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Introduction. In this paper we extend Iwaniec’s results on Rosser’s
sieve to a general number field. The papers [13] and [14] of Iwaniec are long,
but we can only be brief in justification of our extension. There have been
many papers describing extensions of sieve methods to algebraic domains;
Halberstam and Richert ([7], p. 340), give 24 references to such work. We
will discuss briefly the relation of this paper to earlier ones at the end of
Section 4.

As an application of the sieve we examine the distribution, in imaginary
quadratic fields, of prime ideals that lie in sectors. As a corollary of our
main result, we obtain

Theorem 1. Let Q(x, y) be a positive definite, primitive, binary quad-
ratic form with integer coefficients. Then there exist infinitely many primes
p with

p = Q(m,n) and n < p0.1631

where m,n ∈ Z.

The exponent 0.1631 is an improvement of the results (at least for
Q(x, y) = x2+y2) of various authors. Kubilius, in a series of papers [20]–[22],
proved that 12/29+ε is allowable, for all ε > 0. This was improved to 1/3+ε
by Bulota [2], 1/4+ ε by Koval’chik [19] and 1/5+ ε by S. Ricci in his Ph.D
thesis, [26]. Conjecturally, assuming that the Riemann hypothesis holds
for all Hecke L-functions with Grössencharaktere, over imaginary quadratic
fields, Kubilius [22] and Ankeny [1] have shown that Q(m,n) represents in-
finitely many primes p with n � log p. But further, the expectation that
an irreducible polynomial in Z[x] should represent a prime infinitely often
would lead us to conjecture that Q(m,n) represents a prime infinitely often
with n = 1. This problem has also been studied by M. Maknys.

The Rosser sieve with error term as given by Iwaniec has had an impor-
tant impact on the question of bounding the difference between consecutive
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rational primes, i.e. finding θ such that p′ − p < pθ for all consecutive
primes p < p′. This question has been generalized in [3] and [5] as a ques-
tion about the points at which norm-forms associated with number fields are
prime. The details of applications of the sieve to questions of norm-forms
will appear later. But this future application will serve as justification for
presenting here the Rosser–Iwaniec sieve in general number fields.

1. The Rosser–Iwaniec sieve. Let K be an algebraic number field
of degree n, let a, b, c, . . . denote integral ideals of K and p, q, prime ideals
of K. The combinatorial aspect of a sieve requires some system such as a
Dedekind Domain where we have unique factorization along with an order
on the elements of the Domain. In the case of a number field, where the
integral ideals have unique factorization, the order, <K say, will essentially
be given by the norm NK/Q. That is, NK/Q(a) < NK/Q(b) implies a <K b.
For ideals with equal norm the ordering can be arbitrary. The rule chosen
here is that if Na = Nb and a and b are the ideal numbers of a and b
respectively (see [10]), then a <K b iff arg a < arg b.

We now diverge from the normal set-up of sieves by defining A to be all
the integral ideals of K along with a weight function θ on the ideals. We
define the cardinality of A to be

|A| =
∑
a∈A

θ(a) ,

which we assume to be finite. Further, for d an ideal we define

|Ad| =
∑
a∈A
d|a

θ(a) .

Let P be a subset of the prime ideals. Given any integral ideal h and
z ≥ 2 our problem is to estimate the sifting functions

(1.1) SK(A,P, h) =
∑
a∈A

(a,PK(h))=1

θ(a) and S(A,P, z) =
∑
a∈A

(a,P (z))=1

θ(a) ,

where

PK(h) =
∏

p<Kh
p∈P

p and P (z) =
∏
Np<z
p∈P

p .

2. Buchstab identities. Though it will be sufficient for applications
to have bounds only for S(A, z) (where the dependence on P has been
dropped) the necessity of looking at both forms of sifting function defined
at (1.1) arises from our analogue of Buchstab’s identity. This states that
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(2.1)

SK(A, h) = |A| −
∑

p<Kh
p∈P

SK(Ap, p) ,

S(A, z) = |A| −
∑
Np<z
p∈P

SK(Ap, p) .

The proof of these identities follows from Legendre’s formula in K,

SK(A, h) =
∑

d|PK(h)

µ(d)|Ad| ,

as does

Lemma 1.

SK(A, h) =
∑

d|PK(h)

µ(d)%±d |Ad|+
∑

d|PK(h)

µ(d)σ±d SK(Ad, π(d)),

where π(d) is the least (with respect to <K) prime factor of d. The %±d and
σ±d can satisfy quite general conditions but here they are defined by

%±(1) = 1 and σ±(1) = 0 ,

and for d >K (1), with the decomposition d = p1 . . . pr, p1 >K . . . >K pr,

%±d =
∏

1≤l≤r

λ±p1...pl
and σ±d = (1− λ±p1...pr

)
∏

1≤l<r

λ±p1...pl
,

where

λ±d = λ±d (D) =
{

0 if µ(d) = ±1 and N(π(d)) > (D/Nd)1/2,
1 otherwise.

Here D is a real parameter and we sometimes show the dependence of
%±d on D by writing %±d (D). There is the obvious analogue of Lemma 1 for
S(A, z).

As in the rational case µ(d)σ+
d ≤ 0 and µ(d)σ−d ≥ 0 for all d |PK(h).

So we have upper and lower bounds for SK(A, h) in terms of
∑

d|PK(h) µ(d)
× %±d (D)|Ad|. To obtain analogues of the results in [13] we could examine
this latter sum, but to incorporate the innovations of [14] we “massage” the
problem slightly.

Let 1/3 > ε > 0 be given and µ = ε9, u = Dε2 . Assume u ≤ z < D1/2,
and given A and P define A∗ = {a ∈ A : (a, P (u)) = 1} (= S(A, u)), and
P∗ = {p ∈ P : p -P (u)}. Then S(A,P, z) = S(A∗,P∗, z), so by Lemma 1,

(2.2)
∑

d|P (z,u)

µ(d)%−d (D)S(Ad, u) < S(A, z)

<
∑

d|P (z,u)

µ(d)%+
d (D)S(Ad, u) ,
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where P (z, u) = P (z)/P (u). Denote the bounds in (2.2) by W±(A, u, z) in
the obvious manner. It is upper bounds for W+ and lower bounds for W−

that are given in [14], where (2.2) is further improved by noting that for any
R ≥ 1 and ε > 0 sufficiently small the W±(A, Dε2 , z) are bounds for

S(A, z)±
∑

d|P (z)
Ω(d)≤R

µ(d)σ±d (D)SK(Ad, π(d)),

where Ω(d) is the number of prime ideal factors of d.
Next, the interval [u,D1/2] is divided, as in [14], p. 315, into subintervals

by points from G = {Dε2(1+η)n

: n ≥ 0}. If d = p1 . . . pr, Np1 < D1/2,
p1 >K . . . >K pr, and Npr ≥ u, we say that d belongs to the sequence
(D1, . . . , Dr), Di ∈ G, i = 1, . . . , r, iff

D1 ≤ Np1 < D1+η
1 , . . . , Dr ≤ Npr < D1+η

r .

Looking at W+(A, u, z), we bound from above by increasing the set of
d for which µ(d)%+

d is positive while decreasing the set for which µ(d)%+
d is

negative. This first set of d is contained in

D+
1 = D+

1 (D) = {d |P (z, u) : there exists r such that d belongs to
(D1, . . . , D2r) where D1 ≥ D2 ≥ . . . ≥ D2r and

D1 . . . D2lD
3
2l+1 < D for all 0 ≤ l < r} ,

while the second set contains

D+
2 (D) = {d |P (z, u) : there exists r such that d belongs to

(D1, . . . , D2r+1) where D1 > D2 > . . . > D2r+1 and

D1 . . . D
3
2l+1 < D1/(1+η) for all 0 ≤ l ≤ r} .

So

(2.3) W+(A, u, z) ≤ S(A, u)−
∑

d∈D+
2

S(Ad, u) +
∑

d∈D+
1

S(Ad, u) .

We can argue analogously for a lower bound of W− where we decrease the
set of d for which µ(d)%−d is positive (to get D−1 ), and increase the set of d
when it is negative (to get D−2 ), obtaining then an obvious analogue of (2.3).
We denote by D+

diff the set of d that have either been introduced or removed
from W+ above.

Applying to (2.2) the lower and upper bounds of SK(A, h) that follow
from Lemma 1 gives us

W+(A, u, z) ≤
∑

q|P (u)

µ(q)%+
q (Dε)|Aq|(2.4)
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−
∑

q|P (u)

∑
d∈D+

2

µ(q)%−q (Dε)|Aqd|

+
∑

q|P (u)

∑
d∈D+

1

µ(q)%+
q (Dε)|Aqd| .

Now we use the assumption fundamental to this sieve method, namely that
|Ad| can be written in the form

(2.5) |Ad| =
ω(d)
Nd

X + r(A, d) ,

where ω(d)
Nd X is considered as a main term and r(A, d) an error. Here,

ω(d) should be a multiplicative function and for each prime p ∈ P satisfy
0 < ω(p) < Np. It simplifies notation later if we define ω(p) = 0 if p 6∈ P.

Introducing this assumption into (2.4), we obtain

(2.6) W+(A, u, z)

≤
{ ∑

q|P (u)

µ(q)%+
q (Dε)

ω(q)
Nq

−
∑

q|P (u)

∑
d∈D+

2

µ(q)%−q (Dε)
ω(qd)
Nqd

+
∑

q|P (u)

∑
d∈D+

1

µ(q)%+
q (Dε)

ω(qd)
Nqd

}
X +

∑
q|P (Dε2

)
Nq<Dε

φ+
q (Dε)r(A, q)

+
∑

(D1,...,Dr)

∈D+
1 ∪D

+
2

∑
q|P (Dε2

)
Nq<Dε

λ+
q (D1, . . . , Dr)

∑
d belongs to
(D1,...,Dr)

r(A, qd) ,

for some coefficients φ+
q (Dε) and λ+

q (D1, . . . , Dr), bounded by 1 in absolute
value. The term on the right-hand side containing the factor X will be
considered as the main term.

3. Main term. We first transform the main term by replacing %−q (Dε)
with %+

q (Dε). Then on defining

S±(D,P, u) =
∑

q|P (u)

µ(q)%±q (D)
ω(q)
Nq

,

the main term can be written as

S+(Dε,P, u)
{

1−
∑

d∈D+
2

ω(d)
Nd

+
∑

d∈D+
1

ω(d)
Nd

}
+ E1 ,
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where

E1 = (S+(Dε,P, u)− S−(Dε,P, u))
∑

d∈D+
2

ω(d)
Nd

.

We transform once more by replacing the sums over elements of D+
1 and

D+
2 with the characteristic function µ(d)%+

d (D), when we get

(3.1) S+(Dε,P, u){S+(D,P∗, z) + E2}+ E1 ,

with

E2 =
∑

d∈D+
diff

ω(d)
Nd

.

It is from [13] that we obtain bounds not only for S±(D,P, z) but also
S±K(D,P, h). Define

VK(h) =
∏

p|PK(h)

(
1− ω(p)

Np

)
,

when

VK(h) =
∑

d|PK(h)

µ(d)
ω(d)
Nd

=
∑

d|PK(h)

µ(d)%±d (D)
ω(d)
Nd

+
∑

d|PK(h)

µ(d)σ±d (D)
ω(d)
Nd

VK(π(d)) .

This last line follows in exactly the same way as Lemma 1. The first term
on the right-hand side is S±K(D,P, h), so we have

(3.2) S±K(D,P, h) = VK(h)±
∞∑

r=(1∓1)/2

S±r,h(D) ,

where

S+
r,h(D) =

∑
p2r+1<K ...<Kp1<Kh

N(p3
2l+1...p1)<D, 0≤l<r

N(p3
2r+1...p1)≥D

ω(p1 . . . p2r+1)
N(p1 . . . p2r+1)

VK(p2r+1) ,

and similarly for S−r,h(D), where the sum is over 2r-tuples, p2r <K . . . <K
p1 <K h, satisfying N(p3

2lp2l−1 . . . p1) < D, 0 ≤ l < r and N(p3
2rp2r−1 . . . p1)

≥ D. These are analogues of equations (4.1) and (4.2) in [13]. The interest
in the present case will arise from the question of how conditions of the form
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p <K h relate with those of the form Np < z. Defining

T±R,h(D) =
R∑

r=(1∓1)/2

S±r,h(D) for
logD
logNh

>
3∓ 1

2
,

we look for upper bounds as R→∞. It should be noted that analogues of
the above, namely S±r,z(D) and T±R,z(D) are formed by replacing p1 <K h
with Np1 < z.

We now introduce the assumption that there exists a constant κ ≥ 2
such that for all j >K h, Nh ≥ 2 we have

(3.3)
∏

h≤Kp<K j

(
1− ω(p)

Np

)−1

<

(
logN j

logNh

)(
1 +

κ

logNh

)
.

In the terminology of sieves, we say we have a “linear sieve”, because the
ratio logN j/ logNh occurs to the first power. Looking first at R = 0 we
have

T+
0,h(D) = S+

0,h(D) =
∑

p<Kh

Np≥D1/3

ω(p)
Np

VK(p) = VK(D1/3)− VK(h) .

This is zero if there is no prime p such that Np ≥ D1/3 and p <K h.
Otherwise it equals

(3.4) VK(h)
{
VK(D1/3)
VK(h)

− 1
}

< VK(h)
{(

logNh

logD1/3

)(
1 +

3κ
logD

)
− 1

}
(by (3.3))

= VK(h)s−1

{
3− s+

3κ
logD

}
,

on writing s = logD/ logNh. The condition that there exists a prime p
satisfying Np ≥ D1/3, p <K h implies Nh ≥ D1/3, i.e. s ≤ 3, in which
range the 3 − s occurring in (3.4) equals T+

0 (s) as defined in [13], p. 193.
We can note here a difference between the present situation and Iwaniec’s.
In [13] when s = 3, T+

0,z(y) is necessarily zero, yet for T+
0,h(D), even if s = 3,

there may exist a prime p such that Np ≥ D1/3 and p <K h when T+
0,h(D)

would not be zero. So the 3κ/ logD in (3.4) is necessary.
We need to show that a bound such as (3.4) holds for all R. To see

what the error should be in general we look at the limited ranges of D
and s in which T±R,h(D) can be estimated directly from (3.2). We note that
S+
r,h(D) (respectively S−r,h(D)) is zero if there exist no set of primes satisfying
N(p3

2r+1 . . . p1) > D and p2r+1 <K . . . <K p1 <K h (no set satisfying
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N(p3
2r . . . p1) > D and p2r <K . . . <K p1 <K h), which is certainly satisfied

if D > Nh2r+3, i.e. s > 2r + 3 (s > 2r + 2). For the non-zero S±r,h(D), use
VK(p) ≤ 1, drop the conditions on the norms and bound as

S+
r,h(D) ≤ 1

(2r + 1)!

( ∑
p<Kh

ω(p)
Np

)2r+1

;

the bound for S−r,h(D) having 2r in place of 2r + 1. Next observe that∑
p<Kh

ω(p)
Np

> log VK(h) > (2κ logNh)−1 ,

the latter inequality coming from (3.3). But now we have the same bounds
for T±R,h(D) as Iwaniec has for his T±R,z(s) with Nh replacing z. Thus we
can follow p. 198 of [13] to deduce

(3.5) T±R,h(D) < VK(h)s−1G±Nh(s)(logD)−1/3 ,

if κ24 � logD or s50 ≥ logD(log logD)3, where G±Nh(s) is defined on p. 197
of [13]. The right-hand side of (3.5) will replace the 3κ/ logD in (3.4) for
general R. To find the replacement for the 3 − s, or T+

0 (s) in (3.4), look
just at the range of D and s such that κ−24 logD is sufficiently large and
s < s0 = (logD)1/50(log logD)3/50 and use the equations

(3.6) T±R,h(D) = T±
R,D1/s0

(D) +
∑

p<Kh

D1/s0≤Np

ω(p)
Np

T∓R−1+(1±1)/2,p

(
D

Np

)
.

This is valid for T− when s ≥ 2 and for T+ if S+
0,h(D) = 0, i.e. h and D are

such that there does not exist a prime satisfying p <K h and Np ≥ D1/3. If
such a prime does exist, write

(3.7) T+
R,h(D) = T+

0,h(D) + T+
R,D1/3(D) .

We have a bound for T+
0,h(D) in (3.7), while we will be able to bound the

second term if we have results for T+
R,z(D). Such results will not be given

explicitly, but the bounds for T±R,z(D) will be totally analogous to those of
T±R,h(D) on replacing Nh by z in the results. So we can use (3.6) to give
bounds on T+

R,h(D) for s ≥ 3, and the s = 3 case can be used on the second
term of (3.7).

The sum in (3.6) allows the use of induction, the hypothesis being that

(3.8) T±R,h(D) ≤ VK(h)s−1{T±R (s) +GNh(s)(logD)−1/3} ,

for some T±R (s) and GNh(s). All we have so far is that T+
0 (s) = 3 − s for

s ≤ 3 and 0 for s > 3. But the use of T+
0 (s) in (3.6) will lead to the same
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T±R (s) as Iwaniec has in [13]. This is because from (3.5) we can deduce an
exact analogue of Lemma 21 of [13], namely:

Let B(x) be a positive, continuous and increasing function in the interval
w ≤ x ≤ Nh. Then

(3.9)
∑
w≤Np
p<Kh

ω(p)
Np

VK(p)
VK(h)

logNp

logNh
B(Np) ≤

Nh∫
w

B(t) d(log log t) + 3κ
B(Nh)
logw

subject to (3.3). Substituting the first term from (3.8) into the sum in (3.6)
and using (3.9) gives a term

s0∫
s

(
1− 1

t

)−1

T∓R−1+(1±1)/2(t− 1)
dt

t

which, when the integral is completed up to infinity, would need to equal
T±R (s) for the induction to work. This equality is exactly the recursive
definition of T±R (s) as given in equation (7.3) of [13]. The properties of
T±R (s) and T±(s) = limR→∞ T±R (s) are derived in [13].

Because the T±R (s) in (3.8) are identical to those in Iwaniec’s work so
are the conditions on G±Nh(s), necessary for it to satisfy the induction step
as well as (3.5). Thus we can take as G±Nh(s) in (3.8) the function defined
on p. 197 of [13].

Substituting (3.8) into (3.2), letting R→∞ and quoting the properties
of G±Nh(s) from [13] we have

Lemma 2. If condition (3.3) holds, then

S+
K(D,P, h) < VK(h){F (s) +O(e

√
κ−s(logD)−1/3)} if Nh ≤ D ,

and

S−K(D,P, h) > VK(h){f(s) +O(e
√
κ−s(logD)−1/3)} if Nh ≤ D1/2 ,

where F (s) = 1+T+(s) = 1+O(e−s) and f(s) = 1−T−(s) = 1+O(e−s) are
the continuous solutions of the linear difference-differential equations given
as (1.8) and (1.9) of [13].

Lemma 2 and (3.3) are sufficient to deal with all terms in (3.1) apart
from E2. The conditions for inclusion of an ideal into D+

diff depend on the
norms of the prime divisors of the ideal and not on the position of the primes
in the ordering defined by <K . Thus we can follow Iwaniec [14], pp. 318–319,
by assuming that there exists a constant L > 1 such that

(3.10)
∑

w<Np<z
p∈P

∑
a≥2

ω(pa)
Npa

≤ L

log 3w
,
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for all z > w > 2, and deducing E2 � ε3 + ε−6κ3eL(logD)−1. Using this
bound on E2 along with Lemma 2 we obtain from (2.6) (and the correspond-
ing lower bound for W−(A, u, z))

Lemma 3 (Rosser’s sieve). Let ε > 0, D ≥ 2, z < D1/2. If (3.3) and
(3.10) hold , then

S(A, z) ≤W+(A, Dε2 , z) ≤ V (z)X{F (s) + E}+R+(A, D),

S(A, z) ≥W−(A, Dε2 , z) ≥ V (z)X{f(s)− E} −R−(A, D),

where s = (logD)/ log z, E � ε + ε−8eκ+L(logD)−1/3 and R+(A, D) de-
notes the last two sums in (2.6), R− being defined similarly.

In fact, we can only use (2.6) for Dε2 < z, but for smaller z we can use
the argument on p. 314 of [14], which depends only on the properties of F
and f . In applications E is often taken as cε + O((logD)−1/3) for some
c > 0.

4. The error terms, R±. The errors in (2.6) are identical in form to
those in Theorem 4 of [14]. In particular, the conditions for the sequence
(D1, . . . , Dr) to occur in (2.6) are the same as in [14]. So we may use Lemma
1 of [14], simply a result on admissible (D1, . . . , Dr), to rewrite the errors
R± as bilinear sums. Lemma 1 of [14] is used to replace the sum over ideals
d belonging to (D1, . . . , Dr) in (2.6) by sums over ideals a, b whose product
belongs to (D1, . . . , Dr). The importance of the lemma is that it allows great
freedom in the ranges of a and b, i.e. Na < A, Nb < B for any A,B > 1,
AB = D1+η. Combining the sum over q |P (Dε2), Nq < Dε in (2.6) with
that over a, we have a bilinear sum for each admissible (D1, . . . , Dr) of
lengths ADε and B. We can follow p. 312 of [14] in reinterpreting the pa-
rameters so that the sums are of length A and B with AB = D. That the
main terms of Lemma 3 are identical to Iwaniec’s means that the reinter-
pretation leaves them unchanged in form. There is a reduction in the range
of validity of Lemma 3 to z < D1/2(1+ε+η) but this can be dealt with as in
[14] because we have the Buchstab identities in (2.1).

Thus
R±(A, D) =

∑
1≤l<exp(8ε−3)

R±l

where

(4.1) R±l =
∑ ∑

Na<A, Nb<B
ab|P (z)

a±(a)b±(b)r(A, ab) ,

and the a±(a), b±(b) depend on A, B, l and ε and are bounded by 1 in
absolute value.
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When sieving rational integers in a linear problem, the Rosser sieve gives
the same results as the iterated Selberg sieve (see [7], Theorem 8.3). By way
of two examples, we show this is true also in number fields.

The first time the iterated Selberg sieve appears, along with the asso-
ciated functions f and F , is in Jurkat and Richert, [17]. The sieve and an
application from this paper are generalized by Schaal, [29]. Assume K is a
number field of degree n = r1 + 2r2 (in the usual notation) with integers
OK . Let y1, . . . , yn be positive real numbers and set y = y1 . . . yn. Define

R = R(y1, . . . , yn) = {α ∈ OK : 0 < α(i) < yi, i = 1, . . . , r1 ,
|α(i)| < yi, i = r1 + 1, . . . , n} .

Then, for β ∈ OK and integral ideal f with (β, f) = 1, Schaal generalizes the
iterated Selberg sieve to give bounds for

(4.2) |{α ∈ R(y1, . . . , yn) : α ≡ β mod f, (α− β, VK(z)) = 1}| .

Using a weighted sum due to Kuhn that can be expressed as a linear sum
of terms (4.2) with various yi and f, it can be deduced that given ε > 0,
N f sufficiently large and any y > N f25/11+ε, there exist ζ ∈ OK with ζ ≡
β mod f, ζ ∈ R(y1, . . . , yn) and the number of prime factors of ζ at most
two. No doubt 25/11 can be improved using Richert’s weights (see [27] and
also Theorem 9.6 of [7]). But here we remark that bounds can be given for
(4.2) using Lemma 3. Define

θ(a) = |{α ∈ R(y1, . . . , yn) : α ≡ β mod f, (α− β) = a}| .

The main term for
∑

d|a θ(a) is given by Rieger [28], with ω(p) = Np/φ(p) if
p -β, zero otherwise. Then (3.3) follows from Mertens’s Theorem in K (see
(7.2)). Thus we can apply Lemma 3, obtaining the same bounds as Schaal.

As another example we might mention Hinz’s proof ([12]) that in a totally
real algebraic number field, every totally positive even algebraic integer ζ
with sufficiently large norm can be represented as ζ = ω + Π2 where ω is
prime and Π2 has at most two prime factors. (An algebraic integer is even
if it is divisible by all prime ideals that divide 2.) In this case it is necessary
to bound

|{ω ∈ R(y1, . . . , yn) : ω ≡ β mod q, (ω − β, VK(z)) = 1}| .

As for the first problem, define

θ(a) = |{ω ∈ R(y1, . . . , yn) : ω ≡ β mod q, (ω − β) = a}| .

Then the main term for
∑

d|a θ(a) is given by the prime number theorem in
Mitsui [23], with ω(p) = Np/φ(p) if p -β, zero otherwise. Thus Lemma 3
can be applied. The errors in Lemma 3 are dealt with in this problem by
Hinz’s extension of Bombieri’s prime number theorem ([11]).
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5. Main result. Let f be an integral ideal in the imaginary quadratic
field k. Let If be the group of fractional ideals whose prime decomposition
contains no prime factors of f, and let

Pf = {(α) ∈ If : α ∈ k∗, α ≡ 1 mod f} .
A Grössencharaktere on If has the form λm, where m ∈ Z and, for

(α) ∈ Pf, λ((α)) = (α/|α|)ω(f), with ω(f) the number of units ε satisfying
ε ≡ 1 mod f. (See [3], Section 2, for further details.) For a ∈ If define
ψ(a) ∈ [0, 1) by λ(a) = exp(2πiψ(a)). Let I be an ideal class mod f, i.e. an
element of If/Pf. Then our main result is

Theorem 2. For x−1/3 log3 x > l ≥ x−0.33691 we have∑
p∈I

|ψ(p)−ψ0|<l
x<Np<2x

1 ≥ 1
500

2lx
h(f) log x

,

for all ψ0 ∈ [0, 1), x > x0. Here h(f) is the order of If/Pf.

To deduce Theorem 1 write Q(x, y) = ax2+bxy+cy2 for some a, b, c ∈ Z,
and note that positive definite implies b2 − 4ac = df2 < 0 where d is the
discriminant of the imaginary quadratic field k. Associated with the form
is a Z-module M = [a, (b − f

√
d)/2] ⊆ Ok. So if α(x, y) = ax + ( b−f

√
d

2 )y,
then Q(x, y) = a−1N(α(x, y)). We are assuming that Q is primitive so it
is, in fact, an example of a value-primitive, full-norm polynomial as defined
in [24]. We now use ideas implicit in Section 5 of [5].

In generality let K be a number field of degree n, M ⊆ OK a full module
and γ ∈ OK . Define J to be the largest positive divisor of the rational
integers N(γ + η), η ∈ M . Then from the proof of Proposition 5 of [5] we
have that there exist integral ideals d, f and I ∈ If/Pf such that Nd = J
and if a ∈ I then ad = (γ + η) for some η ∈M . Further, if (d, f) 6= (1) then,
from the proof of Theorem 6 of [5] we have that there exist integral ideals
e, f′ satisfying (e, f) = (1) and f′ | f, along with s, t ∈ OK and I ′ ∈ If′/Pf′

such that if a ∈ I ′ then (t)ea = (s)(γ + η) for some η ∈ M . This has the
advantage that if λ is a Grössencharaktere mod f′ on If′ , then λ(e) and λ(a)
are well-defined. In this case J = N((t)e/(s)).

In the particular number field k arising from Q(x, y) we have γ = 0,
J = a and we can find e, f′, I ′, s and t as above. Apply Theorem 2 with ψ
defined as earlier mod f′ and ψ0 = ψ(s)−ψ(t)−ψ(e). The number of prime
ideals satisfying x < Np < 2x and Np = p2 is � x1/2 so we can assume
Theorem 2 counts only p such that Np = p, prime. For these p ∈ I ′ we
have (t)pe = (s)(η) for some η ∈ M , so ψ(t) + ψ(p) + ψ(e) = ψ(s) + ψ(η).
The condition |ψ(p) − ψ0| < l then becomes |ψ(η)| < l which we rewrite
as arg η < 2πω(f′)x−θ where x−θ = l ≥ x−0.33691, i.e. θ ≤ 0.33691. But
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η ∈ M if, and only if, η = α(m,n) for some m,n ∈ Z and so p = Np =
N((s)/(t)e)Nη = a−1N(α(m,n)) = Q(m,n). Also, arg η < 2πω(f′)x−θ

implies

n < C1x
−θN(α(m,n))1/2 < C1

(
Np

2

)−θ
(aNp)1/2 = C2p

1/2−θ ,

for some C1 > 0. Combining the intervals (x, 2x) we obtain

Corollary 4. There exists C = C(Q) such that for all θ < 0.3369 and
all x > x0 the cardinality of

{p < x : p = Q(m,n), m, n ∈ Z and n < Cp1/2−θ}
is � x1−θ/ log x.

Theorem 1 follows immediately.

6. Introduction of sieve and asymptotic results. As in [3], Section
4, or [5], Section 3, we start with

(6.1)
∑
p∈I

x<Np<2x
|ψ(p)−ψ0|<l

1 ≥
∑
p∈I

g(Np)f(ψ(p)− ψ0) ,

where f and g are smooth functions with values between 0 and 1, such that
f(t) is periodic mod1 and equals 1 for |t| < l −∆1 and 0 for 1/2 ≥ |t| > l
while g(t) equals 1 for x(1 + ∆2) < t < 2x(1 − ∆2) and 0 for t < x or
t > 2x. We in fact choose ∆1 = l/ log x and ∆2 = 1/ log x, and the required
properties of f and g will be quoted from [3] or [5] as necessary.

Define θ(a) = g(Na)f(ψ(a) − ψ0) if a ∈ I, zero otherwise. Then the
lower bound in (6.1) equals

(6.2)
∑

p

θ(p) = S(A, x1/2) = S(A, z)−
∑

z<Nq<x1/2

S(Aq, q)

using Buchstab. Here z is to be chosen. Set

(6.3) S(Q) =
∑

Q≤Nq<2Q

∑
p

θ(pq)

with the inner sum over prime ideals. If Q > x1/3 then this equals∑
Q≤Nq<2Q S(Aq, q). Now

S(Q) =
∑

Q≤Nq<2Q

∑
a

Λ(a)
logNa

θ(aq) + E(6.4)

=
(

1 +O

(
1

log x

)) ∑
Q≤Nq<2Q

1
log x/Nq

∑
a

Λ(a)θ(aq) + E .
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Here Λ is von Mangoldt’s function, so Λ(a) = logNp if a is a power of the
prime ideal p, 0 otherwise, and

(6.5) E =
∑

Q≤Nq<2Q

∑
j≥2

∑
x/Nq<Naj<2x/Nq

|ψ(ajq)−ψ0|<l

1 .

For j ≥ 3 we can drop the condition on ψ(a) and the contribution to E
is

�
∑

Q≤Nq<2Q

∑
3≤j�log x

(
x

Nq

)1/j

� x1/3Q2/3 log x .

For j = 2, split the inner sum in (6.5) into subsums of ideals lying in a
given ideal class H, say, mod f. Fixing b ∈ H−1, then ab = (λ), for some
λ ∈ O for all a in subsum. So this smaller sum is less than the number
of λ ∈ O with Nλ � (x/Nq)1/2 and |ψ(λ2) − ψ1| < l, for some ψ1. This
latter condition states that λ which, for the imaginary quadratic field k, are
elements of a lattice in the plane, must lie in two cones. Thus the inner
sum in (6.5) is � ((x/Nq)1/4 + 1)(l(x/Nq)1/4 + 1) and the contribution to
E is � lx1/2Q1/2 + x1/4Q3/4 + Q. Hence, since Q < x, E � lx1/2Q1/2 +
x1/3Q2/3 log x.

The inner sum in (6.4) differs from Ψl in (3.6) of [5] only by the occurrence
of q. The method of [5] replaces f(t) by

∑∞
m=−∞ am exp(2πimt), which

gives rise to the Grössencharaktere exp(2πimψ(a)), while g(y) is replaced
by

∫ c+i∞
c−i∞ ĝ(s)y−s ds, where ĝ is the Mellin transform of g. It can be shown

that both the infinite summation and integration can be cut-off at finite
points with arbitrarily small error. The line of integration can then be
moved, picking up contributions from the poles of the integrand. In this
way we obtain

(6.6)
a0ĝ(1)
h(f)Nq

− 1
h(f)

∑
χ

χ(I)
∑

|m|<W

ame
−2πimψ0

∑
|γmχ|<T

ĝ(%mχ)
χλm(q)
Nq%mχ

+O(log x) .

Here χ denotes a character on If/Pf, W = [∆−1
1 log2 x] = [l−1 log3 x], T =

[∆−1
2 log3 x] = [log4 x] and %mχ = βmχ + iγmχ are the non-trivial zeros of

the Hecke L-function defined as

L(s, χλm) =
∑

a

χλm(a)
Nas

,

for Re s > 1. The error of log x in (6.6) differs from that in (3.8) in [5]
because we use the fact that here ĝ(σ + it) � xσ.
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Substitute the second term from (6.6) into (6.4), bounding the resulting
term as

� l
∑
χ

∑
|m|<W

∑
|γmχ|<T

xβmχ

∣∣∣∣ ∑
Q≤Nq<2Q

χλm(q)
Nq%mχ log x/Nq

∣∣∣∣ ,
having used |am| ≤ a0 � l for all m. By partial summation, this is

(6.7) � lx max
β≥1/2

xβ−1
∑
χ

∑ ∑
|m|<W, |γmχ|<T

βmχ>β

|S(Q′, χλm, %mχ)|

for some Q < Q′ ≤ 2Q, where

S(Q′, χλm, s) =
∑

Q<Nq≤Q′

χλm(q)Nq−s .

For 1/2 ≤ σ ≤ 1, define N(σ,W, T ) to be the number of non-trivial zeros
%mχ of all L(s, λmχ) where |m| ≤ W and χ is a character on If/Pf, with
βmχ ≥ σ and |γmχ| ≤ T . Bounds for this counting function are given in [3]
but those results are optimal when W and T are of the same magnitude.
Because of the geometry of the region in which we are looking for prime
ideals in Theorem 2, the W and T in (6.6) are not of the same magnitude.
So we quote instead Theorem 3 of [26] as

Lemma 5.

(6.8) N(σ,W, T ) �f TW
2(1−σ)(W 2 + T 2)2(1−σ)/3 log15WT ,

or , as appropriate for us,

(6.9) N(σ,W, log4 x) �f W
10(1−σ)/3 log19 x .

In fact, (6.8) is only given in [26] for k = Q(i) and f = (1). Below I will
sketch how (6.8) can be proven in general. The exponent 10/3 in (6.9) is
better than the 24/5 + ε implied by Corollary 8.2 of [3]. The improvement
arises from the mean value result

Lemma 6.

(6.10)
∑
χ

∑
|m|<W

∣∣∣ ∑
Na<X

C(a)χλm(a)
∣∣∣2 �f (W +X)

∑∗

Na<X

|C1(a)|2 ,

where C1(a) =
∑
{C(b) : Nb < X,ψ(b) = ψ(a), b ∈ H(a)}. The sums are

over integral ideals, {C(a)} is a set of complex numbers,
∑∗ denotes that

the sum is over integral ideals a that cannot be written as ma′ with m ∈ Z
and a′ an integral ideal , and H(a) is the element of If/Pf containing a.

P r o o f o f L e m m a 6. This is Theorem C of [26], but for ease of
reference I will sketch the proof. The characters in the left-hand side of
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(6.10) take a common value for all a ∈ H, H ∈ If/Pf. Squaring out and
using orthogonality of characters, the left-hand side becomes

(6.11) h(f)
∑

H∈If/Pf

∑
|m|<W

∣∣∣ ∑
Na<X
a∈H

C(a)e2πimψ(a)
∣∣∣2

= h(f)
∑

H∈If/Pf

∑
|m|<W

∣∣∣ ∑∗

Na<X
a∈H

C1(a)e2πimψ(a)
∣∣∣2 ,

having replaced λ(a) by e2πiψ(a). If a1, a2 ∈ H occur in
∑∗ then ψ(a1) −

ψ(a2) 6= 0. Let c ∈ H−1; then

ψ(a1)− ψ(a2) = ψ(a1c)− ψ(a2c) = ψ(ξ1)− ψ(ξ2)(6.12)
= ω(f){arg ξ1 − arg ξ2} = ω(f) arg ξ1ξ2 ,

where ξ1, ξ2 ∈ c and ξ1, ξ2 ≡ 1 mod f. But ξ1ξ2 ∈ Ok and in general if α ∈
Ok then argα = 0 if and only if α ∈ Z, and if α 6∈ Z, |argα| �k 1/Nα1/2.
So if ψ(a1) 6= ψ(a2), we have

|ψ(a1)− ψ(a2)| �k 1/(Nξ1ξ2)1/2 = 1/(Na1a2)1/2Nc ≥ 1/XNc .

But c can be chosen such that Nc �f 1, so |ψ(a1) − ψ(a2)| ≥ c(f)/X for
some c(f) > 0.

Apply to (6.11) the dual of the large sieve, namely∑
|n|<N

∣∣∣ ∑
r∈R

are
2πinxr

∣∣∣2 � (N + δ−1)
∑
r∈R

|ar|2 ,

where the xi are real numbers distinct modulo 1, and δ = minr 6=s ‖xr −
xs‖, where ‖x‖ denotes the distance from x to the nearest integer. In our
application δ = c(f)/X, thus (6.11) is

�f (W +X)
∑
H

∑∗

Na<X
a∈H

|C1(a)|2 ,

as required.

P r o o f o f L e m m a 5. Let T ≥ 2, δ > 0 and assume for each m, χ
there is given Tmχ = {tmχi} ⊆ [−T + δ/2, T − δ/2], a set of points well-
spaced by δ; that is, |tmχi− tmχj | ≥ δ when i 6= j. Then from Lemma 6 and
Lemma 1.4 of Gallagher [6] we deduce

(6.13)
∑
χ

∑
|m|<W

∑
tmχ∈Tmχ

∣∣∣ ∑
Na<X

C(a)χλm(a)Naitmχ

∣∣∣
�f T (δ−1 + logX)(W +X)

∑∗

Na<X

|C1(a)|2 .
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For the method of proof of the zero density result (6.8) we quote from
[3]. First, note that with m, χ fixed, the number of non-trivial zeros %mχ
with T < |γmχ| < T + 1 is � log |m|T , ([22], Lemma 12), so N(σ,W, T ) �
N∗(σ,W, T ) log2WT , where, for fixed m, χ, the zeros in N∗(σ,W, T ) are
well-spaced by � logWT . For zeros counted in N∗(σ,W, T ) we have either

(6.14)
∣∣∣ ∑
U≤Na<2U

A(a)χλm(a)Na−%mχ

∣∣∣ � (logWT )−1 ,

or for each %mχ there exists tmχ with |tmχ − γmχ| � logWT for which

(6.15)
∣∣∣L(1/2 + itmχ, χλ

m)
∑
Na<X

µ(a)χλm(a)Na−1/2−itmχ

∣∣∣
� Y βmχ−1/2(σ − 1/2) .

Here X ≤ Y are to be chosen, X < U � Y logWT , µ is the Möbius function
and |A(a)| ≤ σ(a), the number of divisors of a.

In the first case (6.14), we replace βmχ with σ using partial summation,
square the result and use (6.13). If a is counted in

∑∗ and ψ(b) = ψ(a)
then, by (6.12), ω(f) arg ξ1/ξ2 = 0 for some (ξ1) = bc, (ξ2) = ac. That is,
there exist m,n ∈ Z and a unit ε ≡ 1 mod f such that ξ1/ξ2 = εm/n, or
equivalently (n)b = (m)a. If (n) 6= Ok then (n)|a because (m,n) = 1, and
so a cannot be counted in

∑∗. Contradiction, so (n) = Ok and b = (m)a.
Thus

C1(a) =
∑

U<N((m)a)<2U

A((m)a)
N((m)a)σ

≤ σ(a)
Naσ

∑
U1<m<U2

σ2(m)
m2σ

� σ(a)
Naσ

(
U

Na

)(1−2σ)/2

log3 U ,

(U1 = (U/Na)1/2, U2 = (2U/Na)1/2), and so∑∗

Na≤X

|C1(a)|2 � U1−2σ log6 U
∑
Na≤u

σ2(a)
Na

� U1−2σ log10 U .

Hence the number of %mχ counted in N∗(σx,W, T ) for which (6.14) holds is

� T (WX1−2σ + Y 2−2σ) log11WT .

For the second case (6.15) note first that the final result is trivial for
1/2 ≤ σ ≤ 1/2 + 1/ logWT , so we can assume σ ≥ 1/2 + 1/ logWT . Apply
the order result for Hecke L-functions in imaginary quadratic fields due to
Kaufman [18]:

(6.16) L(1/2 + it, χλm) � (m2 + t2)1/6 log4(m2 + t2) .
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Again square the result and apply (6.13) to see that the number of %mχ for
which (6.15) holds is

� TY 1−2σ(W 2 + T 2)1/3(W +X) log13WT .

If we choose X = W and Y = W (W + T )2/3 then (6.8) follows.

We return to (6.7) and ensure the γmχ are well-spaced by splitting
[−T, T ] into a union of intervals [n, n + 1) and for each n, choosing the
zero %̂mχ with n ≤ γ̂mχ < n+ 1 and |S(Q′, χλm, %̂mχ)| maximum. Splitting
into two cases n even or odd, we see that in each case |γ̂mχ − γ̂′mχ| > 1.
Then∑

χ

∑
|m|<W
βmχ>β

∑
|γmχ|<T

|S(Q′, χλm, %mχ)|

� log2WT
∑
χ

∑
|m|<W
β̂mχ>β

∑
|γ̂mχ|<T

|S(Q′, χλm, %̂mχ)|

� log2WT ·N1/2(β,W, T )
( ∑

χ

∑
|m|≤W

∑
|γ̂mχ|<T
β̂mχ>β

|S(Q′, χλm, %̂mχ)|2
)1/2

�W 5(1−β)/3{Q1−2β(W +Q)}1/2 log11/2WT

(using (6.9) and (6.10)),

�W 5(1−β)/3Q1−β log11/2WT ,

for Q ≥ W . If we substitute this bound into (6.7) and demand that, given
ε > 0, Q < x1−εW−5/3 then (6.7) is � lx log11/2WT maxx−ε(1−β). We use
the zero-free region as stated in

Lemma 7. For all χ mod f and all |m| ≤ W , the Hecke L-functions
L(s, χλm) have no zero in the region

σ ≥ 1− c1(f)(logWT )−α , |t| < T

when W 2 + T 2 ≥ c2(f) for constants c1 and c2 and some 0 < α < 1.

See either [21], Lemma 13 or [4], Theorem 2 for details of the proof. The
bound (6.7) is thus seen to be

(6.17) � lx1−c1(f)ε/ logα x log11/2WT � lx/ log2 x

for x > x0(ε, f).
If we substitute the first term from (6.6) into (6.4) we obtain

(6.18)
2lx
h(f)

(
1 +O

(
1

log x

)) ∑
Q<Nq<2Q

1
Nq log x/Nq
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having used a0 = 2l+O(∆1) = 2l(1+O(1/ log x)) and ĝ(1) = x+O(∆2x) =
x(1 +O(1/ log x)). By the prime number theorem for prime ideals the sum
in (6.18) is � 1/ log x and so the term above dominates (6.17).

Finally, the error in (6.6) contributes essentially nothing, while in the
rangeQ < x1−εW−5/3, the error E in (6.4) is� l11/6x1−ε/2+l10/9x1−2ε/3 �
lx/ log2 x. Hence, on evaluating the sum in (6.18) using partial summation,
we have

Proposition 8. Let ε > 0 be given. For W ≤ Q ≤ x1−εW−5/3 we have

S(Q) =
2lx

h(f) log x

(
1 +O

(
1

log x

)) Q2∫
Q1

dt

t(1− t)
,

for x > x0(ε, f), where Q1 = logQ/ log x and Q2 = log 2Q/ log x.

The above method gives an asymptotic result for
∑
θ(p). From (6.3) this

would be the case Q = 1. The only difference in the proof would occur at
(6.7); the summand is now 1 and Lemma 5 can be used directly obtaining
a bound � lx/ log2 x for (6.7) if W 10/3/x < x−ε. Since W = l−1 log3 x
this condition can be given as l > x−3(1−ε)/10. From (6.1), we have that∑
θ(p) is a lower bound for an unweighted sum over prime ideals. As in

[3] an upper bound,
∑
θ̃(p) say, can be given for the unweighted sum, with

the properties of θ̃(p) so similar to those of θ(p) that the same asymptotic
results hold for

∑
θ̃(p). Hence

Theorem 3. Let ε > 0 be given. For 1/2 > l > x−3(1−ε)/10 we have∑
p∈I

|ψ(p)−ψ0|<l
x<Np<2x

1 =
2lx

h(f) log x

(
1 +O

(
1

log x

))
,

for all ψ0 ∈ [0, 1), x > x0(ε, f).

This is Theorem 2 of [26] generalized to arbitrary quadratic imaginary
fields.

7. Application of sieve results. We can use Proposition 8 to estimate∑
z<Nq<Z S(Aq, q) for z = W , Z = x1−εW−5/3 as long as z ≥ x1/3. For the

remaining terms in (6.2) we apply Lemma 3. Consider
∑

d|a θ(a), for d an
integral ideal. If (d, f) 6= (1), there can exist no ideal a in this sum such that
a ∈ I ∈ If/Pf, hence the sum is zero. If (d, f) = (1), then by the argument
preceding (6.6),
(7.1)∑

d|a

θ(a) =
1
h(f)

∑
χ

χ(I)
∞∑

m=−∞
am

1
2πi

c+i∞∫
c−i∞

ĝ(s)χλm(d)
Nds

L(s, χλm) ds
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for any c > 1. The integrand has a pole at s = 1, when m = 0, χ = χ0, of
residue a0ĝ(1)Ress=1 L(s, χ0)(h(f)Nd)−1. In view of (2.5), define

X = a0ĝ(1)Res
s=1

L(s, χ0)h−1(f)

and

ω(d) =
{

1 if (d, f) = (1),
0 if (d, f) 6= (1).

From (2.3) of [29] we have Mertens’s Theorem for any number field K,
namely

(7.2) W (z) :=
∏
Np<z

(
1− 1

Np

)
=
e−γ

aK

1
log z

+O

(
1

log2 z

)
,

where aK is the residue of ζK(s), the Dedekind zeta-function, at s = 1 and
γ denotes Euler’s constant. Also,

(7.3)
∏

h≤Kp<K j

(
1− ω(p)

Np

)−1

≤ W (Nh)
W (N j)

(
1 +O

(
1
Nh

))
,

where the O(1/Nh) term accounts for the prime ideals that are lost or gained
when h ≤K p <K j is replaced by Nh ≤ Np < N j. But now (3.3) follows
immediately from (7.2) and (7.3), while (3.10) follows from the prime ideal
theorem.

The application of Lemma 3 will be exactly as in [8]. Consider V (z)X
and for simplicity assume z > N f. Then since

Res
s=1

L(s, χ0) =
∏
p|f

(1−1/Np) Res
s=1

ζk(s) and V (z) =
∏
p|f

(1−1/Np)−1W (z)

we deduce from (7.2) that

V (z)X = a0ĝ(1)(h(f) log z)−1(1 +O(1/ log z)) .

Thus for any ε > 0 and with D > z2 to be chosen,

(7.4) S(A, z) ≥ a0ĝ(1)
h(f) log z

{
f

(
logD
log z

)
−cε+O

(
1

(logD)1/3

)}
−R−(A, D) .

For the remaining term in (6.2) split the range of the prime q, Z < Nq <
x1/2, into subsums with Q ≤ Nq < 2Q. In each such subsum Nq >
(D/2Q)1/3 and so using the observation that S(A, p) ≤ S(A, w) if Np > w
we have∑

Z<Np<x1/2

S(Ap, p) ≤
∑
Q

1
logQ

∑
Q<Na<2Q

Z<Na<x1/2

Λ(a)S(Aa, (D/2Q)1/3) .
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By Lemma 3, the inner sum on the right-hand side is

(7.5) ≤ a0ĝ(1)
h(f)

∑
Q≤Na<2Q

Z<Na<x1/2

Λ(a)
Na log((D/2Q)1/3)

×
{
F (3) + cε+O

(
1

(log(D/2Q))1/3

)}
+

∑
Q≤Na<2Q

Z<Na<x1/2

Λ(a)R+(Aa, D/2Q) .

To the sum over errors we apply the method of Vaughan [31]. This method
has been used in number fields by Hinz [11]. He derives the required
identity by following the original idea of Vaughan, giving an identity for
−ζ ′K(s)/ζK(s) and then equating coefficients. Yet it is possible to have∑
A(a)Na−s =

∑
B(a)Na−s for all s ∈ C, where both sums are over inte-

gral ideals from K, without A(a) = B(a) for all a. The most that can be
deduced is that ∑

Na=n

A(a) =
∑
Na=n

B(a) , for all n ∈ Z .

Here we quote from [9], defining sums Σj(Q, u) (0 ≤ j ≤ 5) by

Σj(Q, u) =
∑
a,b,c

Λ(a)µ(b)R+(Aabc, D/2Q),

where u is a real number, a, b and c run through integral ideals of K and
the range of summation is Q ≤ Nabc < 2Q, Z ≤ Nabc < x1/2 and if

j = 0, Nbc ≤ u,

j = 1, Nb ≤ u,

j = 2, Nab ≤ u,

j = 3, Nab ≥ u, Na ≤ u, Nb ≤ u,

j = 4, Na > u, Nbc > u, Nb ≤ u,

j = 5, Nbc ≤ u, Na ≤ u.

Then Vaughan’s identity is

Σ0(Q, u) +Σ2(Q, u) +Σ3(Q, u) +Σ4(Q, u) = Σ1(Q, u) +Σ5(Q, u) .

Here u is to be chosen. If we assume that 1 ≤ u ≤ Q1/2 then, since the
range of summation is empty, Σ5(Q, u) = 0. On writing d = be, we see that
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Σ0(Q, u) =
∑′

Q≤Nad<2Q

Λ(a)
( ∑

b|d

µ(b)
)
R+(Aad, D/2Q)

=
∑′

Q≤Na<2Q

Λ(a)R+(Aa, D/2Q) ,

which is what we are estimating. Here the prime denotes Z ≤ Nad ≤ x1/2.
We deal with the other sums in the same way of combining variables.

In Σ3 write f = ab, h = c while in Σ4, f = a and h = bc. In Σ3 we have
u ≤ N f < u2 which is < 2Q/u if u < (2Q)1/3 as we now assume. Thus, in
both cases, the sums have the form

ΣI(Q) =
∑

Q<Nfh<2Q
u<Nf<2Q/u

A(f)B(h)R+(Afh, D/2Q) ,

where from Σ3,

A(f) =
∑
ab=f
Na≤u
Nb≤u

Λ(a)µ(b) � logN f, B(h) = 1

and from Σ4,

A(f) = Λ(f) � logN f and B(h) =
∑
c|h

Nc≤u

µ(c) � σ(h) .

In Σ1 write f = b, h = ac while in Σ2, f = ab and h = c. Then both
sums are examples of

ΣII(Q) =
∑

Q≤Nfh<2Q
Nf≤u

A(f)B(h)R+(Afh, D/2Q) ,

and from Σ1,

A(f) = µ(f) � 1, B(h) =
∑
ac=h

Λ(a) = logNh

and from Σ2,

A(f) =
∑
ab=f

Λ(a)µ(b) � logN f and B(h) = 1 .

Thus to estimate the error in (7.5) it suffices to bound sums of the form
ΣI, ΣII with any coefficients satisfying the bounds above.

Looking first at ΣI we split the sum in O(logQ) subsums by restricting
the variables to ranges such as F ≤ N f < 2F , H ≤ Nh < 2H where F ≥ u,
H ≥ u/2 and FH < 2Q. For each such subsum the conditionQ ≤ N fh < 2Q
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is removed by using Perron’s Theorem ([30], Lemma 3.12), which allows us
to write the subsum as

(7.6)
1

2πi

iT∫
−iT

(2Q)u −Qu

u

×
∑

F≤Nf<2F
H≤Nh<2H

A(f)N f−uB(h)Nh−uR+(Afh, D/2Q)du+O(1)

� log T
∣∣∣ ∑
F≤Nf<2F
H≤Nh<2H

Ã(f)B̃(h)R+(Afh, D/2Q)
∣∣∣ .

Here T is a sufficiently large power of x and Ã(f) = A(f)Nf−it, B̃(h) =
B(h)Nh−it for some −T ≤ t ≤ T . Now use (4.1) within (7.6), expressing
R+(Afh, D/2Q) as a sum of

(7.7)
∑
Ne<E

∑
Ng<G

a(e)b(g)r(Afh, eg)

with |a(e)| ≤ 1, |b(g)| ≤ 1 and EG = D/2Q. Yet r(Afh, eg) = r(A, efgh)
and so on substituting each sum (7.7) into (7.6) we can combine variables
by defining a = fe and b = gh. The lengths of the resulting bilinear sums are
Na < A, Nb < B with A > F , B > H and AB = D, while the coefficients
are essentially divisor functions and so are �ε1 x

ε1 for any ε1 > 0. There
are �ε 1 sums of the form (7.7) so, ΣI(Q) �ε,ε1 x

ε1 |R(A,B)|, where

R(A,B) =
∑

A/2<Na<A

∑
B/2<Nb<B

A(a)B(b)r(A, ab) ,

for some AB ≤ D, A,B < 2Q/u and coefficients satisfying |A(a)| ≤ 1,
|B(b)| ≤ 1. Thus for both ΣI(Q) and the error in the application of the
lower bound sieve, (7.4), the following is relevant.

Lemma 9. Let η > 0 be given. Let x7η/3 < W < x3/8−5η/4, A,B <
x1−3ηW−5/3 and AB < x1−3η. Then

R(A,B) � lx1−η .

P r o o f. By definition

(7.8) r(A, ab) =
∑
ab|c

θ(c)− ω(ab)X/Nab ,

and in this we use (7.1). As in the proof of (6.6) the properties of am
and ĝ(s) allow us to truncate the sum and integral at W = l−1 log3 x and
T = log4 x respectively. Moving the line of integration to Re s = 1/2, the
contributions on the horizontal lines are arbitrarily small while the pole at
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s = 1 gives the main term in r(A, ab). Summing over a and b gives

(7.9) R(A,B) ∼ 1
2πh(f)i

×
∑
χ

χ(I)
∑

|m|<W

am

1/2+iT∫
1/2−iT

ĝ(s)A(s, χλm)B(s, χλm)L(s, χλm) ds ,

where ∼ denotes that the two sides differ by an arbitrarily small amount
and A(s, χλm) =

∑
A/2<Na<AA(a)χλm(a)Na−s, similarly for B(s, χλm).

Using the order result for L(s, χλm), (6.16), and Cauchy–Schwarz followed
by the mean value result, Lemma 6, we can bound the right-hand side as

� lx1/2W 1/3(W +A)1/2(W +B)1/2 logc x ,

for some c > 0 having used g(1/2 + it) � x1/2. If A,B < W this bound is

� lx1/2W 4/3 logc x� lx1−5η/3 logc x .

If either A > W , B < W or A < W , B > W the bound is

� lx1/2W 5/6(x1−3ηW−5/3)1/2 logc x� lx1−3η/2 logc x .

For the final case A,B > W we deal with them = 0, χ = χ0 term separately,
when

a0

2πh(f)i

1/2+iT∫
1/2−iT

ĝ(s)A(s, χ0)B(s, χ0)L(s, χ0) ds� lx1/2(AB)1/2 logc x

� lx1−3η/2 logc x ,

having trivially estimated all terms from above. For the remaining terms
return to (7.8), writing c = abd and noting that θ(c) is non-zero only if
x/4AB < Nd < 2x/AB. Thus the L-function in (7.9) can be replaced by

N(s, χλm) =
∑

N<Na<8N

χλm(a)Na−s where N = x/4AB .

From Perron’s Theorem we have

N(1/2 + it, χλm) =
1

2πi

c+iτ∫
c−iτ

(8N)s −Ns

s
L(s+ 1/2 + it, χλm) ds

+Oη

(
N1/2+η

τ

)
,

for any c > 1/2. Move the line of integration to Re s = 0; there is no
pole of the integrand in the region 0 < Re s < c, and it can be shown
that the contribution from the horizontal lines is less than that from the
new vertical line. The integral on Re s = 0 is estimated using (6.16) and
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((8N)it −N it)/t� min(1, 1/|t|). Thus

N(1/2 + it, χλm) � (W + τ)1/3 logc x+N1/2+η/τ ,

which is � N1/2x−4η/3 if we set τ = W and demand x7η/3 < W <
N3/2x−5η. This latter upper bound is satisfied in our application where
N = x/4AB > x/4W 2. So our final contribution to R(A,B) is

� lx1/2

(
x

AB

)1/2

x−4η/3

×
∑ ∑
χ, |m|<W

(m,χ) 6=(0,χ0)

T∫
−T

|A(1/2 + it, χλm)B(1/2 + it, χλm)| dt

� lx1−4η/3 logc x ,

on using Lemma 6. In all cases the bound is � lx1−η as required.

Using Lemma 9 we can set D = (x1−3ηW−5/3)2 and u = 2Q/D1/2. It is
easily checked that D > z2 and u < (2Q)1/3. We now examine ΣII(Q) with
these choices. We will require the following result.

Lemma 10.

(7.10)

∑
|m|<W

|L(1/2 + γ + it, χλm)|2 � (W + |t|) logc(W + |t|) ,

T∫
−T

|L(1/2 + γ + it, χλm)|2 dt� (T + |m|) logc(T + |m|) ,

for some c > 0 and where t and γ are real with |γ| � 1/ log(W + |t|) and
W + |t| ≥ e say.

The inclusion of γ above means that by the use of

f ′(a) =
1

2πi

∫
f(z)(z − a)−2 dz ,

with the path of integration a circle centre 1/2 + it, radius 1/ log(W + |t|),
we can deduce∑

|m|<W

|L′(1/2 + it, χλm)|2 � (W + |t|) logc(W + |t|) ,

and similarly for the integral.

S k e t c h p r o o f o f L e m m a 10. We apply the method of Ramachan-
dra, [25]. The Mellin transform gives

(7.11) |L(1/2 + γ + it, χλm)|2 �
∣∣∣ ∑

a

e−Na/Pχλm(a)Na−1/2−γ−it
∣∣∣2
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+ P−2(γ+2/ log V )g

(
− γ − 2

log V

)
×

∞∫
−∞

Γ

(
− γ − 2

log V
+ iv

)∣∣∣∣ ∑
Na<P

χλm(a)
Na1/2+2/ log V−i(v+t)

∣∣∣∣2 dv
+ P−2(1/2+γ+2/ log V )g

(
− 1

2
− γ − 2

log V

)
×

∞∫
−∞

Γ

(
− 1

2
− γ − 2

log V
+ iv

)∣∣∣∣ ∑
Na>P

χλm(a)
Na1+2/ log V−i(t+v)

∣∣∣∣2 dv
+ P 1−2γ log2 P ,

where the last term occurs only if m = 0 and χ = χ0. Here V = W + |t|
and P is to be chosen, though we can assume P 1/ log V � 1, and

(7.12) g(u) =
∞∫

−∞
Γ (u+ iv)G2(1/2 + γ + u+ i(t+ v), χλm) dv ,

whereG(s, χλm) is the gamma factor in the functional equation L(s, χλm) =
G(s, χλm)L(1−s, χλ−m). A version of (7.11) appears in Johnson [16], p. 199.
Introducing the sum over |m| < W , we make use of Lemma 6 and

(7.13) G(s, χλm) � (m2 + (Im s)2)1/2−σ ,

which follows from Stirling’s formula. Note that in the first term in (7.11),
e−Na/P is arbitrarily small if Na > P log2 P say, at which point the sum
can be truncated. Then Lemma 6 will give, as it does for the second term
in (7.11), a bound � (W + P ) logc P . Lemma 6 is not directly applicable
to the infinite sum in the third term of (7.11). But using∣∣∣ ∑

Na>P

. . .
∣∣∣2 ≤ ( ∞∑

λ=0

2λ(σ−1)
∣∣∣ ∑
2λP<Na≤2λ+1P

. . .
∣∣∣2)( ∞∑

λ=0

2−λ(σ−1)
)
,

valid for σ > 1, Lemma 6 can be applied to each finite sum and the results
combined to give a contribution � P−2V 2(W + P ) logc V , the V 2 arising
from the gamma factor. Thus∑
|m|<W

|L(1/2+γ+it, χλm)|2 � (W+P+P−2V 2(W+P )) logc V � V logc V

(on choosing P = V ), as required. For (7.10), use on (7.11) the classical
mean value result

T∫
−T

∣∣∣ ∑
n

ann
−it

∣∣∣2 dt� ∑
n

a2
n(n+ T ) ,

in place of Lemma 5.
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Returning to ΣII(Q), we use (4.1) in writing

R+(Afh, D/2Q) �ε

∑
Nc<D/2Q

C(c)r(Afh, c) for some |C(c)| ≤ σ(c) .

Then, just as we obtained (7.9), we have

(7.14) ΣII(Q)

�ε l
∑
χ

∑
|m|<W

∣∣∣ 1/2+iT∫
1/2−iT

ĝ(s)E(s, χλm)C(s, χλm)L(s, χλm) ds
∣∣∣ ,

where

(7.15) E(s, χλm)

=
∑

Q≤Nfh<2Q
Nf<u

A(f)B(h)χλm(fh)N(fh)−s

=
1

2πi

1/2+1/ log x+iτ1∫
1/2+1/ log x−iτ2

A(s+ w,χλm)B(s+ w,χλm)
(2Q)w −Qw

w
dw

+Oη

(
Q1/2+η

τ

)
,

where τ = min(τ1, τ2), having used Perron’s Theorem. Since the coefficients
B(h) are either all 1 or equal to logNh, B(s, χλm) is either L(s, χλm) or
L′(s, χλm).

We move the line of integration in (7.15) to Rew = 1/ log x and choose
τ1 and τ2 of order W . From (7.10) we have for each |m| < W ,

2W∫
W

|L(1/2 + 1/ log x+ it, χλm)|2 dt�W logcW ,

so there exists τ1 ∈ [W, 2W ] depending on m such that

L(1/2 + 1/ log x+ iτ1, χλ
m) � logcW ,

for some c > 0, the same conclusion holding for L′(s, χλm). By convexity
this bound holds on the half-line to the right of 1/2 + 1/ log x. Similarly,
there is a τ2 ∈ [−2W,−W ] with this same bound. Thus the contribution
to (7.15) of the horizontal lines is � (u1/2 + Q1/2)W−1 logc x which, since
u < Q1/2, is dominated by the error in (7.15). This in turn is � 1 because
W > x1/3 > x1/4+η/2 > Q1/2+η. Hence the error from (7.15) contributes
in (7.14)
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� lx1/2
∑
χ

T∫
−T

( ∑
|m|<W

|C(1/2 + it, χλm)|2
)1/2

×
( ∑
|m|<W

|L(1/2 + it, χλm)|2
)1/2

dt

� lx1/2T (W +DQ−1)1/2(W + T )1/2 logc x

� lx1/2(W +W 1/2D1/2Z−1/2) logc x� lx1−η ,

having substituted for D, Z and used x1/3 < W < x3/8−5η/4.
Substituting the main term, obtained from (7.15) on moving the line of

integration, into (7.14) gives

(7.16) � lx1/2
∑
χ

1/ log x+2iW∫
1/ log x−2iW

(2Q)w −Qw

w
dw

×
1/2+iT∫

1/2−iT

∑
|m|<W

|A(s+ w,χλm)B(s+ w,χλm)C(s, χλm)L(s, χλm) ds| .

Using the order result (6.16) and Cauchy–Schwarz, the sum in the inner
integral is bound by

W 1/3
( ∑
|m|<W

|A(s+ w,χλm)C(s, χλm)|2
)1/2( ∑

|m|<W

|B(s+ w,χλm)|2
)1/2

�W 1/3(W + u(D/Q))1/2(W + |Im(s+ w)|)1/2 logc x .

Yet Im(s+ w) �W + log4 x while u(D/Q) ≤ 2D1/2, so the bound is

� (W 4/3 +W 5/6(x1−3ηW−5/3)1/2) logc x� x1/2−5η/4 logc x ,

which in (7.16) gives a bound � lx1−η. Thus ΣII(Q) � lx1−η.
Combining, within (6.2), these results on the sieve with Proposition 8

gives∑
p

θ(p) ≥ 2lx
h(f) log x

{
H(z, Z,D)− cε+O

(
1

log x

)}
+Oε1ε,η(lx

1+ε1−η) ,

where

H(z, Z,D) = e−γ
log x
log z

f

(
logD
log z

)
−

logZ/ log x∫
log z/ log x

dt

t(1− t)

− 3e−γF (3)
1/2∫

logZ/ log x

dt

t
(

logD
log x − t

) ,
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having used partial summation in the sum over prime ideals in (7.5). The
above result is, by Proposition 8 and Lemma 9, valid for x−3/8+η < l <
x−1/3. Substituting for z, Z and D, writing l = x−θ and using

f(u) =
2eγ

u
log(u− 1), 2 ≤ u ≤ 4 ,

and

F (u) =
2eγ

u
, 0 < u ≤ 3,

gives H(z, Z,D) ≥ c(θ)− C1ε− C2η where

c(θ) =
3

3− 5θ
log

(
(6− 13θ)(9− 20θ)

9θ

)
− log

(
(3− 5θ)(1− θ)

5θ2

)
.

It is easily checked that c(θ) > 0.0021 for 1/3 ≤ θ ≤ 0.33691 < 3/8, so on
choosing η, ε and ε1 sufficiently small∑

p

θ(p) ≥ 1
500

2lx
h(f) log x

for x−1/3 > l ≥ x−0.3369 as required.

8. Concluding remarks. The range of validity of Theorem 2 can be
extended to l > x−1/3 log3 x by choosing z = x1/3, Z = x1−εW−5/3. It is
easily checked that H(z, Z,D) > 0.

Lemma 6 should be compared with Theorem 6.2 of [3] that states that∑
|m|<W

T∫
−T

∣∣∣ ∑
Na<X

c(a)λmχ(a)Na−it
∣∣∣2 dt� (X +W 2 + T 2)

∑
Na<X

|c(a)|2 .

From the geometry of the problem considered in [3], W and T are of the
same magnitude and thus W 2+T 2 is a fair reflection of the size of the region
|m| < W , |t| < T . In our present problem, where T is so much smaller
than W , this is not the case and so it is advantageous to use Lemma 6.
Unfortunately, W 2 + T 2 still occurs, primarily from the order result (6.16)
and the gamma factor (7.13).

Comparing the methods of this paper with those of [15] we see we have
made no use of the Halász–Montgomery inequality. Such a result has been
given for a quadratic imaginary number field as Lemma 7.2 of [3]. It is seen
from there that the inequality depends on the order of Hecke L-functions
on various vertical lines, and so will include the factor W 2 + T 2. Because
of this, the Halász–Montgomery inequality affords a far smaller advantage
over Lemma 6 than it does in the rational case or even in [3]. But further,
without this inequality we cannot follow [8] in looking at a decomposition
more complicated than (6.2) nor use the observation that Lemma 3 gives
bounds for W±(A, u, z), not just S(A, z).
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