variance
1
90π10/3{4/ζ( 3

2 )}4/3 = 0.89 . . .

(d) Λ the set of k-th powers, k ≥ 2. By similar reasoning as in (c), the
theorems of Meinardus and Ingham apply. Note that for k > 2,

−r−k
∞∑

j=1
j 6=r

log|1− rk/jk|=r−k
r−1∑
j=1

log
(

jk

rk − jk

)
+r−k

∞∑
j=r+1

log
(

jk

jk − rk

)

≤ r−(k−1)k log r + r−k
∞∑

j=r+1

(
rk

jk − rk

)
,

and for j > r, jk−1(j − 1) > rk, whence

−r−k
∞∑

j=1
j 6=r

log |1− rk/jk| ≤ r−(k−1)k log r +
∞∑

j=r+1

1/jk−1 → 0

as r →∞. Hence

M
∞∑

i=1

ai/nk/(k+1)

has a limit distribution of

1−
∞∑

r=1

{ ∞∏
j=1
j 6=r

(1− rk/jk)−1
}

e−rkx, x > 0 ,

where
M = {k−1Γ (1 + 1/k)ζ(1 + 1/k)}k/(k+1) .

By the Weierstrass product form for the reciprocal of the gamma function,
∞∏

j=1

(1− xk/jk) =
∏
%

%k=1

1/Γ (1− %x) ,
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and so
∞∏

j=1
j 6=r

(1− rk/jk) = lim
x→r

{ ∏
%

%k=1

Γ (1− %x)(1− xk/rk)
}

= k
∏
%

%k=1,% 6=1

Γ (1− %r) lim
x→r

(1− x/r)Γ (1− x)

= k
∏
%

%k=1,% 6=1

Γ (1− %r) lim
x→r

(1− x/r)π
Γ (x) sin(πx)

=
(−1)r−1

r!
k

∏
%

%k=1,%6=1

Γ (1− %r) .

In particular, for k = 4 we have the distribution function

1−
∞∑

r=1

(−1)r−1 4πr

sinh(πr)
e−r4x .

We remark that (15) leads to the identity
∞∏

r=1

(1− x/r4)−1 =
∞∑

r=1

(−1)r−1 4πr

sinh(πr)
(1− x/r4)−1

when k = 4, and the identity
∞∏

r=1

(1− x/r2)−1 = lim
z→1−

2
∞∑

r=1

(−1)r−1zr(1− x/r2)−1

when k = 2. This last identity shows that ζ(2n) is a rational multiple of
ζ(2)n. As an example, comparison of the coefficients of x2 on either side
gives

∞∑
r=1

1/r4 +
∑

1≤r<s<∞

1/r2s2 = 2
∞∑

r=1

(−1)r−1 · 1/r4 ,

which is equivalent to 1
2ζ(2)2 + 1

2ζ(4) = 2(1 − 2/24)ζ(4), whence ζ(4) =
2
5ζ(2)2.
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[3] P. Bateman and P. Erd ő s, Monotonicity of partition functions, Mathematika 3
(1956), 1–14.
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